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Abstract 

This paper reports on work related to the modelling of Human-Robot Communication on the basis of multimodal and multisensory 
human behaviour analysis. A primary focus in this framework of analysis is the definition of semantics of human actions in interaction, 
their capture and their representation in terms of behavioural patterns that, in turn, feed a multimodal human-robot communication 
system. Semantic analysis encompasses both oral and sign languages, as well as both verbal and non-verbal communicative signals to 
achieve an effective, natural interaction between elderly users with slight walking and cognitive inability and an assistive robotic 
platform.  
 

Keywords: multisensory data acquisition, multimodal semantics, multimodal annotation scheme, sign language, multimodal HRI 
model extraction, multimodal human-robot communication, natural HRI  

 

1. Introduction 

Cognitive and robotic architectures may be able to 
provide advanced interactive capabilities with humans 
and influence the usability and functionality of a resulting 
system, contributing to its quality of services. Such 
systems may not only integrate multiple advanced 
cognitive abilities, but also employ methods that are 
extendible to various other robotic and non-robotic 
applications required in assisting humans with mobility 
disabilities. In this work, the driving concept envisions 
cognitive robotic assistants that act (a) proactively by 
realizing an autonomous and context-specific monitoring 
of human activities and by subsequently reasoning on 
meaningful user behavioural patterns, as well as (b) 
adaptively and interactively, by analyzing multi-sensory 
and physiological signals related to gait and postural 
stability, and by performing adaptive compliance control 
for optimal physical support and active fall prevention. 

A primary focus in this work has been the analysis of 
available data and the definition of the semantics of 
human actions in interaction between humans. At a 
second stage, their capture and representation in terms of 
behavioural patterns have been exploited to feed a 
multimodal human-robot communication system. 
Semantic analysis, in this sense, encompasses both oral 
and sign languages, as well as both verbal and non-verbal 
communicative signals. Towards defining the system’s 
multimodal HRI model, we discuss the acquisition of the 
multimodal sensory corpus which served as a primary 
source of data retrieval, analysis and testing of the 
developed mobility assistive robot prototypes. We further 
focus on the definition of the representation scheme of 
audio-gestural signals which provided the ground truth 
dataset for the training and evaluation of visual and audio 
recognition algorithms, and ensured the usability of the 
acquired dataset in defining the adopted multimodal 
human-robot communication model.  
 Acquisition, annotation and analysis of the here 
discussed multimodal-multisensory dataset as well as 
work on definition of the HRI communication model 
based on this specific dataset have taken place in the 

framework of the MOBOT project 1 , which aims at 
developing intelligent active mobility assistance robots 
for indoor environments that provide user-centred, 
context-adaptive and natural support. 
 Specifically, a multimodal action recognition system 
able to monitor, analyze and predict user actions with a 
high level of accuracy and detail is currently under 
development. While a major research effort focuses on 
enhancing computer vision techniques with modalities 
such as range sensor images, haptic information as well as 
command-level speech and gesture recognition, 
data-driven multimodal human behaviour analysis has 
been conducted to extract behavioural patterns of elderly 
people in their everyday life communication with other 
humans (i.e. carers) and also in their interaction with a 
robotic rollator. Findings are constantly enriching a 
multimodal human-robot communication system 
involving both verbal and nonverbal communication 
which is conceptually and systemically synthesized into 
mobility assistance models taking into consideration 
safety critical requirements. 

Pursuing the definition of a model of multimodal 
human-robot-interaction (HRI) as close to natural human 
behaviour as possible, in the following sections we 
discuss the design of the multimodal MOBOT corpus and 
the description of the annotation scheme applied to the 
project’s acquired dataset of verbal and gestural 
communicative signals (Fotinea et al., 2014). 

