Corpus-Based Diacritic Restoration for South Slavic Languages

Nikola Ljubesi¢,* TomaZ Erjavec,” Darja FiSer™
* Department of Knowledge Technologies, JoZef Stefan Institute
Jamova cesta 39, SI-1000 Ljubljana, Slovenia
tomaz.erjavec@ijs.si

1 Faculty of Arts, University of Ljubljana

Askerceva cesta 2, SI-1000 Ljubljana, Slovenia

darja.fiser@ff.uni-1j.si
! Dept. of Information and Communication Sciences, University of Zagreb
Ivana Luciéa 3, HR-10000 Zagreb, Croatia
nikola.ljubesic@ijs.si

Abstract

In computer-mediated communication, Latin-based scripts users often omit diacritics when writing. Such text is typically easily under-
standable to humans but very difficult for computational processing because many words become ambiguous or unknown. Letter-level
approaches to diacritic restoration generalise better and do not require a lot of training data but word-level approaches tend to yield
better results. However, they typically rely on a lexicon which is an expensive resource, not covering non-standard forms, and often
not available for less-resourced languages. In this paper we present diacritic restoration models that are trained on easy-to-acquire cor-
pora. We test three different types of corpora (Wikipedia, general web, Twitter) for three South Slavic languages (Croatian, Serbian and
Slovene) and evaluate them on two types of text: standard (Wikipedia) and non-standard (Twitter). The proposed approach considerably
outperforms charlifter, so far the only open source tool available for this task. We make the best performing systems freely available.
Keywords: computer-mediated communication, diacritic restoration, South-Slavic languages

1. Background and Motivation

In computer-mediated communication, such as emails, in-
stant messages, tweets etc. users of Latin-based scripts
often replace characters with diacritics with their ASCII
equivalents for ergonomic reasons, especially when typing
on tablets and smartphones. Such text is typically easily un-
derstandable to humans but very difficult for computational
processing because many words without the diacritics are
ambiguous or unknown. This is why diacritics restoration
is an active research area.

There are two main approaches to diacritic restoration:
letter-level and word-level (Mihalcea and Nastase, 2002).
While the letter-level approaches generalise better and
therefore do not require a lot of training data (Tufis and
Ceausu, 2008)), word-level approaches (Santi¢ et al., 2009;
Novak and Sikldsi, 2015)) tend to yield better results, espe-
cially for languages where the diacritics have a grammati-
cal and/or semantic role. Most approaches in this category
rely on a lexicon (Yarowsky, 1999; [Tufis and Chitu, 1999;
Santi¢ et al., 2009) but these are expensive resources that
are often not available, especially for less-resourced lan-
guages. Additionally, these approaches do not deal with
word forms not covered by the lexicon, an issue that is
all the more accentuated in non-standard text. Other ap-
proaches require reliable morphological, syntactic or se-
mantic tools for the language at hand, at the very least a PoS
tagger (Yarowsky, 1994} |Simard, 1998} Tufis and Chitu,
1999), still an obstacle for many lesser resourced languages
or language varieties, such as nonstandard user-generated
content.

Recently, statistical machine translation was also used
for diacritic restoration of Hungarian (Novak and Siklosi,
2015). However, we consider the method to be too com-
plex for the task at hand as diacritic restoration does not

require calculating word or phrase alignments, does not use
phrases in the translation model and does not need to per-
form reordering. Interestingly, although diacritic restora-
tion is a well known problem, the only open source tool
available for this task is charlifterl]

The presented work focuses on three: Slovene, Croatian,
and Serbian, the latter as written in the Latin alphabet[]
The three languages belong to the South Slavic languages,
where Croatian and Serbian are rather close and, for the
most part, mutually intelligible, with Slovene more distant.
All three languages use the so called Gaj alphabet and dis-
tinguish five letters written with diacritics, namely ¢, §, Z,
¢ and d and their upper case equivalents; the letters repre-
sent palatalised versions of their diacriticless equivalents.
Slovene uses only the first three of these letters, however,
the latter two are also found in Slovene texts, typically in
surnames. While the percentages vary slightly, about 13%
percent of the tokens in running text contain one or more
letters with diacritics in the three languages.

