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Abstract  

This paper reports our work on building up a Cantonese Speech-to-Text (STT) system with a syllable based acoustic model.  This is 
a part of an effort in building a STT system to aid dyslexic students who have cognitive deficiency in writing skills but have no problem 
expressing their ideas through speech. For Cantonese speech recognition, the basic unit of acoustic models can either be the 
conventional Initial-Final (IF) syllables, or the Onset-Nucleus-Coda (ONC) syllables where finals are further split into nucleus and 
coda to reflect the intra-syllable variations in Cantonese.  By using the Kaldi toolkit, our system is trained using the stochastic gradient 
descent optimization model with the aid of GPUs for the hybrid Deep Neural Network and Hidden Markov Model (DNN-HMM) with 
and without I-vector based speaker adaptive training technique. The input features of the same Gaussian Mixture Model with speaker 
adaptive training (GMM-SAT) to DNN are used in all cases. Experiments show that the ONC-based syllable acoustic modeling with 
I-vector based DNN-HMM achieves the best performance with the word error rate (WER) of 9.66% and the real time factor (RTF) of 
1.38812. 
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1. Introduction 

In hybrid context dependent DNN-HMM speech 

recognition methods,  an artificial neural network (ANN) 

with multiple non-linear hidden layers is trained to output 

posterior probabilities of output frame labels 

corresponding to tied HMM triphone states (senones). 

The input of a higher-dimensional feature vector is 

composed from consecutive concatenated frames in 

which Mel-Frequency Cepstral Coefficients (MFCC) or 

filter-bank features are successively normalized and 

transformed on a per speaker basis. While the alignments 

and output labels for DNN training come from the 

GMM-HMM system with a set of HMM triphone states 

and their corresponding Gaussian models. Due to power 

of DNN and its efficiency in learning discriminative 

features, recent attempts have used much higher 

dimensional input features to DNN-HMM systems such 

as the I-vector based speaker adaptive training (SAT) 

techniques, in which several hundred dimensional 

per-speaker I-vector features as extra input are added to 

the conventional 40 dimensional GMM-SAT features as 

the final input to the neural net (Karafiátet al., 2011; 

Gupta et al,, 2014). The GMM-SAT features are spliced 

across several to tens of consecutive frames rather than 

just one frame in a GMM system. Related works have 

been done using syllable-based acoustic modeling on 

large-vocabulary continuous speech recognition (LVCSR) 

for both monosyllabic and polysyllabic languages, 

including Mandarin (Lee et al., 1993; Pan et al., 2012; 

Deng Li and Li Xiao, 2013; Li et al., 2013; Hu et al., 

2014; X. Li, and X. Wu, 2014) and West languages 

(Hinton et al., 2012; A. Mohamed, 2012; Swietojanski et 

al., 2013; Gupta & Boulianne, 2013; Schmidhuber 2015). 

However, automatic STT on Cantonese is far behind. This 

motivated us to investigate SST for Cantonese. In this 

work, all models are implemented using the Kaldi toolkit. 

The rest of the paper is organized as follows. Section 2 

presents both the acoustic and language models used in 

our system. Section 3 describes the baseline DNN-HMM 

system which does not use I-vector for speaker adaptation, 

followed by the DNN-HMM system with speaker 

adaptation in Section 4. Experiments on the system-wide 

parameter tuning and performance evaluation will be 

discussed in Section 5. Section 6 reports the conclusion 

and the future works. 

2. Acoustic Modeling, Language Modeling, 
and Lexicon 

The key components in LVCSR are the acoustic model 

(AM) and the language model (LM). AM in a series of 

statistical DNN-HMM models parameterizes the 

statistical raw speech signal variations in phone-level 

sequences, while LM constraints the syntax and semantic 

meaningful word-level transcriptions accordingly using 

the context history. The lexicon used in our system 

contains 15,542 entries with 2,089 pronunciation 

variations as a bridge to map the word-level transcriptions 

to its phone (or clustered ones referred as state) sequence, 

and hence to a sequence of the context dependent states in 

AM given the context and HMM transducers. 