2. Dataset Acquisition 

Given the MOBOT characteristics of human action 
recognition and context-aware robot control, the data 
acquisition method had the goal to promote the natural 
interaction between (elderly) users and mobility aids 
along with the assistance or not, in some cases, of carers. 
To obtain the necessary multi-sensory data required for 
machine learning purposes and for the definition of the 
project’s human-robot interaction model, several 
recording scenarios, sessions and measurements were 
implemented and tested so that a maximum set of actions 
and movements would be well represented in the 
recordings and hence provide significant input from 

                                                           
1www.mobot-project.eu 
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different modalities.  
In the recordings, elderly human individuals of 

varying age, gender, motor and cognitive abilities 
performed a variety of assistance requiring tasks in 
dialogues involving human carers and a passive rollator2.   

The recorded scenarios were based on a use case list 
that included actions that a typical end user may need to 
perform in real life situations and that was adapted to the 
recording environment. Critical situations or potential 
barriers due to insecurity, cognitive or physical 
impairment, as well as the risk of falling were taken into 
account. The envisioned goal was to incite a variety of 
actions, movements, gestures and functions within the 
restricted recording setting, in order to obtain sufficient 
representative data to set the foundation for the 
technological development of the assistive device. 
Previous experience on the design of multimodal corpora 
[Matthes et al., 2012], and multisensory acquisition data 
[Wallraven et al, 2011] was proven a valuable background 
asset, in both scientific and methodological aspects. 

The recruitment strategy included the selection of 
participants in the recordings following an assessment at 
various levels to know whether they meet the inclusion 
criteria (e.g. patient’s charts, personal interview, consent, 
testing in the conditions of the experiment). This enabled 
the identification of limiting factors and helped tune more 
adequately the test levels to adjust with the patients’ 
ability to endure testing. The experimentation followed 
structural and technical specifications which also account 
for limitations and possible inconveniences. In this 
respect, the physical setup took into consideration the 
geography of the space (i.e. large enough recording rooms, 
no obstacles that distract the subjects), lighting conditions 
(e.g. not subject to weather conditions such as sunlight, 
rather use of artificial lights or respective solutions to 
overcome reflections), and location of the equipment (i.e. 
tripods installation supporting all kinds of high sensitivity 
sensors). 

Inconveniences and limitations in the setting and the 
experimental process became more obvious in practice 
and/or after several iterations. Hence, the experimental 
design had to allow a certain degree of flexibility to avoid 
complexity and make resulting data as profitable as 
possible. Aspects of tasks within a scenario (i.e. number 
and order of activities, duration of tasks, etc.) were at 
times modified and conventions were introduced to 
ensure the completion of tasks from all participants and 
the comparability of the recordings. 

The recordings consisted in six different scenarios 
including gestures and other activities close to real life 
situations such as obstacle avoidance, interaction with 
other persons, simple everyday life operations (open/close 
a door, switch on/off the light etc.) that needed to be 
reproduced by the aged impaired participants during the 
recordings and were captured by a wide range of sensors. 
Each scenario covered a specific set of actions/activities 
enabling the acquisition of respective data, i.e. walking 
for gait modelling or audio and gestural commands for 
HRI modelling. Each scenario was realized in three 
variants, which actually represent the following different 
types of interaction the patient may have with the rollator 

                                                           
2Acquisition of the MOBOT multimodal sensory corpora took 

place in the rehabilitation centre Agaplesion Bethanien Hospital/ 

Geriatric Centre at the University of Heidelberg. 

and/or carer: 

a. The informant being supported by the rollator;  
b. The rollator being in following mode;  
c. The informant being supported by a human carer.  

The dataset was acquired by means of a sensorized 
passive rollator comprising multimodal input from laser 
range finder sensors, force/torque sensors, RGB and 
RGB-D cameras and an 8-microphone MEMS 3  array 
mounted on the horizontal bar of the MOBOT rollator in a 
linear configuration (with a 4cm uniform spacing) in front 
of the user. For the recording of the scenarios four High 
Definition (HD) cameras with sensitive sensors were used. 
Three of them were mounted on tripods to record the 
informants’ full bodies in a set-up which could recover 
possible occlusions covering optical gaps and providing 
further information of motion, posture, and details of 
manoeuvring and possible patient-carer human 
interaction. The fourth HD camera (GoPro) was mounted 
on the passive rollator, on top of the upper Kinect camera 
to record closely and at a constant distance the patient's 
torso, arms and all his/her movements, in some cases 
including also the head (cf. Fig.1). 

