
MARMOT: A Toolkit for Translation Quality Estimation at the Word Level

Varvara Logacheva§, Chris Hokamp†, Lucia Specia§

§Department of Computer Science, University of Sheffield, UK
†CNGL Centre for Global Intelligent Content, Dublin City University, Ireland

{v.logacheva,l.specia}@sheffield.ac.uk, chokamp@computing.dcu.ie

Abstract
We present Marmot — a new toolkit for quality estimation (QE) of machine translation output. Marmot contains utilities targeted at
quality estimation at the word and phrase level. However, due to its flexibility and modularity, it can also be extended to work at the
sentence level. In addition, it can be used as a framework for extracting features and learning models for many common natural language
processing tasks. The tool has a set of state-of-the-art features for QE, and new features can easily be added. The tool is open-source
and can be downloaded from https://github.com/qe-team/marmot/.

Keywords: machine translation, quality estimation, toolkit

1. Introduction
Quality estimation (QE) for machine translation (MT) is
a technique aimed at defining the quality of an automatic
translation without comparing it to a reference. This task is
particularly important for many real-world applications of
MT, where no reference translation is available. If MT is
used for gisting, a user who can only speak the target lan-
guage cannot judge the quality or reliability of its output. If
an MT system is embedded into a computer-assisted trans-
lation (CAT) tool, quality estimation can increase the pro-
ductivity of a user by filtering out translations that are too
bad for editing or highlighting the phrases with low quality
to make sure they are edited by the user (Turchi et al., 2015;
O’Brien et al., 2014).
Translation quality can be estimated at different levels of
granularity, ranging from the word level to the document
level. Thus far, the best results have been achieved in
sentence-level QE. This is likely to be because the evalu-
ation of the entire sentence allows the use of very many
general features, such as language model (LM) scores and
posterior translation probabilities.
However, the more challenging task of estimating quality at
the word level is also very important, both from an applica-
tion perspective, and from a research point of view. Fine-
grained distinctions can be used to diagnose MT systems
and to guide post-editors’ attention to erroneous parts of
the sentence. In addition, sentence-level translation quality
can be drastically affected by translation errors involving
single words or phrases.
One of the first attempts to address the problem of QE
was the workshop at John Hopkins University (Blatz et al.,
2004). While the main focus of the workshop was sentence-
level QE, it also included research on word-level QE.
In (Ueffing and Ney, 2007), word-level quality is defined as
the word-level posterior probability, which is computed as
a probability of a word occurring in an n-best list. Raybaud
et al. (2009) rely on mutual information between the eval-
uated word and its source and target contexts, and an LM
enhanced with linguistic features. More recently, the WMT
shared task on QE (Bojar et al., 2013; Buck et al., 2014;
Bojar et al., 2015) has spurred the development of word-
level QE systems. The most successful QE models use fea-

tures extracted from pseudo-references (Esplà-Gomis et al.,
2015) and n-best lists (Camargo de Souza et al., 2014) pro-
duced by MT systems. In (Luong et al., 2014) the feature
set contains source and target contexts of the word, source
and target POS-tags, LM scores, syntactic and semantic in-
formation. The most widely used training models are Con-
ditional Random Fields (CRF) (Luong et al., 2014; Shah et
al., 2015) or neural networks: feed-forward (Kreutzer et al.,
2015) as well as recurrent (Camargo de Souza et al., 2014).
Despite recent developments, word-level QE still lags be-
hind other granularity levels in terms of performance. One
of the reasons for that is the complexity of the task itself:
word-level features are difficult to generalise, leading to
sparsity in the training data. Another reason is the lack
of toolkits that serve as a basis for researchers to develop
upon.
Despite many submissions to the WMT word-level QE
task, only one tool is publicly available for QE at the word
level, namely QuEst++ (Specia et al., 2015), which is an
extension of a previous, sentence-level version for QE at
the document and word levels. It performs the extraction
of word-level features used in (Luong et al., 2014), but
not model learning, although it is distributed with several
scripts for the sklearn library 1. This tool is implemented in
Java.
In this paper, we present Marmot — a new tool for the ex-
traction of word-level features and training of word-level
QE models. Unlike QuEst++, this system is highly flexible
and modular: it can easily be extended to include additional
features and learning methods, and it includes a full experi-
mental pipeline, incorporating data preparation, feature ex-
traction, model learning, and evaluation.

