
Speech Synthesis of Code-Mixed Text

Sunayana Sitaram and Alan W Black
Carnegie Mellon University

Pittsburgh, USA
ssitaram, awb@cs.cmu.edu

Abstract
Most Text to Speech (TTS) systems today assume that the input text is in a single language and is written in the same language that the
text needs to be synthesized in. However, in bilingual and multilingual communities, code mixing or code switching occurs in speech,
in which speakers switch between languages in the same utterance. Due to the popularity of social media, we now see code-mixing even
in text in these multilingual communities. TTS systems capable of synthesizing such text need to be able to handle text that is written
in multiple languages and scripts. Code-mixed text poses many challenges to TTS systems, such as language identification, spelling
normalization and pronunciation modeling. In this work, we describe a preliminary framework for synthesizing code-mixed text. We
carry out experiments on synthesizing code-mixed Hindi and English text. We find that there is a significant user preference for TTS
systems that can correctly identify and pronounce words in different languages.

Keywords: speech synthesis, code-mixing, multilingual systems

1. Introduction
Text-to-Speech (TTS) systems synthesize speech from text,
and this text is usually assumed to be written in a standard-
ized written form used for the target language. However,
in many cases, a language is written using the script of an-
other language, even if it has its own standardized written
form. A common phenomenon that occurs in text in Social
Media, Instant Messaging and email in bilingual and mul-
tilingual societies is code-switching, in which users type
multiple languages in the same script, or sometimes retain
the original script of the languages that are being mixed in
the sentence.
Code switching is defined as switching between different
languages in speech or text, in which the grammatical forms
of the languages are preserved. Typically, one can iden-
tify one, or a few points in a sentence where code switch-
ing occurs. Code-mixing refers to the mixing of phrases,
words and morphemes of one language into another lan-
guage (Myers-Scotton, 1997). Lexical borrowing occurs
when a word from one language is borrowed and used in
another language while following the syntactic rules of the
borrowing language.
Code switching can be thought of as an an inter-sentential
phenomenon while code-mixing can be thought of as an
intra-sentential phenomenon, although the techniques we
describe in this paper are agnostic to the difference be-
tween the two. Code-mixing can also occur at the intra-
word level, which we don’t explicitly address in this work.
From this point onwards, we choose to ignore the difference
between code switching and code-mixing and use the term
code-mixing as a general term to denote mixed languages
in text.
Code-mixed text provides multiple challenges to TTS sys-
tems: first, the system needs to identify what languages are
being mixed in the sentence, and then identify the language
of each word or morpheme. Secondly, since languages be-
ing mixed may not have standardized spellings particularly
if the text comes from social media, the system needs to
normalize spellings. Lastly, the TTS system needs to ascer-

tain the pronunciation of words in the sentence according to
the pronunciation rules of the languages being mixed, while
taking into account any influence of accents.
From the point of view of language resources, code-mixed
languages can be considered to be low resource languages
in general, because not many resources (particularly lexi-
cal) typically exist for such mixed languages. It is difficult
to find labeled data and corpora for code-mixed languages,
although there are some resources that have been developed
in some language pairs, which we describe later. In many
cases, one of the languages being mixed may be high re-
source, which can be exploited.
In this paper, we describe a preliminary framework for syn-
thesizing code-mixed text. The organization of the paper is
as follows. Section 2 relates this work to previous work in
code switching and code-mixing. Section 3 describes our
work on synthesizing code-mixed text written in different
scripts. Section 4 describes our framework for synthesiz-
ing code-mixed text written in the same script. Section 5
concludes.

2. Relation to Prior Work
Code switching and code-mixing have been identified as
challenges for language technologies ranging from Infor-
mation Retrieval to Automatic Speech Recognition.
The Code Switching shared task at EMNLP 2014 (Solorio
et al., 2014) consisted of data from 4 mixed languages
(English-Spanish, Nepali-English, Arabic-Arabic dialect,
Mandarin-English) and the task was to identify for each
word which language it belonged to, or whether it was
mixed, ambiguous or a named entity. Chittaranjan et al.
(Chittaranjan et al., 2014) describe a CRF based approach
for word level Language Identification for this task, in
which they used various lexical and character-based fea-
tures.
Recently, code-mixing in text has been studied for lan-
guages of the Indian subcontinent, which exhibit a lot of
mixing with English and other Indian languages owing to