In order to end up with a corpus of properly annotated 
video data, the acquired video files (from HD cameras, 
Kinect, GoPro) were rendered, and the Kinect raw files 
have been synchronised with the rest of the visual data, 
providing a synchronisation scheme between external HD 
data and the ROS (Robot Operating System) 4 bag related 
multi-modal multi-sensorial data. The streams were 
rendered independently and together in a single stream 
“picture in picture” (PiP) to provide all related 
information accumulated (cf. Fig. 2). 

The data acquisition process involved a total number 
of 18 patient-subjects (12 female, 6 male), their age 
ranging 74-87 years old. Participants’ metadata consist of 
information about gender, age, height, weight and knee 
height of each subject, as well as their cognitive and 
mobility score as determined with the aid of the 
diagnostic tool MMSE (Folstein  et al., 1975), and their 
subsequent classification into a cognitive and mobility 
category (Woodford & George, 2007). 

2.1 The MOBOT Dataset: Some Qualitative and 
Quantitative details  

As already mentioned above, the MOBOT database was 
acquired by means of a sensorised passive rollator (Fig.1) 
comprising multimodal input from (i) laser range finder 
sensors, (ii) force/torque sensors, (iii) RGB and RGB-D 
cameras and (iv) microphones. In addition, a motion 
capture system was used to record human limb 
movements as well as the rollator and subject’s absolute 
positions in space, which makes it one of the very few 
available multimodal-multisensorial resources of 
relatively rich content of activities performed by humans 
in interpersonal interactions, and by humans in interaction 
with a device. 

Synchronization of multimodal data streams was 
achieved by recording all the data to a ROS-Robot 
Operating System bag. For this purpose ROS nodes were 
programmed for the two laser range finders, the two 

                                                           
3 STMicroelectronics:http://www.st.com/web/catalog/sense_po

wer/FM89. 
4www.ros.org. 
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Kinects and the microphone array. The amount of ROS 
bag data collected altogether reached 1.3 TB. The amount 
of data collected from the two HD cameras and the GoPro 
camera mounted on top of the passive rollator is 
approximately 250 GB (437 files), whereas a rough 
estimation of video data duration is 10 hours for global 
video duration and 8 hours for useful video cleaned from 
pieces of preparations time, meaningless poses etc. A 
detailed account of the devices used and the procedures 
followed during the MOBOT dataset acquisition and its 
post-processing is provided in Fotinea et al. (2014). 

The devices used for data capture and the richness of 
activities included in the recorded scenarios make the 
MOBOT dataset one of the most up-to-date such 
resources worldwide among other recently acquired 
datasets. 

In the field of human-action recognition several 
datasets with rich sets of activities, complex environments 
representing real-world scenarios have been published. 
Such datasets that combine video and mocap systems in a 
systematic way by collecting synchronized and calibrated 
data include the HumanEva I and II datasets (Sigal et al., 
2010). The creation of HumanEva datasets were 
motivated mainly by the need for having ground truth that 
can be used for quantitative evaluation and comparison of 
both 2D and 3D pose estimation and tracking algorithms. 
Although the HumanEva datasets have been extensively 
used in establishing the state-of-the art in human action 
recognition, their application areas remain limited to 
evaluation of 2D and 3D motion and pose estimation 
based on video and mocap data only.  

