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Abstract
The lack or absence of parallel and comparable corpora makes bilingual lexicon extraction becomes a difficult task for low-resource
languages. Pivot language and cognate recognition approach have been proven useful to induce bilingual lexicons for such languages.
We analyze the features of closely related languages and define a semantic constraint assumption. Based on the assumption, we propose
a constraint-based bilingual lexicon induction for closely related languages by extending constraints and translation pair candidates from
recent pivot language approach. We further define three constraint sets based on language characteristics. In this paper, two controlled
experiments are conducted. The former involves four closely related language pairs with different language pair similarities, and the
latter focuses on sense connectivity between non-pivot words and pivot words. We evaluate our result with F-measure. The result
indicates that our method works better on voluminous input dictionaries and high similarity languages. Finally, we introduce a strategy
to use proper constraint sets for different goals and language characteristics.

Keywords: bilingual lexicon induction, constraint satisfaction, Weighted Partial MaxSAT

1. Introduction
Machine readable bilingual dictionary is very useful in
information retrieval and natural language processing re-
searches, yet usually unavailable for low resource lan-
guages. Previous work shows the effectiveness of paral-
lel corpora (Fung, 1998) and comparable corpora (Li and
Gaussier, 2010) in inducing bilingual lexicon for high-
resource languages. Bilingual lexicons extraction becomes
a difficult task for low-resource languages due to the lack
or absence of parallel and comparable corpora. Pivot lan-
guage (Tanaka and Umemura, 1994) and cognate recog-
nition (Mann and Yarowsky, 2001) approaches have been
proven useful to induce bilingual lexicon for low-resource
languages. Recently, our team (Wushouer et al., 2015)
showed a promising approach of treating pivot-based bilin-
gual lexicon induction for low-resource languages as opti-
mization problem. Their method is based on the assump-
tion that lexicons of closely related languages offer one-to-
one mapping. However, this one-to-one assumption is too
strong to suit languages which have the one-to-many trans-
lation characteristic. Therefore, we aim at extending the
constraint-based bilingual lexicon induction to support any
other closely related languages. To this end, we address the
following two research goals:

• Generalize constraint-based bilingual lexicon induc-
tion framework: We extend the one-to-one approach
constraints and translation pair candidates to get one-
to-many translation results, and further generalize the
framework to cover any closely related languages with
either one-to-one or one-to-many translation charac-
teristics.

• Identify the best constraint set according to lan-
guage pairs: The similarity between closely related
languages varies based on their genetic relationship.
Languages are classified into low-resource and high-
resource languages based on their number/amount of
resources, including size of dictionaries. Therefore,

we identify characteristics of language that affect the
performance and further identify the best constraint set
for different language characteristics. Closely related
languages with high similarity between the input lan-
guages and voluminous input dictionaries are a proper
language candidate for our framework.

The rest of this paper is organized as follows: In Section 2,
we will briefly discuss closely related languages and meth-
ods in comparative linguistics. Section 3 discusses about
semantic constraint assumption that supports our proposed
approach, which is explained in Section 4. Section 5 de-
scribes our experiment and the results. Finally, Section 6
concludes this paper.

2. Closely Related Languages
Historical linguistics is the scientific study of language
change over time in term of sound, analogical, lexical, mor-
phological, syntactic, and semantic information (Campbell,
2013). Comparative linguistics is a branch of historical
linguistics that is concerned with language comparison to
determine their historical relatedness and to construct lan-
guage families (Lehmann, 2013). There are many methods,
techniques, and procedures utilized in the investigation of
the potential distant genetic relationship of languages, in-
cluding lexical comparison, sound correspondences, gram-
matical evidence, borrowing, semantic constraints, chance
similarities, sound-meaning isomorphism, etc (Campbell
and Poser, 2008). The genetic relationship of languages is
used to classify languages into language family. Closely re-
lated languages are those that have the same origin or proto-
language, and usually belong to the same language family.
Glottochronology, one of lexical comparison method as for-
mulated by Swadesh (1955), is a method for estimating the
amount of time elapsed since related languages diverged
from a common ancestral language. Glottochronology de-
pends on basic, relatively culture-free vocabulary, which is
known as Swadesh list. Holman et al. (2011) proposed
a computerized alternative to glottochronology known as
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Figure 1: One-to-one constraint approach pivot-based bilingual dictionary induction.

the automated similarity judgment program project (ASJP)
(Wichmann et al., 2013). A main goal of ASJP is the devel-
opment of a database of Swadesh lists (Swadesh, 1955) for
all of the world’s languages from which similarity or dis-
tance matrix between languages can be obtained. We uti-
lize ASJP to select our target languages for our case studies
in this paper.