3422



the large multilingual population and the number of lan-
guages.
Vyas et al. (Vyas et al., 2014) created a manually annotated
corpus of code-mixed social media posts in Hindi-English
and used it for POS tagging. They analyzed this corpus and
found that 40% of the Hindi words in the corpus were writ-
ten in Romanized script. They also found that 17% of the
data exhibited code-mixing, code switching or both. They
found that transliteration and normalization were the main
challenges faced while processing such text.
Bali et al. (Bali et al., 2014) further analyzed this data to
find that words fall into categories of code mixing, borrow-
ing and ambiguous, with many borrowed words being writ-
ten in English and many Hindi words being misidentified
as English due to spelling. They suggest that a deeper anal-
ysis of morpho-syntactic rules and discourse as well as the
socio-linguistic context is necessary to be able to process
such text correctly.
Gupta et al. (Gupta et al., 2014) introduce the problem of
mixed-script Information Retrieval, in which queries writ-
ten in mixed, native or (often) Roman script need to be
matched with documents in the native script. They present
an approach for modeling words across scripts using Deep
Learning so that they can be compared in a low dimensional
abstract space.
A code switching corpus of interest is an Algerian Arabic-
French corpus that contains 7000 comments from an Alge-
rian news website (Cotterell et al., 2014). The unique fea-
ture of this corpus is that it contains Algerian Arabic text
written in Romanized form (’Arabizi’), and Romanized Al-
gerian Arabic tends to use Romanizations based on French
orthography. This corpus has been manually annotated at a
word-level with ’Arabic’, ’French’ and ’Other’.
Code Switching has also been studied in the context of
speech, particularly for Automatic Speech Recognition
(ASR) and building multilingual TTS systems.
Modipa et al. (Modipa et al., 2013) describe the implica-
tions of code-switching for ASR in Sepedi, a South African
language and English, the dominant language of the region.
They find that the presence of code switching makes it a
very challenging task for traditional ASR trained on only
Sepedi.
Vu et al. (Vu et al., 2012) present the first ASR system
for code-switched Mandarin-English speech. They use the
SEAME corpus (Lyu et al., 2015), which is a 64 hour con-
versational speech corpus of speakers from Singapore and
Malaysia speaking Mandarin and English. They use Statis-
tical Machine Translation based approaches to build code
mixed Language Models, and integrate a Language ID sys-
tem into the decoding process.
Ahmed et al. (Ahmed and Tan, 2012) describe an approach
to ASR for code switched English-Malay speech, in which
they run parallel ASRs in both languages and then join and
re-score lattices to recognize speech.
Bilingual TTS systems have been proposed by (Liang et al.,
2007) for English-Mandarin code switched TTS. They use
speech databases in both languages from the same speaker
and build a single TTS system that shares phonetic space.
Microsoft Mulan (Chu et al., 2003) is another bilingual sys-
tem for English-Mandarin that uses different frontends to

process text in different languages and then uses a single
voice to synthesize it. Both these systems synthesize speech
using native scripts, that is, each language is written using
its own script.
A TTS system that is capable of reading out social media
text or informal messages produced by multilingual com-
munities needs to be able to handle multiple languages. A
Personal Digital Assistant also needs to be able to both rec-
ognize and produce natural code mixed speech while inter-
acting with users who live in multilingual societies. To do
this, the ASR, TTS and Machine Translation components
of the system need to address challenges posed by code-
mixing. With this motivation, our task for this work was to
improve the pronunciation of a TTS system that has to read
out code mixed text.
We divide the task of synthesizing such text into two main
categories - synthesizing text which retains the script that
the language is in, resulting in mixed scripts, and synthesiz-
ing text that (usually) uses the script of a single language,
resulting in the use of a non-standard script for the other
language.