There are a number of other multimodal datasets that 
enhance the standard mocap-video data with additional 
modalities, such as magnetic sensors or microphones. The 
TUM Kitchen Dataset (Tenorth et al., 2009), which 
consists of activities in a kitchen setting (i.e., subjects 
setting a table in different ways), for example includes 
also RFID tag and magnetic sensor readings in addition to 
the multi-view video and mocap data. Similarly, the CMU 
Multimodal Activity (CMU-MMAC) Dataset (De La 
Torre et al., 2009) contains multimodal measures 
captured from subjects performing tasks such as meal 
preparation and cooking. The set of modalities utilized in 

this dataset is rather comprehensive, consisting of video, 
audio, mocap, internal measurement units (i.e., 
accelerometers, gyroscopes and magnetometers) and 
wearable devices (i.e., BodyMedia and eWatch). These 
two datasets are the first examples of publicly available 
multimodal datasets with a rich selection of various 
modalities. Finally, the Berkeley Multimodal Human 
Action Database (MHAD) is currently the only to-date 
dataset that systematically combines multiple depth 
cameras with multi-view video and mocap that are 
geometrically calibrated and temporally synchronized 
with other modalities such as accelerometry and sound 
(Ofli et al., 2013). The specific dataset consists of 
multi-view video, depth and color data from multiple 
Kinect cameras, movement dynamics from wearable 
accelerometers and the accurate mocap data with the 
skeleton information. In addition, ambient sound during 
the action performance was recorded and synchronized to 
reveal discriminative cues for human motion analysis. 

2.2 The Audio-Gestural Commands Dataset 

In addition to natural audio-gestural interaction in all 
action-based scenarios, a specific scenario was designed 
to gather information of isolated gestural and verbal 
commands as the ground truth for the definition of the 
system’s human-robot communication model. This set 
entailed 20 isolated gestural and verbal commands. Each 
command was performed by every informant in four 
repetitions; it was also necessary to acquire the same 
audio and gestural commands within action context, i.e. 
during the action tasks in the rest of data acquisition 
scenarios. Thus, informants were instructed to incorporate 
the predefined audio and gestural commands also within 
scenarios, while performing the action tasks foreseen. In 
all cases, the carer was the one who introduced the 
commands the patient had to perform, also providing 
additional control data as against patients’ actual 
performance. In addition, the presence of the carer 
established a second level of interactivity to the 
human-robot communication model that is of major value, 
as it sets the grounds for a multi-party communication 
model.

 

Figure 1: Diagram of the MOBOT data acquisition setting in Bethanien Geriatric Hospital 
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2.3 Gestural Commands: Selection Procedure  

The definition of the gestural commands comprising the 
predefined MOBOT gesture set was inspired from sign 
language (SL) semantics. SLs –being articulated in the 
three-dimensional space by means of a multichannel 
articulation system– demonstrate a number of gestural 
semantic markings that relate to prototypical iconic 
representations of objects in the real world.  

In general, SLs present the level of abstraction, 
common to all linguistic systems; however, sign 
representations tend to be closer to universal semantics as 
they portray ground truth visual input, which makes 
attribution of the “signifier” to the “signified” in an 
unambiguous and direct manner. More specifically, core 
semantic qualities that make the identification of items 
direct and unambiguous are most prevalent in a specific 
grammatical category within Sign Languages, the 
so-called Classifiers. These formations incorporate 
prototypical features of basic aspects of notions, a fact 
that makes them easily identifiable and implicitly 
comprehensible even by non-SL speakers. This 
background justified the decision to let SL universal 
semantic properties drive the definition of the MOBOT 
gestural command set, in combination with the crucial 
decision to have gestural commands incorporated in 
action performance scenarios, which required to foresee a 
threshold of consistency as to the acquired data on the 
basis of as close-to-natural as possible informants’ 
(re)actions. 

Taking into consideration that this task should be 
feasible for elderly non-native SL informants, the 
embodiment of the proposed gestural commands was 
simplified as much as possible on the basis of the 
hypothesis that embodiment of gestures that intuitively 
rely on universal semantics not only facilitates data 
acquisition but also creates a close to natural coding 
convention through which a patient may easier interact 
with the robot in real use environments. 