To the best of our knowledge, the only previous attempt
to perform diacritic restoration on Croatian was [Santi¢ et
al. (2009). The authors approach the problem by iden-
tifying ambiguous tokens in a morphological dictionary
and using a bigram language model built from 2.5 million
words of newspapers and literary works for their disam-
biguation. They achieve a dictionary-only baseline of 97%
and 98.81% accuracy when using the language model as
well. The system is not freely available. We are not aware
of any prior work on this problem for Slovene nor Serbian.
In this paper we present diacritic restoration models that are

"https://sourceforge.net/projects/
lingala/files/charlifter/

“Serbian is written both in Cyrillic and in Latin alphabet, but
the former is not relevant to our experiments.

3612

https://sourceforge.net/projects/lingala/files/charlifter/
https://sourceforge.net/projects/lingala/files/charlifter/

trained on corpora as these are nowadays not difficult to ac-
quire. We test three different types of corpora (Wikipedia,
general web, Twitter) for three South Slavic languages and
evaluate them on two types of text: standard (Wikipedia)
and non-standard (Twitter). We outperform charlifter con-
siderably (average error reduction of 86%) and publish the
systems as well as the best performing models for each lan-
guage as open source.

2. Datasets
2.1. Resources

For training our models we use, on each of the three lan-
guages, three types of data: Wikipedia texts, general Web
texts and non-standard texts from Twitter. As our goal is
to be able to cover texts which are written in standard lan-
guage as well as those that are often non-standard, we use,
as our test sets, texts from Wikipedia for the former and
those from Twitter for the latter.

The three Wikipedia corpora were compiled from
Wikipedia dumps with a generic Wikipedia corpus extrac-
tion script. We keep only sentences containing 100 char-
acters or more, thereby removing most of the remaining
Wikipedia markup noise.

The Web corpora come from the WaC corpora of the three
focus languages (Ljubesi¢ and Klubicka, 2014} Erjavec and
Ljubesic, 2014). As we wanted to obtain a good training set
for the system, and Web data can contain texts without di-
acritics, we retained for our datasets only those texts where
at least 20% of tokens contain diacritics. This is quite a
strict filter but given the large volumes of web data avail-
able the resulting dataset is still very large.

The Twitter corpora were complied from large collections
of tweets collected since mid-2013 with the TweetCaT tool
(Ljubesic et al., 2014). The discrimination between Croa-
tian and Serbian users, as these languages are very sim-
ilar, was performed with a dedicated tool (LjubeSi¢ and
Kranjci¢, 2015). In order for our Twitter datasets to con-
tain mostly non-standard language, we retained only those
tweets that were automatically annotated with a low or
medium level of linguistic standardness (Ljubesi¢ et al.,
2015). Finally, we discarded all the tweets for which less
than 10% of the tokens contain diacritics. In this case our
filtering criterion was less cautious than in the case of ordi-
nary web data as the amount of available Twitter data was
much lower.

2.2. Preprocessing

The resulting datasets were tokenised and sentence seg-
mented, except for the Twitter datasets, where the entire
tweet was taken as the basic unit. Furthermore, all the to-
kens were converted to lower case because this decreases
data sparsity. During our initial experiments retaining let-
ter casing proved not to be informative for the languages
in question. Re-casing the tokens after diacritics were re-
stored is a straightforward task as in most cases the number
of letters in a token does not change.

We split our datasets into training, development and test
data. We removed sentence / tweet duplicates from our
training data as, based on our initial experiments, remov-

hr ‘ Sr ‘ sl

Wikipedia | 28,071,421 | 33,813,463 19,616,468
Web 268,861,709 | 102,792,821 | 131,326,854
Twitter 1,949,341 13,716,161 6,733,457
by 297,686,292 | 148,870,067 | 157,021,950

Table 1: Training datasets (in number of words)

ing duplicates did not hurt the perfomance of the systems.
The sizes of the training datasets are given in Table[T]

To tune our systems to standard and non-standard data we
put aside development datasets from the Wikipedia and the
Twitter datasets, containing 10,000 text instances for each
text type and language.