2. System description
A QE system should be able to perform three main tasks:
extract features from the data, train a model, and perform
tagging of new data using this model. Marmot is designed
to perform all of these tasks in a flexible, efficient and trans-
parent manner. In addition, models can be evaluated within
the toolkit. Therefore, its pipelines allow users to go from

1http://scikit-learn.org/

3671



raw training data to trained and evaluated models with min-
imal configuration.
Marmot is written in Python. We take advantage of stable
and well-maintained Python libraries that implement com-
mon machine learning algorithms and NLP tasks at pre-
processing, feature extraction and model building stages.

2.1. Design
The main feature of Marmot is the flexibility of its API.
Because of the modular architecture, users can easily add or
implement new parsers, data representations, and features
that fit their particular use cases, and simply plug them in
to a standard experiment workflow.

Figure 1: System architecture

Figure 1 shows the architecture of the complete pipeline
in Marmot. The grey boxes denote the stages of pre-
processing or training which require specification of pre-
defined parameters and which are likely to be customised
by a user. The white blocks inside the grey boxes denote
user-determined procedures. Each stage in the pipeline for
an experiment is specified in the configuration file as the
path to a Python class or function. Therefore, the frame-
work is agnostic about the actual functions that it calls, al-
lowing the user to create a custom pipeline without writ-
ing any code, simply by specifying which parsers, feature
extractors, and learning method(s) they wish to use. User-
defined functions do not need to be included into the source
code of the system, and no changes to the source code need

to be made if a user provides a valid path to the function
and makes sure it returns the output accepted by the next
stages.
Parsing input data is the first of the configurable stages.
Data can be provided in many different formats, such as
parallel corpora in one or more files, JSON, or XML, and
new parsers are straightforward to implement. The parsed
data is stored in context objects. Each context object repre-
sents a training or test example. It contains a target item and
all information needed to extract features for this item: its
label, the sentence it is taken from, its index in the sentence,
and any user-specified additional representations, such as
part-of-speech tags.
The actual content of a context object does not influence
its behaviour, so it can store any data. Since Marmot was
originally designed for word-level QE, context objects rep-
resented words, but it has been extended to phrasal and sen-
tential context objects for word and sentence-level QE. The
pipeline will not be affected by this change, all that is re-
quired are appropriate parsers and feature extractors.
Feature extractors take context objects as inputs, converting
the context object into one or more features (scalar and/or
categorical). The extracted features can be passed directly
to the model training module or persisted to a file for use
with external machine learning frameworks.
The Marmot pipelines are also very efficient because the
most time-consuming stages (parsing, feature extraction,
and training) are parallelised.

2.2. Data Preparation and Feature Extraction
Marmot provides framework that can extract features from
a variety of input formats.
The tool can work with files in .pra format, which
is the standard output of the TERp tool (Snover et al.,
2008). This format contains the differences between an
automatic translation and its human post-editions: the
substituted, deleted, inserted and shifted words. Mar-
mot converts this information to binary labels for each to-
ken. By using the .pra parser, a dataset consisting of
(source, hypothesis, reference) triples can be converted
into a dataset for word-level quality estimation. Given the
scarcity of public datasets for the word-level QE task, this
is a major advantage.
Any additional information needed for feature extraction
(POS-tags, alignments) can also be acquired at the pre-
processing stage, which is often more efficient than com-
puting the representation during feature extraction. This is
especially true when a model for the additional information
must be learned over the whole training dataset as, for ex-
ample, when word-alignment features are used. Computing
the model as pre-processing allows the Marmot experimen-
tal pipeline to run much more quickly, speeding up devel-
opment.
All feature extractors inherit from one abstract base class.
Because feature extractors implement the same interface,
adding new features is easy, and feature sets can be speci-
fied just by listing the desired features in the configuration
file.
Although extracting the additional representations at the
pre-processing stage is more efficient, these can be acquired

3672



during feature extraction as well. Hence a feature extractor
that requires POS tags will look for them in the context ob-
ject received as input. If it does not find them, it will try
to generate POS tags using a POS-tagger if provided. Fi-
nally, if none of these options exists, this feature extractor
will raise an informative error, guiding the user in correct-
ing the configuration file.
The standard interface of the feature extractor makes it easy
for users to implement new feature extractors. The current
version of Marmot already contains a set of word-level fea-
tures used in (Luong et al., 2014), and a set of phrase-level
features that are used in QuEst for the sentence level2.