2.1 Syllable-based Acoustic Modeling 

Syllable-based modeling is pervasively used in West 

languages and Mandarin (Wu and Wu, 2007). Li (Li et al., 

2013) achieved a significant improvement by replacing 

the traditional Initial-Final model with the IF triphone 

model in Mandarin. 

2.1.1. IF-based vs ONC-based Acoustic Units 

In the conventional syllable-based modeling, 

“Initial+Final” units are regarded as the basic units of 

acoustic models. In Cantonese, there are 625 base 

syllables which can be divided into two phonological 

units: 1 9  initials (or onset) and 53  finals (LSHK, 1997) 

with 6 tones by default associated with finals. 
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Initials are typically consonants and each final consists 

of a vowel nucleus and a consonant coda. While the 

nucleus is indispensable, the onset and the coda are 

optional. The initials can be semi-vowel, nasals or 

non-nasal such as liquids, glides, fricatives, affricates, 

and plosives. For finals, they can be a  vowel (long), a  

diphthong, a  vowel with nasal coda, a vowel with stop 

coda, and syllabic nasal. Comparatively, Mandarin has 

only 23 initials and 37 finals. It is evident that recognizing 

Cantonese syllables faces more variation challenges than 

Mandarin due to the significant large number of syllables 

in Cantonese. Our study proposed that the conventional 

IF-based syllable units can be strengthened to model the 

intra-syllable variations of Cantonese by further breaking 

down the IF into “Initial/Onset + Nucleus and Coda” 

(ONC). Finals can actually be formed from a more 

elementary set of 15 nuclei plus 9 codas, a total of 24 

elementary phonemes as depicted in Table 1. The 6 tones 

associated with the finals in IF will be allocated to 

both nucleus and codas to finely reflect the actual 

tone variations between nucleus and codas even 

within an individual character when combining with 

its context character(s) to form n-grams. For 

example, “令” should be encoded as “l i02 _ng01” in 

bi-gram “令狐” (one Chinese family name), yet as “l 

i02 _ng02” in “命令” (order). At the first comparison, 

the ONC scheme can halve the size of the phone set for 

modeling the finals, which is from 53 to 24. The ONC 

scheme is helpful in modeling modern Cantonese sound 

variations which the IF scheme is difficult to process due to 

its lack of flexibility. The IF scheme assumes that the 53 

finals are distinctive, i.e. different finals give different 

Cantonese characters. However, due to language 

evolvement, some finals are becoming similar and hard to 

differentiate from each other. And even native Cantonese 

speakers find some of them hard to distinguish.  

For example, the characters “baat” (八, eight) and “baak” 

(百, hundred) are no longer distinguished since both a re  

pronounced as “baak”, especially in youngsters. The two 

characters differ only in the ending unreleased stops, the 

alveolar “/t ̚ /” and the velar “/k ̚ /”. Merging the coda “/k  ̚

/” into “/t  ̚/” is also found following other nuclei, such as 

“got” (割, cut) and “gok” (各, each), or “bat” (筆, pen) and 

“bak” (北, north). The nasal finals are also being merged 

when speakers find the codas velar “/N/” the same as 

alveolar “/n/”, such as in “san” (新 , new) and “sang” (

生 , alive), “laan” (懶 , lazy) and “ laang” (冷 , cold) 

respectively. These sound variations can undermine the 

basic assumption of 53 distinctive finals in the IF scheme 

because the finals are not distinctive in some characters. 

As this phenomenon is widespread in training corpus 

where expected individual corrections on the oral 

transcripts is infeasible, this results in unavoidable 

wrong mappings. For instance, when training the 

recognition of “baak” (百, hundred), instances of different 

pronunciations of “ baat” (八 , eight) are incorporated 

unavoidably. Similar cases also hold for the nasal codas. 