For testing on standard data we took additional 10,000
text instances from the Wikipedia datasets. For testing
on non-standard data, given that we can assume that there
are diacritic-related errors or omissions even in the fil-
tered data, we produced test sets of 2,000 tweets for each
of the three languages that were proofread by a linguist.
These tweets come from the same initial collection of non-
standard tweets but do not follow the limitation on the num-
ber of words containing diacritics as we wanted the test set
to be representative of the non-standard language in gen-
eral.

We did not remove sentence / tweet duplicates from devel-
opment and test data as we wanted to simulate a maximally
realistic scenario.

3. Experimental setup

We define the diacritic restoration problem as a token-level
translation problem where each input token is “translated”
to its diacritised variant. To train the translation system we
simply remove diacritics from the original texts, thereby
obtaining a token-aligned parallel dataset.

We use two approaches to solving this word-by-word-
translation problem:

e lexicon approach (lexicon) — applying the most fre-
quent translation, as observed in the training data

e corpus approach (TM+LM) — combining the informa-
tion about the probability of a translation (TM) and the
probability of observing a translation in the given con-
text (LM) via a simple log-linear model estimated on
our development data

Some approaches like (éantié et al., 2009) use context prob-
abilities only and disregard the translation probabilities. We
too have experimented with such an approach in the early
stages. While this approach has shown to outperform the
lexicon approach, it performed significantly worse than the
full corpus approach. Given that the time and space com-
plexity of the pure LM approach is very similar to the
TM+LM one, we discarded it from our final experiments [’

3Inspecting the results of the pure LM approach showed that a
large number of errors was due to specific contexts present in both
the test and the training data where on the training data side dia-
critics were mistakenly not present. By combining both transla-
tion and context probabilities most of such training data impurities
are dealt with on the side of the translation probabilities.

3613

wiki tweet

Training data | Method hr st sl hr st sl
original 0.8615 | 0.8614 | 0.8844 | 0.8715 | 0.8397 | 0.8790

charlifter | 0.9790 | 0.9674 | 0.9706 | 0.9508 | 0.9436 | 0.9330

wiki lexicon 0.9926 | 0.9916 | 0.9925 | 0.9784 | 0.9653 | 0.9607
TM+LM | 0.9938 | 0.9930 | 0.9948 | 0.9803 | 0.9669 | 0.9669

tweet lexicon 0.9646 | 0.9737 | 0.9810 | 0.9860 | 0.9888 | 0.9796
TM+LM | 0.9650 | 0.9753 | 0.9822 | 0.9863 | 0.9906 | 0.9882

web lexicon 0.9930 | 0.9899 | 0.9923 | 0.9911 | 0.9835 | 0.9785
TM+LM | 0.9946 | 0.9913 | 0.9949 | 0.9933 | 0.9865 | 0.9878

wikitweetweb | lexicon 0.9936 | 0.9924 | 0.9933 | 0.9917 | 0.9893 | 0.9820
TM+LM | 0.9957 | 0.9947 | 0.9962 | 0.9938 | 0.9917 | 0.9912

Error reduction 32.81% | 30.26% | 43.28% | 25.30% | 22.43% | 51.11%

Table 2: Results obtained with different settings on different training and testing corpora; the last row refers to the error
reduction of the TM+LM method in comparison to the lexicon method, both trained on the wikitweetweb data. Charlifter
does not have a model for Serbian so Croatian was used; to indicate this these results are in italic.

For estimating the probability of a token translation in both
approaches we use the maximum likelihood estimate of a
diacritised form given the dediacritised one and encode it in
a simple hash-of-hashes structure, while for estimating the
context probability we use KenLM (Heafield, 2011) with
default parameters.