3. Semantic Constraint Assumption
Wushouer et al. (2015) proposed a pivot-based bilingual
lexicon induction as optimization problem. They assumed
that lexicons of closely related languages offer one-to-one
mapping and share a significant number of cognates (words
with similar spelling and meaning which originated from
the same root language). With this assumption, they de-
veloped a constraint optimization model to induce Uyghur-
Kazakh bilingual dictionary using Chinese language as the
pivot, which means that Chinese words are used as inter-
mediate to connect Uyghur words in Uyghur-Chinese dic-
tionary and Kazakh words in Kazakh-Chinese dictionary.
They used graphs, in which vertex represents a word and
an edge indicates shared meanings and further called these
as transgraph following Soderland et al. (2009). The steps
in their approach are as follows: (1) using two bilingual
dictionaries as input, (2) representing them as transgraphs
where wA

1 and wA
2 are non-pivot words in language A,

wB
1 and wB

2 are pivot words in language B, and wC
1 , wC

2

and wC
3 are non-pivot words in language C, (3) adding

some new edges represented by red-dashed edges based
on their one-to-one assumption, (4) formalizing the prob-
lem into conjunctive normal form (CNF) and using WP-
MaxSAT solver to return the optimized translation results,
and (5) outputting the induced bilingual dictionary as the
result. These steps are shown in Figure 1.
The one-to-one approach depends only on lexicon similar-
ity, one of the closely related language characteristics that
permit the recognition of cognates between languages as-
suming that lexicons of closely related languages offer the
one-to-one relation. If language A and C are closely re-
lated, for any word in A there exists a unique word in C such
that they have exactly the same meanings. Such a pair is
called a one-to-one pair. They realized that this assumption
may be too strong for the general case, but they believed
that it was reasonable for closely related languages like Tur-
kic languages. They believe that their method works best
for languages with high-similarity. However, this assump-
tion is too strong to be applied to other languages which
have the one-to-many translation characteristic like Indone-

sian ethnic languages. For instance, in Figure 2, wA
1 and

wA
2 are words in Minangkabau language (min), wB

1 and
wB

2 are words in Indonesian language (ind) and wC
1 , wC

2 ,
wC

3 , and wC
4 are words in Malay language (zlm). When

we connect words in non-pivot language A and C via pivot
words B, we can get translation results from language A to
C. In this example wA

1 is symmetrical with wC
1 , wC

2 , and
wC

3 , where all translation pair wA
1 − wC

1 , wA
1 − wC

2 , and
wA

1 − wC
3 are correct translations. Therefore, the transla-

tion result is one-to-many.
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Figure 2: One-to-many translation.

Since most of linguists believe that lexical comparison
alone is not a good way to recognize cognates (Campbell,
2013), we want to utilize a more general and basic char-
acteristic of closely related languages, which is closely re-
lated languages share cognates that mostly maintain the se-
mantic or meaning of the lexicons. Even though there is a
possibility of a change in one of the meanings of a word
in a language, within the families where the languages are
known to be related, etymologists are still not ready to ac-
cept the assumption of semantic changes unless an explicit
account of any assumed semantic changes can be provided
(Campbell, 2013). Since our approach only targets closely
related languages, it is safe to make an assumption based
on the semantic characteristic of closely related languages.
Our semantic constraint assumption utilizes this character-
istic: Given a pair of words, wA

i of language A and wC
k of

language C, if they are cognates from the same proto word
wP

l of language P which language A and B originated from,
they inherit all of wP

l senses/meanings.
Figure 3 represents cognate recognition based on shared
meaning in the transgraph denoted by solid edges. An ar-
row line denotes derivation of word from proto-word and
a dashed edge denotes high possibility of shared mean-
ings between two words, and thus denotes the possibility
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Figure 3: Cognate recognition in closely related languages.