The influence of sound variations is minimized in the 

ONC scheme with more elementary building units of 

finals, i.e. nuclei and codas are extracted from the 

different finals and hence trained separately. In the IF 

scheme, for the same Final “aak” as in “ baak”, its 

training can only be confined to other instances with just 

different initial combinations, but still vulnerable to sound 

variations whereas the building units of “aak” in the ONC 

scheme are trained separately from different Onset-Coda 

and Onset-Nucleus combinations. For example, the 

vulnerable “/k ̚ /” can be trained from much larger correct 

instances in other speech environments, such as from 

“bik” (逼, coerce) which is never merged into “bit”. This 

benefit cannot be obtained in the IF scheme, as it would 

be deemed to be “ik” and “aak” which are distinct 

training units. To summarize, the finer structure of the 

ONC scheme allows a deeper phoneme generalization 

from different speech environment and can alleviate the 

influence of sound variations. Inspired by Li’s work on 

Mandarin (Li et al., 2013), we split the finals into nucleus 

and coda to model the intra-syllable variations, given that 

s u b - syllables are deemed to have more stable acoustic 

realizations than IF (Wu and Wu, 2007).  

 

Base Syllable in IF/ONC 

IF Initial Final with tone 

令狐 l ing4 

命令 l ing6 

ONC [Onset] Nucleus 

with tone 

[Coda with 

tone] 
令狐 l i02 _ng05 

命令 l i02 _ng02 

 

Table 1:  Syllable for Cantonese-“令狐” and “命令”. 

2.1.2. Acoustic Data 

Our acoustic model is trained by a subset of continuous 

sentence speech data from CUCorpora (Lee et al., 2002) 

which is a manually transcribed Cantonese speech with 

speaker identities so that speaker-adapted training can be 

conducted. The full utterance data is split into the training 

data, referred to as CUSent and the testing data, referred 

to as CUTest. Table 2 summarizes the training data 

CUSent which has a total of 21,576 utterances from 34 

male and 34 female speakers, respectively. CUTest 

contains 1,198 utterances by 6 male and 6 female 

speakers. 

 

Speakers 68 

Utterances 21,576 

Syllables 1,613 

Onsets 20 

Nuclei 15 

Codas 9 

Initials 20 

Finals 53 

Table 2: Summary of Speech Training Data (CUSent). 
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2.2 Language Modeling and Raw Corpus 

Conventional count-based n-gram language modeling is 

used in lattice generation with first-pass decoding, and 

both n-gram modeling and Recurrent Neural Network 

language modeling (RNNLM) are used in lattice-based 

rescoring. For n-gram language modeling, we studied the 

Chinese Language Models with respect to either the 

character-level or the word-level (Mnih and Hinton, 

2009; Mikolov et al., 2011b; Mikolov et al., 2011a) ones. 

Word-level language modeling is said to outperform 

character-level modeling (Luo et al., 2009) in Mandarin 

speech to text recognition. However, Chinese language in 

nature is character based in which the syllable rules 

constrain the syllable sequences and, if missed, cannot be 

revealed from word sequences merely. Furthermore, 

different segmentation algorithms and vocabularies 

included in the segmenting dictionary affect the 

recognition performance directly. Therefore, Hybrid 

character-word-level language modeling were used (Ng et 

al., 2008; Oparin et al., 2012; Liu et al., 2013) with 

significant improvement of up to 7.3% relatively (Liu et 

al., 2013). In general, language model interpolation 

techniques are classified into mixtures of experts (MoE) 

(Rosenfield, 1996) based linear model and products of 

experts ( PoE) (Rosenfeld et al., 2001) based log-linear 

model, and/or their combination. A multi-level language 

model interpolation technique is explored in Liu’s study 

(Liu et al., 2013) using both combination models in 

different interpolation levels in which linear interpolation 

is used when interpolating over diverse text corpus and 

log-linear interpolation is used when interpolating 

character-level LMs into word-level LMs.  

As our system is a domain oriented speech application 

system to aid local young students, our pre-trained 

experiments fixed a local online newspaper as our domain 

corpus. Developed through SRILM, a 10-year raw 

newspaper text in the size of 847M as domain corpus and 

another general corpus in the balanced size are processed 

in linear interpolation technique for a character-level LM 

generation to approximate the proposed syllable-based 

AM. The resulting 2-gram LM, referred to as LM2 of size 

41.3M, is used in decoding for efficiency reasons. A large 

4-gram LM, referred to as LM4 of size 603M, is used in 

lattice rescoring. Based on the work by (Gupta, V. and 

Boulianne, G. 2013) on WER reduction, rescoring using 

RNNLM is done to the top 200 entries. The RNNLM we 

used referred to as LM-RNNLM of size 39.6M is trained 

through Kaldi scripts using 100 hidden layers with 200 

neurons in each layer. The vocabulary list obtained 

contains 37,950 higher frequent words. 