2.3. Model Learning
There is a wide range of possibilities for model training.
Classification can be performed with one of the classifiers
defined in scikit-learn3. Sequence labelling is done
using the pystruct4 module. Analogously to parsing
and feature extraction, the machine learning method used
is specified in the configuration file, so any classifier from
scikit-learn can be used directly. The training mod-
ule can also easily integrate with any machine learning li-
braries that can take numpy arrays as input. Alternatively,
Marmot can dump features in formats accepted by CRF++5,
CRFSuite6 and SVMLight7 tools.
The standard approach is to train a classifier for all the train-
ing examples. Marmot can also train a separate classifier
for every token that occurs in the training data. This ap-
proach allows a suite of classifiers to model differences in
distributions of errors between individual words or word
classes.

3. Benchmarking
Marmot was used as baseline system in the WMT15 qual-
ity estimation shared task (Word-Level QE)8. It was also
used to produce the baseline feature set which was made
available to all participants. Table 1 shows the official re-
sults of the WMT15 task. Despite the fact that the baseline
system (bottom line of the Table) performs poorly, most
other systems used either the baseline feature set or Mar-
mot pipelines for feature extraction and training show bet-
ter results. Table 1 also contains an additional result (shown
in grey) which is worth mentioning: it was produced by
a system trained with Vowpal Wabbit (VW) toolkit (Goel
et al., 2008) on baseline features. The system was a trial
experiment by the HDCL team (Kreutzer et al., 2015). It
demonstrates that features extracted with Marmot can be
very effective if used with the right machine learning algo-
rithm.

2http://www.quest.dcs.shef.ac.uk/quest_
files/features_blackbox

3http://scikit-learn.org/
4https://pystruct.github.io/
5https://taku910.github.io/crfpp/
6http://www.chokkan.org/software/

crfsuite/
7http://svmlight.joachims.org/
8http://statmt.org/wmt15/

quality-estimation-task.html

System ID F1-Bad
UAlacant/OnLine-SBI-Baseline 43.12

HDCL/QUETCHPLUS 43.05
UAlacant/OnLine-SBI 41.51

Baseline features + VW classifier 40.84
SAU/KERC-CRF 39.11

SAU/KERC-SLG-CRF 38.91
• SHEF2/W2V-BI-2000 38.43

• SHEF2/W2V-BI-2000-SIM 38.40
SHEF1/QuEst++-AROW 38.36

UGENT/SCATE-HYBRID 36.72
• DCU-SHEFF/BASE-NGRAM-2000 36.60

HDCL/QUETCH 35.27
• DCU-SHEFF/BASE-NGRAM-5000 34.53

SHEF1/QuEst++-PA 34.30
UGENT/SCATE-MBL 30.56

RTM-DCU/s5-RTM-GLMd 23.91
RTM-DCU/s4-RTM-GLMd 22.69

• Baseline features + CRFSuite 16.78

Table 1: Official results for the WMT15 Quality Estimation
Task 2. Systems whose results are significantly different
with p = 0.05 are grouped by a horizontal line. Systems
in bold used the baseline feature set. Systems that used
Marmot toolkit for feature extraction and/or model training
are indicated by a •.

Both winning systems — from HDCL and UAlacant
(Esplà-Gomis et al., 2015) teams — were trained using the
set of baseline features in addition to system-specific fea-
tures. Table 2 gives the comparison of the performance of
these systems with and without baseline feature set. In both
cases, the baselines improve performance significantly.

System ID F1-Bad
UAlacant/OnLine-SBI 41.51

UAlacant/OnLine-SBI + Baseline 43.12
HDCL/QUETCH 35.27

HDCL/QUETCH + Baseline 43.05

Table 2: Performance of WMT15 systems with and without
the baseline features.

4. Conclusions and future work
We have presented Marmot, a new open-source framework
for translation quality estimation at the word level. The
main feature of this tool is its modularity and flexibil-
ity, which enables the building of QE models on diverse
data. Experimental pipelines can be completely specified
via configuration files, speeding up the development pro-
cess, and flattening the learning curve for the toolkit.
The system has the following properties:

• It is written in Python, which is easy to learn and read.

• Users can easily extend functionality by adding sup-
port of new data formats and features.

3673



• Any classification algorithm from scikit-learn can be
directly used within the training pipeline or features
can be used with external tools (Weka, CRF++, etc.).

• The code is parallelised, which makes it much more
efficient.

• Experiment configuration files allow the use of the
toolkit and the creation of pipelines without writing
new code.