of missed meanings in the transgraph.
We make several assumptions based on the semantic con-
straint assumption as follows: Given word wA

1 and wA
2 in

language A, word wB
1 and wB

2 in pivot language B and
word wC

1 and wC
2 in language C, where language A, B, and

C are closely related languages, when wA
1 and wC

1 share
the same meaning through wB

1 , there is a high possibility
that they are cognates originating from the same proto-word
wP

1 . When wA
2 and wC

2 share the same meaning through
wB

2 , there is also a high possibility that they are cognates
originating from the same proto-word wP

2 . Consequently,
when wA

2 also shares the same meaning with pivot wB
1 ,

there is a high possibility that proto-words wP
1 and wP

2 also
share the same meaning. Therefore, there is a high possi-
bility that wC

2 also share the same meaning with pivot wB
1 .

Based on this scenario, we define the following symme-
try assumption: Given a pair of words from closely re-
lated languages A and C in a transgraph, if they are a pair,
then they should be symmetrically connected through pivot
word(s) from language B. To satisfy symmetry constraint,
new edges could be inferred in the transgraph.
While the one-to-one approach relies on the one-to-one as-
sumption which limits the input languages on those with
high similarity, our symmetry assumption works on any
closely related languages.

4. Generalization of Constraint-based
Lexicon Induction Framework

Based on the symmetry assumption, we generalize the
constraint-based lexicon induction framework by extending
constraints and translation pair candidates from the one-to-
one approach.

4.1. Tripartite Transgraph
To model translation connectivity between language A and
C via pivot language B, we define tripartite transgraph
which is a tripartite graph in which a vertex represents a
word and an edge represents the indication of shared mean-
ing(s) between two vertices. Two tripartite transgraphs can
be joined if there exists at least one edge connecting a pivot
vertex in one tripartite transgraph to one non-pivot vertex
in other tripartite transgraph. To maintain basic form of tri-
partite transgraph with n number of pivot words (at least
1 pivot in one transgraph), each pivot word must be con-
nected to at least one word in every non-pivot languages,
and there has to be a path connecting all pivot words via
non-pivot words. Hereafter, we call the tripartite transgraph
as transgraph.

4.2. Translation Pair Candidates Extension
The one-to-one approach only considers translation pair
candidates from connected words in the transgraph as
shown in Figure 4(a). To utilize symmetry assumption in
the transgraph, we extend the translation pair candidates by
considering the missed meanings denoted by new dashed
edges in the transgraph as shown in Figure 4(b).

4.3. Formalization
Our team (Wushouer et al., 2015) introduced formalization
of the bilingual lexicon induction problem as a Weighted
Partial MaxSAT (WPMaxSAT) problem (Ansótegui et al.,
2009). In this paper, we follow the same formulation. A
literal is either a Boolean variable x or its negation ¬x. A
clause C is a disjunction of literals x1 ∨ ... ∨ xn. A unit
clause is a clause consisting of a single literal. A weighted
clause is a pair (C,ω), whereC is a clause and ω is a natural
number which means the penalty for falsifying the clause
C. If a clause is hard, the corresponding weight is infinity.
A propositional formula ϕω

c in CNF (Biere et al., 2009) is a
conjunction of one or more clauses C1 ∧ ...∧Cn. The vari-
able ϕ+

c represents CNF formula with soft clauses and ϕ∞
c

represents CNF formula with hard clauses. The Weighted
Partial MaxSAT problem for a multiset of weighted clauses
C is the problem of finding an optimal assignment to the
variables of C that minimize the cost of the assignment on
C. Let wL1

i and wL2
j represents words from language L1

and L2. We define three propositions as Boolean variables
between a pair of words wL1

i and wL2

k as follows:

• t(wL1
i , wL2

k ) represents whether the pair is a transla-
tion pair,

• e(wL1
i , wL2

j ) represents edge existence, and

• c(wL1
i , wL2

j ) represents existence of cost to travel the
edge.