3. Code-mixing with Mixed Scripts
In some text, people preserve the original scripts that the
languages use while code mixing. This is seen in some
language pairs being mixed, such as Chinese and Japanese
with English. In cases where the scripts of the languages
being mixed are different, we may be able to identify the
language by looking at the script, and then use the appropri-
ate TTS voice or Letter-to-Sound (LTS) rules to synthesize
the text.
Ideally, we should get recordings from the same bilingual
or multilingual speaker for all the languages that are be-
ing mixed and then switch between databases while syn-
thesizing the different languages. However, getting such
data and maintaining recording conditions across all the
TTS databases may be difficult. Also, it may be difficult
to anticipate which languages are being mixed in advance.
The Blizzard Challenge (Black and Tokuda, 2005) is an an-
nual community-wide evaluation of TTS systems in which
participants are given access to a common dataset to build
synthetic voices from, which are then evaluated on a num-
ber of subjective metrics. From 2013-2015, the Blizzard
Challenge included tasks on building systems for Indian
languages. Since code mixing is very prevalent in many
of the languages of the Indian subcontinent, the Blizzard
Challenge added a multilingual task in 2014, in which En-
glish words were mixed with various Indian languages.
All the English words were written using the Latin al-
phabet, while the Indian languages were written in native
script. The task was to synthesize test sentences contain-
ing such mixed sentences - however, the training synthe-
sis databases contained no English in the recordings and
corresponding prompts. There may have been some words
written in the native script that were not native, like proper
names, technical terms etc. in the data, but these were few
in number.
Next, we describe our approach, the databases involved in
these experiments and results from the Blizzard challenge.

3423



3.1. Experiments and Evaluation
Since we only had data in the Indian languages to train
from, we came up with a straightforward approach to deal
with English words in Indian language sentences. When
we detected a word in the Latin script, we used the US En-
glish text processing frontend to process it, which meant
that all Non-Standard Words (abbreviations, numbers etc.)
that were covered by the (much higher resource) US En-
glish frontend were also available to us. Then, we used a
mapping between the US English phone set and the Indic
phone set, which was common for all the lower resource
Indian languages to convert the US English phonemes to
Indic phonemes. This was a one-to-one mapping, which
had its limitations, since some phonemes in English do not
exist in the Indian languages and vice versa. Also, we could
not incorporate contextual rules using this approach. How-
ever, the motivation behind using such a mapping was that
it would implicitly capture the accent that a native Indian
language speaker would use on English words by substitut-
ing phonemes from Indian languages.
We found that even with this simple approach, our system
performed well in the Blizzard Challenge in 2014 and 2015.
The languages that were included in the 2014 version of
the challenge were Hindi, Gujarati, Assamese, Rajasthani,
Tamil and Telugu and in 2015, Marathi, Bengali, Malay-
alam were included and Gujarati, Assamese and Rajasthani
were excluded. The evaluation metrics used were similarity
to speaker and naturalness, evaluated by paid listeners and
volunteers.
Although in general we did not perform well on similarity
to speaker due to our choice of synthesis technique (Sta-
tistical Parametric Synthesis as opposed to Unit Selection),
our performance on naturalness was good. In particular, we
had the best systems for Gujarati, Telugu, Tamil, Rajasthani
and for the naturalness metric in 2014 and Hindi in 2015.
The naturalness metric is not ideal for testing pronuncia-
tion quality of multilingual systems, since many other fac-
tors may also influence naturalness. However, it seemed
like our approach was viable and was not influencing the
quality of the system negatively.

4. Code-mixing with the Same Script
In many cases, when languages are mixed in text, the same
script is used for all the languages that are being mixed.
This creates the additional complexity of having to identify
which language the words belong to. In addition, people
may not follow standardized ways of writing the language
that is using the ”wrong” script. We extended the capabil-
ities of our system to also be able to deal with same-script
code mixing for some language pairs.

4.1. Data and Experiments
Our first task was to collect code mixed data, for which we
crawled a Hindi recipe website in which the recipes were
all in the native Hindi alphabet, Devanagari. The recipe
descriptions were all in Devanagari, with a few words in
English, such as titles, numbers etc. Interestingly, most
of the comments submitted by users were in code-mixed
English-Hindi, all written in Romanized script. We
collected around 70k sentences from this website to create

a code-mixed corpus. Two example sentences from the
corpus are shown below with their translations.

Heavy Cream kya hai Ye kaha se milegi
Translation: What is heavy cream, where can it be found?