3. DNN-HMM Systems 

We set up two DNN acoustic models one without speaker 

adaption and another one with speaker I-vector. The two 

models are trained over either the IF-based modeling or 

the ONC-based models to evaluate the performances. 

Figure 1 shows the control flow of the diagram of the 

system. The two red boxes in Figure 1 correspond to 

speaker adaption using I-vectors and will be discussed in 

detail in Section 4. 

3.1 Base-line System 

In the baseline DNN-HMM system without I-vector 

features, the Acoustic Model (AM) is trained in two 

phases. Phase I involves building up a GMM-HMM 

system in which SAT technique based  features are 

generated from raw wave frames with feature-space 

maximum likelihood linear regression (fMLLR), referred 

to as the GMM-SAT features. HMM model deals with the 

temporal variability of speech with each phone a strict left 

to right 3-state HMM with self-loop and the next state 

transition, while GMM estimates how well each state of 

each HMM fits a frame. As mentioned in Section 2, by 

using the lexicon, the word-level transcriptions are 

converted to its mapped phones (or states) sequences, and 

then to a sequence of the context dependent states with the 

corresponding context and HMM transducers. Each 

HMM state has its own GMM for this estimation. The 

context dependent triphone model in our system is 

cross-word based. Phase II involves a DNN training with 

the above features of several concatenating frames from 

Phase I as its input, which generates a label for each frame 

in the training set.  
                             
 
                                                           
                           Phase I:  GMM-HMM training 
 
 
 
 
 
 
 
 
 
 

                           Phase II: DNN training 

 
 
 

                     Phase 3: Decoding 

                              LM2                              LM2 
           
 
 
 
 
 

                                                      LM4                                       

                                                                  
                                                           LM-RNNLM                                                                      
                                                                  
 
 
                

Figure 1: The Control flow of the System. 
 

DNN Training 
w/o I-vectors 

DNN Training 
With I-vectors 

Monophone Training 
 With MFCC+CMVN (IF/ONC) 

Triphone Training 
MFCC+LDA+MLLT 

Decoding 
w/o I-vectors 

GMM-SAT with fMLLR 

Decoding 
with I-vectors 

Lattices 

Lattice-based Rescoring             

1-best Hypothesis 

Speech Data 
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The input feature vector to DNN is generated as follows: 

15 frames (7 left, 7 right) of the standard 13-dimentional 

MFCC features without energy are spliced together, then 

normalized by the cepstral mean-variance normalization 

(CMVN) to a zero mean vector and enhanced with its 

delta and delta-delta coefficients forming a 

585-dimensional feature vector. Linear Discriminant 

Analysis (LDA) is applied to the resulting features for 

de-correlation and dimensionality reduction to project 

down to a vector of 40 dimensional features, and further 

de-correlation applied with Maximum Likelihood Linear 

Transform (MLLT) estimation. Then SAT is estimated on 

top of it with fMLLR adopted for speakers. It will be then 

forwarded to the input layer in Phase II which is a 

back-propagation DNN AM training.  

In Phase II, we set up a 4 hidden layers p-norm 

nonlinearity neural network with a softmax output layer 

for the output posterior probabilities of 2,268 output 

frame labels corresponding to 2,268 context-dependent 

HMM states from Phase I. Figure 2 outlines the input and 

output DNN layers in Phase II. The red box is only needed 

with I-vector based speaker adaption. Note that each 

hidden layer has the size of 3,500 pnorm input dimensions 

and 350 pnorm output dimensions respectively. The initial 

learning rate starts from 0.01 for the first epoch, and the 

final learning rate is 0.001 for a total 15 training epochs. 