In the framework, we define EE as a set of word pairs con-
nected by existing edges, EN as a set of word pairs con-
nected by new edges, DE as a set of translation pair can-
didates from the existing edges, DN as a set of translation
pair candidates from the new edges, and DR as a set of all
translation pair results returned by the WPMaxSAT solver.

4.4. Constraints Extension
We extend the one-to-one approach constraints by adding
one soft clause and three hard clauses to fully utilize the se-
mantic characteristic of closely related languages. All con-
straints are listed in Table 1.
To ensure the existing edges are considered when generat-
ing the translation pairs, the existing edges can be traveled
without cost. This is encoded as hard constraint ϕ∞

1 . To
satisfy our symmetry assumption, we use symmetry hard
constraint ϕ∞

2 . For small size input dictionaries, due to
data incompleteness, there could be missed meanings that
would lead to asymmetry in the word pair wA

i and wC
k in

a transgraph. To satisfy the symmetry assumption, new
edges can be added, shown as the dashed edge in Figure
4. To travel a new edge, a cost must be paid. This is en-
coded as soft constraint ϕ+

1 . The cost is calculated based
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Figure 4: Translation pair candidates extension.

ID CNF Formula

ϕ∞
1

( ∧
(wA

i ,wB
j )∈EE

¬c(wA
i , w

B
j )
)
∧
( ∧

(wB
j ,wC

k
)∈EE

¬c(wB
j , wC

k )
)

ϕ∞
2

( ∧
(wA

i ,wB
j )∈EE∪EN

(wA
i ,wC

k )∈DE∪DN

(¬t(wA
i , w

C
k ) ∨ ¬c(wA

i , w
B
j ))
)
∧
( ∧

(wB
j ,wC

k )∈EE∪EN

(wA
i ,wC

k )∈DE∪DN

(¬t(wA
i , w

C
k ) ∨ ¬c(wB

j , wC
k ))
)

ϕ+
1

( ∧
(wA

i ,wB
j )∈EN

c(wA
i , w

B
j )
)
∧
( ∧

(wB
j ,wC

k
)∈EN

c(wB
j , wC

k )
)

ϕ∞
3

( ∧
(wA

i ,wB
j )∈EE

e(wA
i , w

B
j )
)
∧
( ∧

(wB
j ,wC

k
)∈EE

e(wB
j , wC

k )
)

ϕ∞
4

( ∧
(wA

i ,wB
j )∈EN

¬e(wA
i , w

B
j )
)
∧
( ∧

(wB
j ,wC

k
)∈EN

¬e(wB
j , wC

k )
)

ϕ+
2

∧
(wA

i ,wC
k
)∈DN

¬t(wA
i , w

C
k )

ϕ∞
5

∧
(wA

i ,wB
j ),(wB

j ,wC
k )∈EE∪EN

(wA
i ,wC

k )∈DE∪DN

(¬t(wA
i , w

C
k ) ∨ e(wA

i , w
B
j ) ∨ e(wB

j , wC
k ))

ϕ∞
6

( ∧
k 6=n

(wA
i ,wC

k ),(wA
i ,wC

n )∈DE

(¬t(wA
i , w

C
k ) ∨ ¬t(wA

i , w
C
n ))
)
∧
( ∧

i6=m

(wA
i ,wC

k ),(wA
i ,wC

n )∈DE

(¬t(wA
i , w

C
k ) ∨ ¬t(wA

m, wC
k ))
)

ϕ∞
7

∨
(wA

i ,wC
k
)/∈DR

t(wA
i , w

C
k )

ϕ∞
8

∧
(wA

i ,wC
k
)∈DR

t(wA
i , w

C
k )