Hence, the definition of the 20 gestural commands of 
the MOBOT dataset is an amalgam of:  
1. actually existing lexical signs, i.e.   

a. Stop sign for the Stop command  
b. Where sign for the Where am I command 

2. actually existing SL classifiers named after specific 
commands for the purposes of the recordings, i.e. 
a. Door handle sign for the “I want to go through the 

door command”. In SL this sign would be used as a 
reference to any vertical construction with a 
handle and any accompanied action, “I go through 
the door”, “I close the door” etc.  

b. Drinking Glass Sign for the “I want to perform a 
task” command. In SL this sign would be used as a 
reference to any object that shares the cylindrical 
properties of a drinking glass and could represent 
anything from a plastic tube that is held in the 
vertical axis to a pencil holder or an actual 
drinking glass which is the most prominent 
combination.  

3. lexical signs that underwent significant modification 
in order to facilitate as well as ensure their 
performance by the elderly data acquisition 
participants, experiencing various mobility 
impairments and being non familiar with any SL, i.e.  

Park sign for the “Park” command. In SL the park 
sing is actually a classifier that underwent 
lexicalization. The hand formation of the sign is the 
same as the one proposed in this dataset (palm facing 
down) but the movement is significantly different. In 
SL the hand is placed in the natural space in front of 
the signer and the movement trajectory is a fast 
manoeuvre that ends near the chest of the speaker, 
imitating the manoeuvre performed by a driver when 
parking a car. As this is a rather complicated sign that 
would risk being performed with significant variation 
from one participant to another, it was simplified as 
follows:  palm facing down, the hand almost touches 
the chest with its side. The hand moves smoothly to 
the front with fingers pointing out and bringing the 
arm to the side of the body.    

In all cases in which the audio-gestural commands 
were performed simultaneously with other action tasks, 
the carer was the one who introduced the commands to the 
patient. 

3. Semantics of Human Actions  

Modelling human interactional behavior and actions 
allows for generalisation and generation of new 
behaviours and experiences in robots. Language is 
increasingly viewed in its interaction with perception and 
action, embracing a clear perspective about the interplay 
between language and the human conceptual system and 
enabling computational implementations and integration 
in a variety of applications. In MOBOT, emphasis is 
placed on embodied communication via the audiogestural 
channel based both in the oral and sign language systems. 
Creating behaviour models that perform inference on 
human intent, on the basis of which one can reason about 
and plan robot assistive actions and behaviours, 
constitutes a major research challenge in oral, as well in 
sign languages, especially in the light of recent studies, 
which reveal a relation between the semantic properties of 
embodied communication devices activated with oral 
language production and some central elements of SL 
articulation to be significantly stronger than earlier 
thought of (Johnston, 2013). 

Regarding the Classifier constructions exploited for 
the definition of the gestural commands of the MOBOT 
dataset, the adopted deductions were the result of research 
carried out for the Greek Sign Language (GSL). This 
research was based on an extensive investigation of the 
use and function of Classifiers as they occur within the 
GSL segment of the Dicta-Sign corpu5, aiming to provide 
a solid description of the characteristics and functions of 
these constructions. At the same time, it investigates 
simultaneous constructions involving classifiers and 
examines all lexicalized classifier forms that are noticed 
in the language. 

In general, SL classifiers are usually considered to 
be morphemes expressed by meaningful hand 
configurations occurring in combination with predicates 
that express the motion through space, a change of posture, 
and the location or existence of a referent. Research 
studies on classifiers have been carried out for most of the 
SLs studied to date, while different types of definition, 
function and categories of these constructions have been 

                                                           
5 http://www.sign-lang.uni-hamburg.de/dicta-sign/portal/ 
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reported in the literature (Supalla, 1986, 1990; 
Engberg-Pedersen, 1993; Zwitserlood, 2012). 