Dear nisha mujhe hamesha kaju barfi banane mein prob
hoti h plzz mujhe kaju katli ki easy receipe bataiye
Translation: Dear Nisha I always have a problem making
Kaju Barfi please give me an easy recipe for Kaju Katli.

In the first sentence, there is one point at which the code
switching occurs, and the sentence is well written with cor-
rect spellings for the English words and reasonable translit-
erations of the Hindi words. In the second sentence, we see
multiple locations in which English phrases and words are
inserted (”Dear nisha”, ”prob” (problem), ”plzz” (please),
”easy receipe”). We also see that there are contractions and
spelling errors. Some of the contractions (”h” for the word
”hai”) were common across the database and may be hard
to normalize automatically in isolation even by humans.
Our goal for this part of the work was to be able to syn-
thesize sentences such as those found in this corpus. We
restricted our task to synthesizing Romanized text using
our Hindi TTS system. Although this is may seem slightly
artificial (synthesizing pure Romanized text using a Hindi
voice), we can imagine finding the reverse case, where we
have to use an English system to synthesize Romanized
Hindi words that appear in Social Media posts, messages
and emails. Also, as in the case of websites that have con-
tent in Devanagari but user submitted comments in Roman-
ized Hindi and English, this setting may be more practical.
An additional motivation for using the Hindi voice to syn-
thesize these sentences was that these sentences were Hindi
sentences (with Hindi being the matrix language) with En-
glish embeddings. We used the same Hindi TTS database
from the Blizzard Challenge data for all our experiments.
First, we wanted to see how much of a difference we could
make by using a Hindi pronunciation for the Hindi words.
This involved both manually identifying the Hindi words
in the Romanized sentence and replacing it with its correct
(normalized) Hindi spelling, to be able to retrieve the cor-
rect LTS rules for it. This was, in a sense, ”ground truth”,
or the best we could hope to get with our system.
We manually annotated and normalized 9 sentences by re-
placing the Hindi words with their Devanagari forms and
synthesized them using our standard Hindi TTS system. We
also synthesized the sentences using our current Indic fron-
tend without any normalization, which meant that all the
words went through the English frontend as described in
the previous section. We asked 10 participants on Amazon
Mechanical Turk to pick the system that was easier to un-
derstand, with a no difference option. Table 1 shows the
results from this evaluation.

Table 1: Subjective Evaluation of All-English Baseline vs
Ground Truth

Prefer Baseline Prefer Ground Truth No difference
18% 72% 10%

3424



We expect that the Ground Truth system would be superior
to the weak baseline in this case, but from the results we
see that the preference for the Ground Truth was extremely
high compared to the baseline. This is quite a large gap
keeping in mind that the only difference between the two
systems was the pronunciation of Hindi words in the sen-
tences. This indicated that it would be interesting to see
how close we could get to the Ground Truth by automating
this process.
Our approach was the following: given Romanized text,
first identify the English words in the sentence. Then, nor-
malize all the other words to their standard spellings and try
to recover the pronunciation of the normalized words. The
next few sections describe these steps in more detail and the
assumptions we made.

4.2. Language ID
First, we identified the English words in the English-Hindi
mixed text. Our motivation to identify English words and
not Romanized Hindi words first was that it is easier to find
training data or resources to identify English words auto-
matically and also that people writing in Romanized scripts
were more likely to spell English words in a standardized
way than Hindi words.
We took a naive approach to solving the Language Identi-
fication problem: if a word in the sentence was present in
CMUdict (Weide, 1998), then we considered it to be an En-
glish word. Otherwise, we treated it as a misspelling of an
English word or a Romanized Hindi word. Some words are
ambiguous in isolation, and if they exist in the US English
lexicon, they currently get marked as English.
The Language Identification step can be improved by mak-
ing use of letter language models, taking into account con-
text, using standard LID models on trained corpora etc., as
described in the related work.