For estimating the two parameters of our log-linear model,
Aras and A s, we perform an exhaustive search over all
their combinations in the [0.0,1.0] range with a 0.1 step.
As our objective function we use token accuracy averaged
over neighboring points, performing thereby simple search
space smoothing.

4. Results

4.1. Comparison of the settings

The results of the experiments on various training and test-
ing data are given in Table[2] We compare our results to the
original baseline (no intervention) and with charlifter. On
standard data the baseline gives 14% token error for Croat-
ian and Serbian and 12% for Slovene, which uses fewer dia-
critics. We observe a similar error rate on non-standard text,
with a much higher error rate on Serbian data for which at
this point we do not have an explanation for. Charlifter out-
performs the original baseline with 3% token error on stan-
dard and 6% on non-standard data. Even the simple lexicon
approach trained on Wikipedia data outperforms charlifter
in both domains on all three languages by a wide margin.
The best performing system is obtained using the TM+LM
method trained on all available data, i.e. a concatenation of
the Wikipedia, Twitter and web data.

As expected, the problem is overall easier on standard than
on non-standard data. On each single setting and language
TM+LM outperforms the simple lexicon approach. The
best performing system reduces the error (encoded in the
last row of Table[2) between 22% and 51%.

The optimised A parameters for Croatian and Serbian are
quite similar with higher weights for LM on the Wikipedia
data and slightly higher weights for TM on the tweet data.
For Slovene, on the other hand, the system tuned both on
standard and non-standard data gives a much higher weight
to the LM, suggesting the final decision is more context-

dependent in Slovene than in the other two languages. This
resonates with our intuition as there are more highly fre-
quent and ambiguous words in Slovene than in the other
two languages, such as se vs. Se (reflexive particle vs. more
/ still) or nas vs. nas (us vs. our).

It is interesting to note that using Web data for training a
model outperforms Wikipedia data even in-domain in ev-
ery language except Serbian for which we have the low-
est amount of Web data. We can therefore assume that the
reason for the Web data to be competitive with in-domain
data on the Wikipedia test set is its sheer amount. On non-
standard language, however, apart from the amount of data,
the domain of the training data matters just as well. This
can be clearly observed on Croatian where a small amount
of tweets (2 million words) significantly outperforms the 14
times bigger dataset from Wikipedia.

Another interesting observation is that on the best perform-
ing system when all data is merged, adding Twitter to Web
data improves the results even on the Twitter test set, al-
though the amount of Twitter data is 10 to 200 times lower
than the amount of Web data. A similar phenomenon can be
observed on the Wikipedia test data, which suggests that the
three datasets are complementary regarding the phenomena
present in both Twitter and Wikipedia texts.

We additionally inspect the best performing system by cal-
culating precision, recall, percentage of false positives and
percentage of false negatives in Table[3] For Slovene stan-
dard text, approximately each 600th word will be erro-
neously rediacritised and each 500th word will fail to be re-
diacritised. For non-standard text, each 300th will be misre-
diacriticised and each 200th will be skipped. Precision is
consistently higher than recall, even though we optimise on
accuracy, the reason for which is probably the word forms
containing diacritics that are not observed in the training
data.

4.2. Crosslingual experiments

We ran an additional set of experiments where we used the
models trained on one language to restore diacritics in the
other language. The results, which are presented in Table[d}
show that Croatian and Serbian are mutually useful but that
using Serbian data on Croatian seems to be more advanta-

3614

wiki tweet
P ‘ R ‘ FP ‘ FN P ‘ R ‘ FP ‘ FN
hr | 0.9901 | 0.9784 | 0.14% | 0.30% | 0.9831 | 0.9681 | 0.21% | 0.41%
sr | 0.9908 | 0.9705 | 0.12% | 0.41% | 0.9837 | 0.9642 | 0.26% | 0.57%
sl | 0.9852 | 0.9819 | 0.17% | 0.21% | 0.9745 | 0.9524 | 0.30% | 0.58%