Table 1: Hard and soft constraints

on the possibility of the translation pair candidate being
wrongly selected according to the structure of the trans-
graph, which we define as the weight of a translation pair
candidate. The weight of a new edge from a non-pivot word
wA

i to a pivot word wB
j is defined as ω(wA

i , w
B
j ) and the

weight of a new edge from pivot word wB
j to non-pivot

word wC
k is defined as ω(wB

j , w
C
k ). Both of ω(wA

i , w
B
j )

and ω(wB
j , w

C
k ) values equal the weight of the translation

pair candidate ω(wA
i , w

C
k ). The weight of adding the new

edges is 1 − P (wA
i , w

C
k ). The higher the possibility of the

translation pair candidate being selected correctly is (deter-
mined by the structure of the transgraph), the lower is the
cost to be paid of adding any new edge to it. Following
Nakov and Ng (2012), to calculate the possibility of trans-
lation pair candidate P (wA

i , w
C
k ), we calculate the condi-

tional translation probabilities P (wA
i |wC

k ) and P (wC
k |wA

i ).
We further calculate the product of the probabilities using
P (wA

i |wC
k ) × P (wC

k |wA
i ). The algorithm to calculate the

probability of the translation pair candidates is shown in
Algorithm 1.
For the existing edge in the transgraph, e(wL1

i , wL2
j ) is en-

coded as TRUE in the CNF formula which is represented
as hard constraint ϕ∞

3 . For the new edge in the transgraph,
e(wL1

i , wL2
j ) is encoded as FALSE (NOT exist) in the CNF

formula which is represented as hard constraint ϕ∞
4 .

All translation pair candidates in DN can only be selected
as translation result by paying a constant cost α to ensure
that translation pair candidates from the existing edges will
be prioritized first. This is encoded as soft constraint ϕ+

2 . In
Figure 4, the new translation pair candidates are candidate
number 7 (wA

2 -wB
2 -wC

1 ), 8 (wA
3 -wB

2 -wC
1 ), and 9 (wA

3 -wB
2 -

wC
2 ). However, we only consider new paths that have at

least one existing edge and encode this as hard constraint
ϕ∞
5 . The new translation pair candidate induced from two

new edges like candidate 8 (wA
3 -wB

2 -wC
1 ) in Figure 4 is too

strong to be considered.
The uniqueness constraint is used to ensure highly precise
translation pair results where the result will be one-to-one
translation. It is encoded as hard constraint ϕ∞

6 . Since
the framework communicates with WPMaxSAT solver it-
eratively, a hard constraint ϕ∞

7 ensures that at least one
t(wA

i , w
C
k ) variable must be evaluated as TRUE. Conse-

quently, in each iteration, we can get at least one transla-
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tion pair and store it in DR. This clause is a disjunction
of all t(wA

i , w
C
k ) variables. We exclude previously selected

translation pairs which is stored in DR from the follow-
ing list of translation pair candidates by evaluating them as
TRUE, which is encoded as hard constraint ϕ∞

8 , and ex-
cluding them from ϕ∞

7 .

Algorithm 1: Translation pair candidates extraction
Input: G - a transgraph
Output: C - set of translation pair candidates
for each wA

i in G do
for each wB

j that share edge with wA
i do

for each wC
k that share edge with wB

j do
P (wA

i |wC
k ) = 0; P (wC

k |wA
i ) = 0;

for each path from wA
i to wC

k do
P (wA

i |wB
j ) = 1 / indegree toward wB

j ;
P (wB

j |wC
k ) = 1 / indegree toward wC

k ;
P (wC

k |wB
j ) = 1 / outdegree from wB

j ;
P (wB

j |wA
i ) = 1 / outdegree from wA

i ;
P (wA

i |wC
k ) += P (wA

i |wB
j ) × P (wB

j |wC
k );

P (wC
k |wA

i ) += P (wC
k |wB

j ) × P (wB
j |wA

i );
end

end
P (wA

i , w
C
k ) = P (wA

i |wC
k )× P (wC

k |wA
i );

C ← C ∪ t(wA
i , w

C
k );

end
end
return C;

4.5. Framework Generalization
To cover all closely related languages effectively, we clas-
sify constraint sets based on language similarity and size of
input dictionaries. We define three WPMaxSAT instances,
which are Ω1, Ω2, and Ω3.
In order to get a high quality bilingual dictionary, we
strengthen the strictness of translation pair candidates se-
lection based on the symmetry assumption, and further
classify the constraint set into WPMaxSAT instance Ω1 as
shown in Equation 1. The result is a one-to-one translation
pairs bilingual dictionary.