The Dicta-Sign corpus consists of semi-spontaneous 
signing data by native signers in four sign languages: 
German, British, French and Greek (DGS, BSL, LSF and 
GSL respectively), the main goals of this data collection 
being to ensure a high level of naturalness of the data 
under lab conditions as well as a high degree of 
parallelisability across the four sign languages. Within the 
GSL corpus segment, classifiers were recently 
extensively annotated with respect to their phonological 
and semantic status. Annotation resulted to an inventory 
of 16 different hand configurations which are analyzed as 
classifiers on morpho-phonological as well as on 
semantic grounds.  

 On the semantic level, GSL Classifiers were 
grouped according to what their handshape represents 
semantically and provided input for the definition of the 
MOBOT gestural commands set. The available index of 
GSL Classifier constructions has allowed for significant 
generalizations and assumptions regarding each semantic 
category, with direct relevance to embodied 
communication structures in oral language environments. 
The following semantic categorizations have provided 
input for the definition of the MOBOT gestural 
commands set:  
a) Entity: GSL hand configurations which represent 

nouns belonging to a particular semantic class such as 
the class of humans, animals, vehicles, etc.  

b) Handling: GSL classifiers that are being held/ or 
moved. 

c) SASSes: GSL classifiers which express the size and 
shape of entities: 
- Static: hand configurations that indicate the size 

or shape of an entity 
- Tracing: classifiers with a movement of the 

hand(s) that outlines the shape or size of an entity 
d) Body part: GSL classifiers representing part of the 

body or limbs. 
  

e)  Lexicalized: lexicalized or “frozen” classifiers that 
are found in the corpus. 

f) Predicative: groups of classifiers that belong to the 
same semantic group and share all other morphemes 
but handshape, as possible variations of a main 
non-classifier predicate.  

4. The MOBOT Annotation Scheme 

The annotation of the audio-visual data was performed in 
ELAN6. Each channel of information was encoded into a 
distinct annotation tier consisting of several sub-tiers 
according to the granularity of information needed. The 
goal of the annotation scheme was to take into 
consideration the particularities of each scenario variants 
to provide usable annotation data. The annotation 
template comprises the following three annotation 
clusters, each entailing multiple tiers: 
 1. Metadata cluster: the source of the annotated 
data, i.e. scenario/variant and a standard account of the 
duration of the tasks performed. 
 2. Visual Input cluster: in-depth information 
about the actually performed actions and gestures of the 
patient/carer as well as visual noise coming from the 
recording environment.  

3. Audio Input cluster: audio commands & 
uttered speech vs. non-speech, specifically: (a) 
timestamps for all audio commands of the patient or the 
carer(s), (b) translation of verbal commands in English, (c) 
a speech/non-speech tier of clearly uttered and fairly 
comprehensible speech versus all parts that contain noise, 
noise-like audio interventions and non-comprehensible 
speech. 

The annotation scheme adopted provides a modular 
template according to the needs of each individual 
scenario variant, and is used for data annotation and 
corpus evaluation procedures. 

                                                           
6 http://tla.mpi.nl/tools/tla-tools/elan/, Max Planck 
Institute for Psycholinguistics, Nijmegen 

 

Figure 2: Synchronised data from Scenario 3, Patient 6 (PiP) and annotation sample 
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5. Conclusion 

This work reported on strategies employed for the 
development of multimodal and multisensory corpora 
targeting the enhancement of the state-of-the art in the field 
of HRI, through rich sets of activities in complex 
environments that represent real-world uses and provide 
ground truth data for the related algorithms. 

The process of data collection and annotation as 
presented in this paper provides a useful insight on the 
acquired multimodal data, allowing researchers to mine 
deeper into (a) the semantics of human actions during 
interaction and (b) the correlation of the annotated 
segments from the same as well from semantically 
different annotation levels, so that a more detailed 
representation of the human action- gesture/speech model 
in this specific environment can be drawn. The adaptation 
of “expected” human behaviour in the artificial cognitive 
system promotes the proactive assistance and the 
contextual mobility support to humans. Thus, the active 
involvement of end-users together with iterative trials and 
evaluation of the artificial cognitive system provides 
continuous consultations and user feedback, and thus 
guides research and development towards real use cases. 
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