Table 3: Precision, recall, false positive and false negative error token percentage of the best performing system

train | test wiki tweet
sl hr | 0.9486 | 0.9518
sr | hr | 0.9915 | 0.9884
hr | hr | 0.9957 | 0.9938
sl sr | 0.9457 | 0.9281
hr sr | 0.9886 | 0.9839
Sr sr | 0.9947 | 0.9917

Table 4: Experiments on cross-lingual diacritic restoration

geous than the opposite. A possible explanation is the lower
level of standardisation / prescription in Serbian. Serbian is
also a more informative training set because it uses both
the ekavian (e.g. mleko for milk) and the ijekavian dialects
(e.g. mlijeko for milk, while Croatian uses the ijekavian
dialect only.

On the other hand, using Slovene data for restoring diacrit-
ics on Croatian or Serbian, or vice versa, does cut the token
error of dediacritised text by half, but is far from the ex-
cellent results obtained with the models trained on the tar-
get language. An interesting phenomenon is that Slovene
works much better on Croatian non-standard data than on
Serbian non-standard data, probably because of the dialec-
tal similarity of Croatian and Slovene.

4.3. Error analysis

In order to gain insight into the nature of the errors made by
our best performing model, we performed an error analysis
on the Wikipedia and Twitter datasets for Slovene.

We manually examined 100 errors in each dataset and clas-
sified them into 9 categories. As Table E] shows, the main
reasons for errors are quite different in the two datasets. In
Wikipedia, the biggest problems are proper names unseen
in the training set (30%) and domain-specific rare words,
often derived from foreign words or proper names (28%);
in both cases, these words do not respect the orthographic
patterns followed by native Slovene words. In tweets, on
the other hand, ambiguous words that exist both with and
without diacritics (37%) and the omission of spaces (31%),
either for saving space and time, or as a common phe-
nomenon in hashtags, are the main causes of erroneous re-
diacritisation.

It is the ambiguous words (21% in standard text and 37%
in non-standard text) that present the most serious errors,
which is why our efforts need to be focused on resolv-
ing these first. They could be better handled either with
much more data in our language model, which does not
seem to be very realistic, or with abstracting from surface
forms to morphosyntactic categories as ambiguous words
almost never share this category. A quite simple approach
to utilising morphosyntax in rediacritisation could be train-

wiki | tweet
proper noun 30 6
rare word 28 6
ambiguous word 21 37
foreign word 8 3
typo 6 6
tokenization issue 4 31

3

0

0

correct variant 3
multiplied letters 5
test set error 3
total 100 100

Table 5: Error analysis on Slovene

ing morphosyntactic taggers on dediacritised data and re-
solving ambiguity through morphosyntactic tagging of data
lacking diacritics. The applied tags should be highly useful
in resolving this ambiguity.

5. Conclusions

In this paper we proposed a corpus-based approach to learn-
ing rediacritisation models for texts of varying standardness
degrees in South Slavic languages. Our results show that in-
expensive corpus-based methods drastically outperform the
only freely available tool charlifter.

Best results are obtained when taking into account both the
probability of a form given its dediacritised version and the
probability of the form in the given context (TM+LM). On
the other hand, very good results can be obtained already
when using just the probability of each form given its dedi-
acritised version (lexicon). It is important to note that this
approach requires much less memory: the best Slovene sys-
tem using just the lexicon approach needs around 1GB of
memory, while the TM+LM approach uses almost 10GB.
Overall, the best type of data for training diacritic restorers
of both standard and non-standard texts is Web data. While
it outperforms even in-domain Wikipedia data, mostly be-
cause of its amount, adding smaller volumes of strictly non-
standard data does still improve the results on non-standard
texts.