Ω1 = ϕ+
1 + ϕ∞

1 + ϕ∞
2 + ϕ∞

6 + ϕ∞
7 + ϕ∞

8 (1)

To cover closely related languages, we lessen the strict-
ness of selection by selecting all translation pair candidates
from existing edges, and classify the constraint set into WP-
MaxSAT instance Ω2 as shown in Equation 2. The re-
sult is a one-to-many translation pairs bilingual dictionary
from connected existing edges only. The goal of this WP-
MaxSAT instance Ω2 is to get a voluminous bilingual dic-
tionary while maintaining good quality. This Ω2 is very
useful for closely related languages with small size input
dictionaries like low-resource languages.

Ω2 = ϕ+
1 + ϕ∞

1 + ϕ∞
2 + ϕ∞

7 + ϕ∞
8 (2)

To more fully utilize the symmetry assumption for closely
related languages and get more voluminous bilingual dic-
tionary, we classify constraint set into Ω3 as shown in Equa-
tion 3. The result is a one-to-many translation pairs bilin-
gual dictionary from connected existing and new edges.

This Ω3 is especially very useful for enriching closely re-
lated low-resource languages.

Ω3 = ϕ+
1 +ϕ+

2 +ϕ∞
1 +ϕ∞

2 +ϕ∞
3 +ϕ∞

4 +ϕ∞
5 +ϕ∞

7 +ϕ∞
8 (3)

5. Experiment
To eliminate uncertainty during experiments and ensuring
the results are trustworthy, we conduct two controlled ex-
periments. The first one focuses on language pair similarity
on four low-resource and high-resource closely related lan-
guages. The second controlled experiment concentrates on
edge connectivity ratio (ECR) in the transgraph. The size
of input dictionaries will affect the topology of the trans-
graph. The smaller the input dictionaries are, the more
missed meanings will be found in the transgraph, and the
smaller the edge connectivity ratio will be. A transgraph
with all vertices connected has an edge connectivity ratio
of 100% .
To evaluate our result, we calculate the harmonic mean
of precision and recall using the traditional F-measure or
balanced F-score (Rijsbergen, 1979). We generate full-
matching translation pairs for each transgraph, verify them
and consider them as the gold standard for calculating re-
call.

5.1. Experimental Settings
We have four case studies on closely related language pairs
with different level of language similarity as shown in Table
2. For each case study, we sample several transgraphs ran-
domly where the total number of edges approaches 250. We
selected Minangkabau (min) and Malay (zlm) languages
with Indonesian language (ind) as the pivot for our first case
study. The size of the input dictionary is small shown in Ta-
ble 3. We do verification by asking a Minangkabau-Malay
bilingual speaker to judge whether the translation pairs are
correct or not. We sample 36 random transgraphs with 248
total number of edges.

Language Pair Language Similarity
min-ind, zlm-ind, min-zlm 69.14%, 87.70%, 61.66%
deu-eng, nld-eng, deu-nld 31.38%, 39.27% 51.17%
deu-eng, ita-eng, deu-ita 31.38%, 9.75%, 13.64%
spa-eng, por-eng, spa-por 6.66%, 3.79%, 32.04%

Table 2: ASJP similarities between input languages

Dictionary
Words

Edges ECR
Pivot Non-Pivot

ind-min 3,745 3,750
955 48.5%

ind-zlm 5,765 5,772
eng-deu 92,978 80,852

21,164 55.9%
eng-nld 7,620 24,210
eng-deu 92,978 80,852

10,380 53.5%
eng-ita 4,104 3,469
eng-spa 4,984 4,548

16,994 60.9%
eng-por 15,759 17,304

Table 3: Structure of input dictionaries
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Figure 5: The effect of language similarity.