4.3. Spelling Normalization
After filtering out the English words present in the US
English lexicon from the sentence, we normalized the
spellings of the rest of the words. To do this, we used
the Soundex algorithm (Russell and Odell, 1918). The
Soundex algorithm encodes words such that spelling vari-
ants, which may have very similar pronunciation, are col-
lapsed into the same code. Some characters such as those
that represent vowels are ignored by Soundex.
Soundex only encodes consonants and ignores vowels.
Each word is given a Soundex code, which consists of a
letter followed by three digits. The letter is the first letter of
the word and the digits encode the rest of the consonants in
the word. Consonants that are similar share the same digit,
for example, labial consonants (B, F, P, V) are encoded as
the digit ’1’. Soundex is used in many popular databases
and is also used to index individuals and look up family
names in the US census.
Taking the example of the words ’Smith’ and ’Smythe’, the
Soundex algorithm works the following way. The first letter
is retained in the code, and ’m’ is mapped to 5 in both cases.
The next letter, ’i’ in ’Smith’ and ’y’ in ’Smythe’ are both
ignored. The letter ’t’ is mapped to ’3’. The character ’e’
is ignored in the case of ’Smythe’. In this way, both words

have the same Soundex code and can be considered to be
spelling variants according to this algorithm.
To normalize spellings in our data, we took the most fre-
quent words of the code mixed recipe corpus as seeds and
ran Soundex comparing each of these seeds to all the other
words in the data. We formed clusters of spelling variants
from these seeds by adding a word to the cluster if there
was a Soundex match.
Then, we replaced the low frequency members of these
clusters found in the sentences we wanted to synthesize
with their seeds. In case a word belonged to more than
one cluster we chose the seed to replace it with randomly.
In some cases (as in the case with the word ”recipe”) the
seed words were English words that were found in the US
English lexicon. In such cases, we treated these words as
English words.
An extension of this could be to do a match phonetically,
rather than by looking at vowels and consonants particu-
larly for languages in which SoundEx implementations are
not available.

4.4. Transliteration Model
After recovering the normalized spelling of the word in Ro-
manized form, we then needed to recover its Hindi pronun-
ciation. Instead of directly trying to recover the pronunci-
ation from the Romanized form, we decided to reduce this
problem into the problem described in the previous section,
that is, synthesizing text that has mixed scripts, by translit-
erating Romanized Hindi into native Hindi script (Devana-
gari).
We explored transliteration standards and schemes that
went from Hindi to Romanized, however, many of these
standards used special marks such as diacritics to indicate
vowel lengthening and most of them did not reflect how
people actually type Romanized Indian languages on the
web.
We trained a model on manually transliterated data from
the FIRE dataset (Roy et al., 2013) that would give us a De-
vanagari word, given a Romanized word. The FIRE dataset
is a useful resource due to the fact that it contains man-
ually labeled words in Romanized Hindi with normalized
spellings and transliteration in Devanagari. We used 1000
code mixed Hindi-English sentences and extracted the Ro-
manized words marked as Hindi, and the Devanagari forms
of these words. We found 1800 unique Romanized Hindi
- Devanagari pairs in the dataset. The Romanized Hindi
in the FIRE dataset was clean data with very few or no
spelling variations for each word, which meant that our pre-
vious step of normalizing spellings was critical.
To build a model from Romanized Hindi to English, we
followed the standard procedure to build Letter-to-Sound
Rules in Festvox (Black et al., 1998). Usually, the input
to that is a string of characters and the output is a string of
phonemes, but in this case, both the input and output were
strings of characters. We trained a Classification and Re-
gression Tree for each grapheme in our Romanized Hindi
word list which uses three previous and next grapheme con-
texts to predict Devanagari Hindi graphemes. Each Roman-
ized Hindi grapheme aligned to none, one or two Devana-
gari graphemes.

3425



4.5. Synthesis
Once the Language Identification, spelling normalization
and transliteration stages were complete, we recovered the
English words in Latin script and Hindi words in Devana-
gari script. This reduced the problem to the problem of
synthesizing text in mixed scripts described in Section 3,
and we used our standard system to synthesize this text.

4.6. Evaluation and Results
Once again, we carried out subjective evaluations on the
Hindi TTS database with only the frontend being changed
in each condition. In each case,10 listeners on Amazon Me-
chanical Turk listened to 9 pairs of sentences, which were
the same 9 sentences that were used for the ground truth vs.
baseline experiment.
Table 2 shows the preference for our technique, which we
call Predicted, compared to the baseline where we treat all
the words as English words, as described before. We can
see that there was a significant preference for our method
which does Language Identification, Spelling Normaliza-
tion and Transliteration.