The code and the models of the best performing
systems for all three languages in both variants,
the lexicon and the TM+LM one, are made avail-
ableon https://github.com/uzh/reldi/tree/
master/tools/diacritic_restorationl

6. Acknowledgements

The work described in this paper was funded by the Slove-
nian Research Agency national basic research project J6-
6842 “Resources, Tools and Methods for the Research
of Nonstandard Internet Slovene”, the EU FP7 grant

3615

https://github.com/uzh/reldi/tree/master/tools/diacritic_restoration
https://github.com/uzh/reldi/tree/master/tools/diacritic_restoration

agreement PIAP-GA-2012-324414 (Abu-MaTran) and the
Swiss National Science Foundation grant 127470_-160501
(ReLDI).

7. Bibliographical References

Erjavec, T. and Ljubesi¢, N. (2014). The sIWaC 2.0 Cor-
pus of the Slovene Web. In Language technologies: Pro-
ceedings of the 17th International Multiconference Infor-
mation Society IS2014, Ljubljana, Slovenia.

Heafield, K. (2011). KenLM: Faster and smaller language
model queries. In In Proc. of the Sixth Workshop on Sta-
tistical Machine Translation.

Ljubesi¢, N. and Klubi¢ka, F. (2014). {bs,hr,sr}WaC —
web corpora of Bosnian, Croatian and Serbian. In Pro-
ceedings of the 9th Web as Corpus Workshop (WaC-
9), pages 29-35, Gothenburg, Sweden. Association for
Computational Linguistics.

Ljubesi¢, N. and Kranj¢i¢, D. (2015). Discriminating be-
tween Closely Related Languages on Twitter. Informat-
ica, 39(1):1-8.

Ljubesi¢, N., FiSer, D., and Erjavec, T. (2014). Tweet-
CaT: a Tool for Building Twitter Corpora of Smaller
Languages. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation
(LREC’14), Reykjavik, Iceland. European Language Re-
sources Association (ELRA).

Ljubesié, N., FiSer, D., Erjavec, T., éibej, J., Marko, D.,
Pollak, S., and §krjanec, L. (2015). Predicting the Level
of Text Standardness in User-generated Content. In Pro-
ceedings of Recent Advances in Natural Language Pro-
cessing.

Mihalcea, R. and Nastase, V. (2002). Letter Level Learn-
ing for Language Independent Diacritics Restoration. In
Proceedings of the 6th Conference on Natural Language
Learning - Volume 20, COLING-02, pages 1-7, Strouds-
burg, PA, USA. Association for Computational Linguis-
tics.

Novak, A. and Siklési, B. (2015). Automatic Diacrit-
ics Restoration for Hungarian. In Proceedings of the
2015 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2286-2291, Lisbon, Portugal,
September. Association for Computational Linguistics.

§antié, N., §najder, J., and Basié, B. D. (2009). Auto-
matic Diacritics Restoration in Croatian Texts. In Hrvoje
Stanci¢, et al., editors, The Future of Information Sci-
ences, Digital Resources and Knowledge Sharing.

Simard, M. (1998). Automatic Insertion of Accents in
French Text. In EMNLP, pages 27-35.

Tufis, D. and Ceaugu, A. (2008). DIAC+: A pro-
fessional diacritics recovering system. Proceedings of
LREC 2008.

Tufis, D. and Chitu, A. (1999). Automatic insertion of
diacritics in Romanian texts. In Proceedings of the 5th
International Workshop on Computational Lexicography
COMPLEX, pages 185-194.

Yarowsky, D. (1994). Decision lists for lexical ambiguity
resolution: Application to accent restoration in Spanish
and French. In Proceedings of the 32nd annual meeting
on Association for Computational Linguistics, pages 88—
95. Association for Computational Linguistics.

Yarowsky, D., (1999). Natural Language Processing Using
Very Large Corpora, chapter A Comparison of Corpus-
Based Techniques for Restoring Accents in Spanish and
French Text, pages 99-120. Springer Netherlands, Dor-
drecht.

3616

	Background and Motivation
	Datasets
	Resources
	Preprocessing

	Experimental setup
	Results
	Comparison of the settings
	Crosslingual experiments
	Error analysis

	Conclusions
	Acknowledgements
	Bibliographical References