Proto-Indo-European language is widely accepted by lin-
guists as the common ancestor of Indo-European language
family from which the rest of our case studies languages
originate. We utilize open source online bilingual dic-
tionary databases1. The second case study targets high-
resource language with big input dictionaries, which are
German (deu) and Dutch (nld) languages with English lan-
guage (eng) as the pivot. We use a Dutch - German dictio-
nary and a German - Dutch dictionary for the verification.
We sample 33 random transgraphs with 254 total number of
edges. The third case study is German (deu) and Italian (ita)
languages with English (eng) language as the pivot. We use
a Dutch - Italian dictionary and an Italian - Dutch dictio-
nary for verification. We sample 40 random transgraphs
with 249 total number of edges. The fourth case study is
Spanish (spa) and Portugese (por) languages with English
(eng) language as the pivot. We use Spanish - Portugese
dictionary for the verification. We sample 32 random trans-
graphs with 250 total number of edges. The structure of
those input dictionaries are shown in Table 3.

5.2. Experiment Result
The results of all four case studies with all WPMaxSAT
instances (Ω1, Ω2, and & Ω3) are shown in Table 4. The re-
sults of case studies 1, 2, 3, and 4 indicate F-score improve-
ments of 70%, 95%, 51%, and 60%, respectively, from one-
to-one result (Ω1) when we use Ω2, and improvements of
83%, 91%, 45%, and 60%, respectively, when we use Ω3.
We further investigate our results to elucidate the effects of
language similarity and edge connectivity ratio in the trans-
graph on precision, recall and F-score.

5.3. The Effect of Language Similarity
Language similarity between two non-pivot languages has a
positive effect on precision because our semantic constraint
assumption works better on closely related languages. Fig-
ure 5 shows that when we use either Ω1, Ω2, or Ω3, the
precision increases over language similarity.
However, the forth case study yields results that do not
follow this trend. We investigate this phenomena and try
to find the hidden parameter that negatively impacts pre-
cision. In Table 2 we can find that even though ASJP

1http://freedict.org

Case Result Ω1 Ω2 Ω3

1

Translation 66 156 193
Precision 100.00% 98.08% 94.30%
Recall 36.07% 83.61% 99.45%
F-score 53.01% 90.27% 96.81%

2

Translation 65 191 232
Precision 96.92% 95.29% 84.91%
Recall 31.82% 91.92% 99.49%
F-score 47.91% 93.57% 91.63%

3

Translation 55 127 141
Precision 90.91% 85.04% 78.01%
Recall 45.05% 97.30% 99.10%
F-score 60.24% 90.76% 87.30%

3

Translation 49 131 144
Precision 87.76% 79.39% 76.39%
Recall 39.09% 94.55% 100.00%
F-score 54.09% 86.31% 86.61%

Table 4: Experiment result

similarity between Spanish and Portugese is 32.04%, the
similarity between those non-pivot languages and the pivot
language (English) is very low (6.66% and 3.79%, respec-
tively). Therefore, we investigate further the effect of poly-
semy in pivot language on the precision.

5.4. Prediction Model of Precision on Polysemy
in Pivot Language

To model the effect of polysemy in pivot language on
precision, for the sake of simplicity, we ignore synonym
words within the same language. Polysemy in non-pivot
languages have no negative effect to the precision. In Fig-
ure 7(a), even though the non-pivot words are connected
by four pivot words representing four senses/meanings,
the transgraph only has one translation pair candidate
(wA

1 -wC
1 ) and so the precision is 100%.

However, polysemy in pivot language negatively impact
the precision. Figure 7(b) shows that non-pivot word
wA

1 and wC
1 are cognates and share the same meanings

(s1,s2,s3), but pivot word wB
1 which has four meanings

(s1,s2,s4,s5) only shares a part of the meanings (s1,s2)
with the non-pivot words. The black solid edges have
part or all shared meanings (s1, s2) between the non-pivot
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Figure 7: Polysemy in pivot and non-pivot language.

words (wA
1 , wC

1 ) and the pivot word wB
1 . The red dashed

edges have part or all unshared meanings (s4, s5) between
the non-pivot words (wA

1 , wC
1 ) and the pivot word wB

1 .
To investigate the effect of pivot word wB

1 on the overall
precision, we use Ω2 where we can get translation pair
candidates from connected edges. The precision (38.89%)
is affected negatively as there are 22 wrong translations
because of the polysemy in pivot language (wB

1 ) in the
transgraph.
We formalize the effect of polysemy in pivot language
on precision with following formulation where n is the
number of shared meanings between pivot word and
non-pivot words and m is the number of pivot meaning(s)
that not shared with non-pivot words. The number of
correct translations contributed by the black solid edges
and the number of correct translation contributed by the
red dashed edges can be calculated with Equation 4. The
precision of the translation result is calculated by Equation
5.