Table 2: Subjective Evaluation of All-English Baseline vs
Predicted

Prefer Baseline Prefer Predicted No difference
16% 71% 13%

Next, we wanted to see how the Predicted system would
compare against a system where all the Romanized words
were treated as Hindi words. This is what would have hap-
pened if we had bypassed the Language ID step. Table 3
shows that there was a preference for the Predicted version,
though it was not as significant as the preference over the
All-English baseline. This could be due to the fact that
there were more Hindi words than English words in the
code mixed sentences and because the All-English baseline
went through the English frontend and was then mapped to
the Hindi phonemes.

Table 3: Subjective Evaluation of All-Hindi vs Predicted

Prefer All-Hindi Prefer Predicted No difference
30.5% 54% 15.5%

Finally, we wanted to see how close our Predicted system
could get to the Ground Truth system. Table 4 shows that
subjects had a preference for the Ground Truth system over
the Predicted system, though the difference was not as high
as the difference between the All-English baseline and the
Ground Truth system.

Table 4: Subjective Evaluation of Predicted vs Ground
Truth

Prefer Predicted Prefer Ground Truth No difference
28% 57% 15%

4.7. Future Work
We explored using the Algerian Arabic-English corpus
(Cotterell et al., 2014) mentioned earlier for similar exper-
iments, however, without hand labeled examples of Alge-
rian Arabic-English, training data was not available to build
a model for transliteration. One solution may be to use a
transliteration resource such as the Google Transliteration
API to go from Arabizi to Arabic, however, this may not be
appropriate for the Algerian Arabic dialect. Furthermore,
the closest TTS voice available to us in terms of language
was in Modern Standard Arabic. Preliminary experiments
showed that all these factors made it difficult to replicate the
Hindi-English experiments for this data. However, given a
reasonable amount of code mixed text and a mapping be-
tween the letters and the phone sets of the mixed languages,
it should be possible to replicate the experiments done for
Romanized Hindi.
The resources we used to make our Hindi TTS system ca-
pable of synthesizing Romanized Hindi and English words
were a Language Identification System (in this case a US
English lexicon), a moderate number of pairs of Romanized
Hindi and Devanagari words, Soundex rules and a mapping
between the US English and Hindi phoneme sets. While
this mapping is a one-time cost, it requires some knowl-
edge about the phonetics of both languages.
In addition, it may not always be possible to find
good phonetic mappings between languages because some
phonemes in one language may not exist in the other. In
such cases, bilingual speakers may map phonemes to the
closest possible phoneme, or borrow phonemes. ?? shows
the mapping between English phones from the phone set
used in our standard US English build and Hindi phonemes
from the Indic phone set, along with the phonetic features
assigned to each phoneme in both sets. In some cases, we
did not map phonemes from English to very low frequency
phonemes in our Hindi corpus, but chose to replace them
with more frequent phonemes.
In all the experiments described above, we mapped
phonemes from English to Hindi manually. However, we
wanted to automate the process as much as possible.
The approach described by Nerbonne et al. (Nerbonne et
al., 1996) uses Levenshtein distance to measure the distance
between words in different dialects of Dutch, and uses this
to group dialects together. A common set of words are com-
pared across all dialects, with the distance being compared
based on letters with different weights for insertions, sub-
stitutions and deletions. (Nerbonne and Heeringa, 1997)
extend this work by using phonetic features and a variety
of distance metrics.
Sriram et al. (Sriram et al., 2004) describe a tech-
nique for multilingual query processing, in which words
in the queries are converted into a language independent
’common ground’ representation, after which a weighted
phonetic distance measure is used to match and rank
queries. Phonetic features include vowel rounding, front-
ness, height, length, voicing, aspiration etc. which are the
same features that are used in the standard Festival phonetic
feature set. The authors also suggest weights that can be
given to these phonetic features, since some of them may
be more important than others while calculating phonetic