One of the directions of future work will be to improve the
quality of the system’s output by implementing new fea-
tures and integrating feature selection methods. The system
will also be integrated via a server module into a computer-
assisted translation (CAT) tool, which performs automatic
translation of a sentence and passes it to a human translator
for post-edition.
The Marmot toolkit can be downloaded from https://
github.com/qe-team/marmot/.

5. Acknowledgements
This work was supported by the EXPERT (EU Marie Curie
ITN No. 317471) project.

6. Bibliographical References
Blatz, J., Fitzgerald, E., Foster, G., Gandrabur, S., Goutte,

C., Kulesza, A., Sanchis, A., and Ueffing, N. (2004).
Confidence Estimation for Machine Translation: work-
shop report. Technical report, Johns Hopkins University.

Bojar, O., Buck, C., Callison-Burch, C., Federmann, C.,
Haddow, B., Koehn, P., Monz, C., Post, M., Soricut, R.,
and Specia, L. (2013). Findings of the 2013 Workshop
on Statistical Machine Translation. In WMT-2013, pages
1–44, Sofia, Bulgaria, August.

Bojar, O., Chatterjee, R., Federmann, C., Haddow, B.,
Hokamp, C., Huck, M., Logacheva, V., Koehn, P., Monz,
C., Negri, M., Pecina, P., Post, M., Scarton, C., Specia,
L., and Turchi, M. (2015). Findings of the 2015 Work-
shop on Statistical Machine Translation. In WMT-2015,
Lisbon, Portugal.

Buck, C., Pecina, P., Leveling, J., Post, M., Specia, L., and
Saint-amand, H. (2014). Findings of the 2014 work-
shop on statistical machine translation. In Proceedings
of WMT-14, pages 12–58, Baltimore, Maryland, USA,
June.

Camargo de Souza, J. G., González-Rubio, J., Buck, C.,
Turchi, M., and Negri, M. (2014). Fbk-upv-uedin par-
ticipation in the wmt14 quality estimation shared-task.
In Proceedings of WMT-14, pages 322–328, Baltimore,
Maryland, USA, June.

Esplà-Gomis, M., Sánchez-Martı́nez, F., and Forcada, M.
(2015). Ualacant word-level machine translation qual-
ity estimation system at wmt 2015. In Proceedings of
the Tenth Workshop on Statistical Machine Translation,
pages 309–315, Lisbon, Portugal.

Goel, S., Langford, J., and Strehl, A. L. (2008). Predictive
indexing for fast search. In Advances in Neural Informa-
tion Processing Systems (NIPS), Vancouver, Canada.

Kreutzer, J., Schamoni, S., and Riezler, S. (2015). Qual-
ity estimation from scratch (quetch): Deep learning for
word-level translation quality estimation. In Proceed-
ings of the Tenth Workshop on Statistical Machine Trans-
lation, pages 316–322, Lisbon, Portugal.

Luong, N. Q., Besacier, L., and Lecouteux, B. (2014). Lig
system for word level qe task at wmt14. In Proceedings
of WMT-14, Baltimore, Maryland, USA, June.

Sharon O’Brien, et al., editors. (2014). Post-Editing of Ma-
chine Translation: Processes and Applications. Cam-
bridge Scholars Publishing.

Raybaud, S., Lavecchia, C., Langlois, D., and Smaı̈li, K.
(2009). Word- and sentence-level confidence measures
for machine translation. In Proceedings of EAMT-2009,
pages 104–111, Barcelona, Spain, May.

Shah, K., Logacheva, V., Paetzold, G., Blain, F., Beck, D.,
Bougares, F., and Specia, L. (2015). Shef-nn: Trans-
lation quality estimation with neural networks. In Pro-
ceedings of the Tenth Workshop on Statistical Machine
Translation, pages 342–347, Lisbon, Portugal.

Snover, M., Madnani, N., Dorr, B., and Schwartz, R.
(2008). TERp System Description. In Proceedings of
AMTA-2008, MetricsMATR workshop.

Specia, L., Paetzold, G., and Scarton, C. (2015). Multi-
level translation quality prediction with quest++. In
ACL-IJCNLP 2015 System Demonstrations, pages 115–
120, Beijing, China.

Turchi, M., Negri, M., and Federico, M. (2015). Mt qual-
ity estimation for computer-assisted translation: Does it
really help? In Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 530–535,
Beijing, China, July. Association for Computational Lin-
guistics.

Ueffing, N. and Ney, H. (2007). Word-Level Confidence
Estimation for Machine Translation. Computational Lin-
guistics, 33(1):9–40.

3674