CorrectTrans(n) = 2

n∑
i=1

i∑
j=1

(
n

i

)(
i

j

)
−

n∑
i=1

(
n

i

)
(4)

Prec(n,m) =
CorrectTrans(n) + CorrectTrans(m)[∑n

i=1

(
n

i

)
+
∑m

i=1

(
m

i

)]2 (5)

We predict the effect of shared meanings between pivot
word and non-pivot words by simulating ten sets of trans-
graphs with n (the number of shared meanings between
pivot word and non-pivot words) values ranging from 1 to

10 where in each set, m (the number of pivot meaning(s)
that not shared with non-pivot words) ranges from 0 to n in
Figure 8. In this experiment, non-pivot languages and pivot
language are closely related language (wA

1 ,wB
1 , andwC

1 are
cognates) when there is no pivot meaning that not shared
with non-pivot words (m = 0). This result shows that the
greater the number of shared senses/meanings (represented
by n) between pivot and non-pivot words are, the lower the
precision is. Nevertheless, the polysemy in pivot language
has the least negative effect on the precision when the pivot
language and non-pivot languages are closely related where
the number of unshared pivot senses (represented by m)
equals 0. The negative effect increases as the number of m
increases.
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Figure 8: Prediction model of precision on polysemy in
pivot language.

5.5. The Effect of Edge Connectivity Ratio
We removed some edges from the transgraphs in case study
2 to simulate the effect of edge connectivity ratio on pre-
cision, recall and F-score. First, we selectively removed
edges while maintaining the form of the transgraphs. When
the total number of edges is less than 86%, we randomly re-
moved edges and the transgraphs start to miss vertices.
Figure 6 shows that when we use either Ω1, Ω2, or Ω3,
the precision remains high as we remove edges. When we
use Ω1, the recall remains low as we remove edges and de-
creases when the total number of edges is less than 80%.
When we use Ω2, the recall starts high but decreases as
we remove edges even though the basic form of the trans-
graphs is maintained (total number of edges is greater than
86%). When we use Ω3, the recall remains high as we
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remove edges while the form of the transgraphs is main-
tained. As a result, F-score remains highest and most stable
as we remove edges when we use Ω3. Therefore, when only
small input dictionaries are available, as in the case of low-
resource languages, by using Ω3, our framework can infer
and add the new edges based on our semantic constraint
assumption.

5.6. Strategy to Use Constraint Sets
Based on the above result, we introduce a strategy that indi-
cates proper constraint sets for different goals and language
characteristics. When we have voluminous input dictionar-
ies, we can use Ω1 while our goal is to get high quality
bilingual dictionary, and we can use Ω2 while our goal is to
get voluminous bilingual dictionary of good quality. Most
importantly, because the experiment shows the robustness
of Ω3 as edges are being removed, we can use Ω3 when
we only have small input dictionaries as in the case of low-
resource languages and our goal is to get voluminous bilin-
gual dictionary of good quality.

6. Conclusion
We conducted two controlled experiments and investigated
two parameters that impact precision, recall and F-score,
which are language similarity and edge connectivity ra-
tio. We also investigated the negative effect of polysemy
in pivot language on precision. Our key research contribu-
tions are:

• A generalized constraint-based bilingual lexicon in-
duction framework for closely related languages: This
generalization makes our method applicable for wider
language groups than the one-to-one approach.

• Identification of the best constraint set according to
the language pairs: We identify the characteristics of
languages that affect performance and further identi-
fied the best constraint set for different language char-
acteristics.

In future research, we plan to weight polysemy in pivot lan-
guage to improve quality of translation results. Since our
approach is mainly based on a semantic constraint assump-
tion for closely related languages, we also plan to recognize
false friends in the transgraphs and exclude them from the
translation pair candidate set to improve precision.
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