3426



similarity.
Le et al. (Le et al., 2006) used a top-down bottom-up
knowledge based approach for calculating phoneme simi-
larity. They use models of similar phonemes cross lingually
to create context dependent Acoustic Models in new lan-
guages. They used IPA rules to create a hierarchical graph
of phoneme similarity, which splits phonemes into cate-
gories like Consonant-Vowel, Close-Back Vowels, Close-
Front, Close-Back vowels etc. Acoustic Models were built
with multiple languages and used for recognizing Viet-
namese speech with a small amount of adaptation data.
Melnar et al. (Melnar and Liu, 2006) describe an approach
to measuring phoneme distance cross lingually by repre-
senting phonemes as a feature matrix, with feature weights
based on lexical frequency. In addition to traditionally used
phonetic features, they also include corrolary features that
represent allophonic realizations of the phones. This ap-
proach was shown to perform well on cross-lingual ASR
tasks.
Pucher et al. (Pucher et al., 2007) describe phonetic similar-
ity measures for ASR grammar optimization in which they
compare minimum edit distance based measures, percep-
tually motivated measures and HMM-distance based mea-
sures and correlate them to word confusion in the ASR.
We implemented a simple weighted distance based metric
to map English and Hindi phonemes in our system based
on (Sriram et al., 2004). We conducted subjective tests
comparing our manually mapped phonemes to the automat-
ically mapped phonemes. However, we found that in sub-
jective tests, listeners had a very significant preference for
the manually mapped phonemes. This may be due to the
fact that the manually assigned phonetic features may not
be completely correct, and many phonetic features ended
up getting the same weight in (Sriram et al., 2004).
Ideally, we should be able to automatically set these
weights or learn this mapping from data. Recent work in
creating vector representations of acoustics (Watts et al.,
2015) could be a promising direction for creating such map-
pings automatically.
In this paper, we presented experiments on one language
pair - Hindi and English. We are currently extending this
work to cover more language pairs such as Spanish-English
and German-English. We are also improving the compo-
nents of our system, particularly the Language Identifica-
tion and spelling normalization modules.
We did not explicitly address code-mixing that takes place
at the morpheme level in our technique, and this would be
an interesting future direction.

5. Conclusion
This paper presents preliminary work towards solving the
problem of synthesizing code-mixed text. With the advent
of smart phones and digital assistants in multilingual soci-
eties, we believe that this will be a very relevant problem
to address in the future for speech processing. We provided
a framework to synthesize code mixed text that came from
Social Media in and presented experiments on Romanized
Hindi-English using a corpus that we crawled from the web.
Some of the ideas presented in this paper, such as spelling

normalization can also be used while synthesizing single-
language text from Social Media.
We conducted subjective listening tests to compare speech
synthesized with our framework to baselines that treated
all the words in the sentence as English words or Hindi
words, and showed that there is a preference for speech syn-
thesized with our technique. We also compared our tech-
nique to gold standard manually labeled and transcribed
sentences with subjective tests and showed that there is still
a gap between the two, which can be addressed with better
Language Identification, spelling normalization and cross-
lingual pronunciation rules. In all cases, we used mini-
mal resources to extend the capability of our current sys-
tem to make it capable of synthesizing code mixed text. In
addition, better cross-lingual phonetic mapping techniques
that make use of acoustics may eliminate the need to map
phonemes manually.

6. Acknowledgments
The authors would like to thank Monojit Choudhury and
Kalika Bali from Microsoft Research India for providing
them with the FIRE dataset and for very useful discussions
on code-mixing.

7. Bibliographical References
Ahmed, B. H. and Tan, T.-P. (2012). Automatic speech

recognition of code switching speech using 1-best
rescoring. In Asian Language Processing (IALP), 2012
International Conference on, pages 137–140. IEEE.

Bali, K., Sharma, J., Choudhury, M., and Vyas, Y. (2014).
”i am borrowing ya mixing?” an analysis of English-
Hindi code mixing in Facebook. EMNLP 2014, page
116.

Black, A. W. and Tokuda, K. (2005). The Blizzard Chal-
lenge 2005: Evaluating corpus-based speech synthesis
on common datasets. In Interspeech.

Black, A. W., Lenzo, K., and Pagel, V. (1998). Issues in
building general letter to sound rules.

Chittaranjan, G., Vyas, Y., and Choudhury, K. B. M.
(2014). Word-level language identification using crf:
code-switching shared task report of MSR India system.
EMNLP 2014, page 73.