The mini-batches is set as 512 frames for weights 

updating during training. The 6-layer DNN has a total of 

8.3 million weights. The training process was accelerated 

using one NVidia K2200 GPU on a single machine.  

 

 

 
 
 
 

 
 
 
 
 
 

 
 
 
 
  

          …  … 

 
 
 
                                                  Corresponding to 
 

 

 

Figure 2: I-vector based DNN in Phase II. 

 

Kaldi composes the context dependent HMM 

state-level AM with lexicon and LM to build a 

word-phone paired search graph in Weighted 

Finite-State Transducers (WFST) to recognize the test 

speech concurrently. In the DNN decoding phase (Phase 

III), the decoder will search the graph and LM2 will be 

used during decoding to generate the first best lattices 

with their alternative candidates.  The lattice-based 

rescoring will be done twice using 4-gram LM4 and 

LM-RNNLM, respectively. Figure 3 shows a sample 

word-level lattice through search graph corresponding to 

the utterance of “合共九千九百萬元(a total of nigh 

thousand and nigh hundred millions)”.  The output 

posterior probabilities over the state-level best path 

0-1-13-14-5-6-7-11-12 is indicated in red. 

 

Figure 3: A sample lattice generated from the output layer 

through the decoding search graph. 

3.2 DNN-HMM with I-Vector Adaptive 
Training 

Speaker adaptive training technique tries to reduce the 
mismatch between the training and the testing data of 
different speakers, which can significantly improve the 
recognition performance with trained speaker information 
adapted. In the I-vector based DNN-HMM system, we 
trained I-vectors to identify speaker characteristics as 
additional features to DNN input. Both training and 
decoding use one I-vector per speaker. That is, all frames 
of an individual speaker have the same fixed dimensional 
(100 in our system) I-vector added to the input layer of the 
neural network. First, the Diagonal Universal Background 
Model Training (UBM) is applied on top of MFCCs and 
their first and second derivative features with an online 
CMVN applied, and then transformed with an 
LDA+MLLT matrix to train a diagonal mixture model of 
Gaussians with initial frames set to 400,000. The resulting 
diagonal Gaussian model is then used to train the I-vector 
extractor using on-line fashion from Kaldi for extracting 
I-vectors which has original raw features without Cepstral 
Mean Normalization (CMN) as input. The last step is to 
extract the optimized 100-dimensional I-vector from 
utterances for each speaker with the trained I-vector 
extractor.  

I-vector-based DNN-HMM system takes the I-vector 

features plus GMM-SAT features as DNN input for 

I-vector based training and decoding as shown in Figure 1 

in red boxes. Therefore, the input feature dimension is 

expanded by 100 tuned in the experiments for a trade-off 

RTF, particularly in our on-line STT system. The only 

difference in the two systems is an extra I-vector extractor 

training with more speaker characterized input features 

which is marked by the red box in Figure 2.   

4. Experiments and Evaluation 

The four configurations using a combination of either IF 

or ONC with or without I-vector based speaker adaption 

are evaluated by the standard character-based WER and 

Speech Diarization 

GMM-SAT Features 
per Frame (Phase I) 

I-vector Features 
per speaker 

DNN Input Feature Layer 

Speech Data 

4 Hidden Layers with p-norm (input, output) 
as (3,500, 350) Each 

Softmax Output Layer with 2,268 output Each 

2,268 HMM Senones (tied triphone states) 
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decoding real time factor (RTF) which defines the ratio of 

recognition time in terms of the processing time to the 

duration of the speech input in terms of utterance length.  

4.1 Performance Evaluation 

Table 3 shows the evaluation results using CUSent as 

training data and CUTest as the testing data. The 

parameters used for Table 3 are system default values 

including: beam width = 15, max_actives_states = 7,000, 

I-vector dimension = 100, and the number of splicing 

frames for input to DNN = 15. 

 

Baseline WER RTF 

IF (no I-vector) 11.18% 2.5361 

ONC (no-I-vector) 10.39% 1.30221 

IF (with I-vector) 10.62% 2.81336 

ONC (with I-vector)  9.66% 2.21266 

 

Table 3: Performance evaluation on dataset (CUTest). 