Chu, M., Peng, H., Zhao, Y., Niu, Z., and Chang, E. (2003).
Microsoft Mulan-a bilingual TTS system. In ICASSP,
volume 1, pages I–264. IEEE.

Cotterell, R., Renduchintala, A., Saphra, N., and Callison-
Burch, C. (2014). An Algerian Arabic-French code-
switched corpus. In Workshop on Free/Open-Source
Arabic Corpora and Corpora Processing Tools Work-
shop Programme, page 34.

Gupta, P., Bali, K., Banchs, R. E., Choudhury, M., and
Rosso, P. (2014). Query expansion for mixed-script in-
formation retrieval. In Proceedings of the 37th interna-
tional ACM SIGIR conference on Research & develop-
ment in information retrieval, pages 677–686. ACM.

Le, V. B., Besacier, L., and Schultz, T. (2006). Acoustic-
phonetic unit similarities for context dependent acous-
tic model portability. In ICASSP, volume 1, pages I–I.
IEEE.

3427



Liang, H., Qian, Y., and Soong, F. K. (2007). An HMM-
based bilingual (Mandarin-English) TTS. Proceedings
of SSW6.

Lyu, D.-C., Tan, T.-P., Chng, E.-S., and Li, H. (2015).
Mandarin-English code-switching speech corpus in
South-East Asia: SEAME. Language Resources and
Evaluation, pages 1–20.

Melnar, L. and Liu, C. (2006). A combined phonetic-
phonological approach to estimating cross-language
phoneme similarity in an ASR environment. In Proceed-
ings of the Eighth Meeting of the ACL Special Interest
Group on Computational Phonology and Morphology,
pages 1–10. Association for Computational Linguistics.

Modipa, T. I., Davel, M. H., and De Wet, F. (2013). Impli-
cations of Sepedi/English code switching for ASR sys-
tems.

Myers-Scotton, C. (1997). Duelling languages: grammat-
ical structure in codeswitching. Oxford University Press.

Nerbonne, J. and Heeringa, W. (1997). Measuring dialect
distance phonetically. In Proceedings of the Third Meet-
ing of the ACL Special Interest Group in Computational
Phonology (SIGPHON-97).

Nerbonne, J., Heeringa, W., Van den Hout, E., Van der
Kooi, P., Otten, S., Van de Vis, W., et al. (1996). Pho-
netic distance between Dutch dialects. In CLIN VI: pro-
ceedings of the sixth CLIN meeting, pages 185–202.

Pucher, M., Türk, A., Ajmera, J., and Fecher, N. (2007).
Phonetic distance measures for speech recognition vo-
cabulary and grammar optimization. In 3rd Congress of
the Alps Adria Acoustics Association, pages 2–5.

Roy, R. S., Choudhury, M., Majumder, P., and Agarwal,
K. (2013). Overview and datasets of fire 2013 track on
transliterated search. In Fifth Forum for Information Re-
trieval Evaluation.

Russell, R. and Odell, M. (1918). Soundex. US Patent, 1.
Solorio, T., Blair, E., Maharjan, S., Bethard, S., Diab, M.,

Gohneim, M., Hawwari, A., AlGhamdi, F., Hirschberg,
J., Chang, A., et al. (2014). Overview for the first shared
task on language identification in code-switched data.
EMNLP, page 62.

Sriram, S., Talukdar, P., Badaskar, S., Bali, K., and Ramakr-
ishnan, A. (2004). Phonetic distance based crosslingual
search. In Proceedings of the International Conference
on Natural Language Processing.

Vu, N. T., Lyu, D.-C., Weiner, J., Telaar, D., Schlippe, T.,
Blaicher, F., Chng, E.-S., Schultz, T., and Li, H. (2012).
A first speech recognition system for Mandarin-English
code-switch conversational speech. In ICASSP, pages
4889–4892. IEEE.

Vyas, Y., Gella, S., Sharma, J., Bali, K., and Choudhury,
M. (2014). Pos tagging of English-Hindi code-mixed
social media content. Proceedings of the First Workshop
on Codeswitching, EMNLP.

Watts, O., Wu, Z., and King, S. (2015). Sentence-level
control vectors for deep neural network speech synthesis.
In Interspeech.

Weide, R. (1998). The CMU pronunciation dictionary, re-
lease 0.6.

3428