 

From Table 3 we can see that by adding speaker adaption 

using I-vector, both IF-based and ONC-based models will 

have improved WER with slight loss on RTF. To look at 

the data in more details, we can see that without the use of 

speaker adaption, the improvement of ONC-based 

compared to IF-based is 7.07%. This indicates that 

ONC-based is also more suited for Cantonese speech 

recognition. Improvement for using speaker adaptation 

for the ONC-based model gives another 7.03% 

improvement. The overall improvement by using 

ONC-based with I-vectors compared to IF-based without 

I-vectors can reach 13.60%, only slightly smaller than the 

improvement added together (7.07+7.03=14.10%). This 

indicates that the improvement brought out by the use of 

ONC-based model and I-vector based speaker adaption is 

almost orthogonal.  

In terms of RTF, the ONC-based system is actually better 

than the IF-based one no matter speaker adaptation is used 

or not.  It is not surprising, however, speaker adaptation 

will incur additional overhead if there is no tuning of 

system parameters.  

4.2. Parameter Tuning 

During decoding, two parameters, the max_actives_states 

and beam width are linked to both WER and RTF. The 

value of max_active_states defines the maximum number 

of active tokens in decoding, the smaller its value, the 

faster the recognizing (the smaller the RTF). Decoding 

beam width is used during graph search to prune 

hypotheses at state-level which when increasing 

decreases the WER and increases the RTF. From (Gupta, 

V. 2013), reducing the search beam width results in 

significant WER increase in GMM-HMM system. 

However, DNN-HMM is not very sensitive to beam width 

in French speech system. So, to further investigate the 

trade-off between WER and RTF by adjusting 

max-active-states and beam, we conducted two sets of 

experiments on max_active_states and beam by keeping 

all other parameters the fixed default values. Details of the 

experiment on beam adjustment are shown in Table 4 with 

max-active-states as 7,000.  The experiments verified that 

the default beam value of 15 gives the best performance.  

 

Beam WER RTF 

13 9.78% 1.89884 

14 9.71% 1.98288 

15 9.66% 2.21266 

16 9.77% 3.81283 

17 9.78% 4.8287 

 

Table 4: Tuning of beam width.  

 

Max-active-states WER RTF 

2000 9.66% 1.38812 

3000 9.68% 1.65792 

5000 9.70% 1.89007 

7000 9.66% 2.21266 

9000 9.73% 4.01179 

 

Table 5: Tuning of max-active-states. 

 

Table 5 shows the tuning of max-active-states given the 
frame width fixed at 15. Note that when max-active-states 
is reduced to 2000, the RTF is reduced to 1.38812 without 
sacrificing on WER which is at the lower rate of 9.66%, 
which means max-active-states only marginally affects 
WER but it is important to RTF. So the best parameters for 
WER at 9.66% and RTF at 1.38812 are tuned as:  beam 
width = 15, max_actives_states = 2,000, I-vector 
dimension = 100, and the number of splicing frames for 
input to DNN = 15. 

4.3. Error Analysis on IF and ONC models 

Table 6 shows the number of correct and incorrect 

sentences for both IF-based and ONC-based systems 

with speaker adaptation.  Out of the 1,198 number of 

sentences in CUTest, 650 sentences in IF-based 

modeling and 668 sentences in ONC-based modeling are 

clear of errors. Table 7 analysis the composition of the 

errors. Among the sentences bearing recognition errors, 

489 of them are in both IF-based and ONC-based 

systems, 59 of them in IF-based one only, and 41 in 

ONC-based one only. Among the 489 sentences which 

have errors in both models, 286 of them have exactly the 

same errors as type 1 errors, labeled by (1) in Table 7. 

That is, 59.49% of all the shared errors are identical.  203 

of them, referred to as Type 2 errors, labeled by (2) in 

Table 7, have different errors in the same sentence in 

41.51% of the shared error set. 

 

 IF ONC 

Correct Result 650 668 

Incorrect Result 548 530 

WER  10.62% 9.66% 

 

Table 6: Correct-Incorrect sentences in IF/ONC. 
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Errors in IF only 59  

Errors in ONC only 41  

Errors in shared 

sentences (Identical) 

 

 

(1)286 with exactly the same 

errors in 59.49% 
(2)203 with the different 

errors in 41.51% 

 

Table 7: The number of the identical and different error 

sentences in IF-ONC modeling. 

 

Table 8 lists three sample sentences with type 1 errors in 
the first row and type 2 errors in the second and third rows 
over IF/ONC-based modeling. 

 

Ref: CNF6F-285 該罐裝奶含天然乳糖 

(The canned milk contains natural lactose) 

IF: CNF6F-285 該罐裝奶含天然魚塘  

ONC: CNF6F-285 該罐裝奶含天然魚塘  

Ref: CNF5F-439 日圓傾向上衝一二二水平 

(Japanese Ren is rising up to the level of 122) 

IF: CNF5F-439 日圓偏向上衝一二二水平 

ONC: CNF5F-439 若沿天向上衝一二二水平 

 

Ref: CNFFM-007 但也不及日本人的愛月程 度 

(Less favor of the moon as much as the Japanese) 

IF: CNFFM-007 但也不及日本人的外語程度 

ONC: CNFFM-007 但也不及一般人的外語程度 

 

Table 8: Sample sentences with type 1 and 2 errors. 

 

Type 1 errors are mostly due the AM dealing with 

multiple identical or similar pronunciations so that 

recognizer has to rely on LM to choose the correct one. In 

the above sample, the frequency of ‘魚塘 (fishpond)’ is 

417 versus ‘乳糖 (lectose)’ being 146 in the LM raw 

corpus. This example shows the limitation of 

conventional n-gram LM when handling long context 

history. Even if both of them are in the lexicon (as both 

are relatively frequent words), it will not help. If the 

long-distance dependency “奶 (milk)” can be successfully 

represented by the LM, the candidate hypothesis of “乳糖 
(lectose)” would obtain a higher LM score than “魚塘 
(fishpond)”. In principle, RNNLM architectures can 

handle long distance relations and is better in dealing with 

data sparsity problem. RNNLMs have been applying in 

large scale acoustic modeling speech recognition systems 

for lattice rescoring (T. Mikolov et al., 2010; X. Liu et al., 

2014; M Sundermeyer, 2015) given a lattice based search 

space in a DNNs hybrid framework, or for both the first 

pass decoding as well as the later lattice rescoring in the 

ASR system with RNNs architecture (H. Sak, A. Senior, 

and F. Beaufays, 2014; M Sundermeyer, 2015). For the 

ASR systems with RNNs, two main architectures of 

conventional recurrent and long sort-term memory 

(LSTM) neural networks are evaluated. LSTM RNNs are 

said to be more effective than DNNs and conventional 

RNNs, especially for speech recognition systems training 

and running on a single machine (H. Sak, A. Senior, and 

F. Beaufays, 2014). This value is also concerned in 

upcoming Kaldi’s nnet3 framework with LSTM RNN 

architecture based on nnet2 framework. 

For type 2 errors, different types of phonological 

modeling units provide different recognition results. This 

gives incentive to build systems which use multiple 

lattices based on multiple acoustic modeling to do a 

combined rescoring. 

5. Conclusion and Future Works 

 

The paper reports our work of an on-going automatic 

Cantonese speech recognition system with hybrid DNNs 

framework using Kaldi toolkit. We used the ONC-based 

syllable scheme which is derived from the IF-based scheme 

to improve the performance of AM from reducing the 

phonetic variations, combined with I-vector based speaker 

adaption, the overall performance can be improved by 

13.60%. Compared to Mandarin, Cantonese is phonetically 

more challenging to process. Our work indicate that we can 

achieve WER at 9.66% with DNN architecture which is 

comparable to Mandarin at 7.93% in the recent report on 

noisy speech with deep RNN architecture (Amodei et al., 

2015).  

As future work, the LSTM RNN architecture as well as 

combined multi-lattice rescoring based on multiple acoustic 

modeling can be attempted to obtain further improvement.  
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