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Abstract
In American Sign Language (ASL) as well as other signed languages, different classes of signs (e.g., lexical signs, fingerspelled signs,
and classifier constructions) have different internal structural properties. Continuous sign recognition accuracy can be improved through
use of distinct recognition strategies, as well as different training datasets, for each class of signs. For these strategies to be applied,
continuous signing video needs to be segmented into parts corresponding to particular classes of signs. In this paper we present a
multiple instance learning-based segmentation system that accurately labels 91.27% of the video frames of 500 continuous utterances
(including 7 different subjects) from the publicly accessible NCSLGR corpus <http://secrets.rutgers.edu/dai/queryPages/> (Neidle
and Vogler, 2012). The system uses novel feature descriptors derived from both motion and shape statistics of the regions of high local

motion. The system does not require a hand tracker.
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1. Introduction

Computer-based ASL recognition often focuses on signs
that have been pre-extracted from video (with known start
and end frames) (Elons et al., 2013a; Mohandes et al.,
2012, e.g.). Learning methods are typically employed for
sign recognition; these are frequently based on Hidden
Markov Models (HMMs) (Vogler and Metaxas, 2004) or
Conditional Random Fields (CRFs) (Wang et al., 2006),
trained for each sign in the vocabulary.

However, continuous signing presents a significantly
greater challenge, not only because of co-articulation ef-
fects, but also because of the existence of multiple classes
of signs with fundamentally different internal composition.
Unlike spoken languages, in which phonemes are con-
catenated, in signed languages the components of words
combine both sequentially and non-sequentially (simulta-
neously), subject to different linguistic constraints depend-
ing on the morphological class to which the signs belong,
and these linguistic constraints can be leveraged to im-
prove computer-based recognition (Athitsos et al., 2010;
Thangali et al., 2011). The three most prevalent classes in
signed languages are lexical signs, fingerspelled signs, and
classifier constructions.

Lexical sign production involves combinations of spe-
cific hand configurations, orientations, locations in sign-
ing space, and movement trajectories. Strict linguistic
constraints govern the relationships between start and end
handshapes of a given sign, and between the two hands
(in 2-handed signs) with respect to hand configuration
and movement trajectory (Battison, 1978; Brentari, 1998;
Thangali et al., 2011).

Fingerspelled signs consist of sequences of letter hand-
shapes from the manual alphabet, produced with rapid fin-
ger movements at a fairly constant global hand location
(Athitsos et al., 2010), potentially with relatively small left-
to-right movement. Although some fingerspelled signs are
in frequent usage, fingerspelling is often used for proper

names and spoken language borrowings. Thus there is no
fixed fingerspelled vocabulary: many fingerspelled produc-
tions would not be included in any ASL dictionary.
Classifier constructions incorporate substantial variability
in their realizations (Emmorey, 2013, e.g.).

In current work, we omit from consideration so-called
name signs, loan signs (which originated as fingerspelled,
but have become more like lexical signs), and index signs
(used for pronominal reference).

In light of the fundamentally different nature of these sign
classes, distinct, class-specific, recognition strategies are
needed.

2. Previous work

Techniques for recognition from continuous signing based
on HMMs (Assaleh et al., 2008; Theodorakis et al., 2012;
Vogler and Metaxas, 2001; Kong and Ranganath, 2014),
CRFs (Yang and Lee, 2013), or intelligent search (Gao
et al., 2004; Elons et al., 2013b; Sarkar et al., 2011) can
be applied to entire sentences or individual signs (pre-
segmented from sentences in a preprocessing step). Some
approaches also exploit movement epenthesis (between
signs) for sign recognition (Gao et al., 2004) or seg-
mentation (Kong and Ranganath, 2014; Yang and Sarkar,
2006). Other researchers have attempted semi-supervised
(Theodorakis et al., 2012; Madeo et al., 2012; Bowden et
al., 2004) or unsupervised (Han et al., 2013; Cooper et
al., 2012; Nayak et al., 2012) sign decomposition into sub-
units (a.k.a. signemes or atomic shapes or motions). Sub-
units are then used (instead of per-frame features) for fur-
ther recognition using learning methods, such as HMMs or
CRFs. Another semi-supervised approach involves learn-
ing specific signs from sentences containing them (Nayak
et al., 2012; Sarkar et al., 2011), e.g., from subtitled TV
programs (Pfister et al., 2013; Pfister et al., 2014).

Recognition rates for these semi-supervised and unsuper-
vised approaches are in the 80-93% range for limited vo-
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Figure 1: a) Non-zero optical flow locations; b) Exponential PDF fit to the product |sX]| - |sY

; ¢) Exponential PDF values

over the product |sX]| - |sY|; d) Thresholded PDF; e) Extracted moving regions;

cabularies (20-142 signs). Existing supervised sign recog-
nition methods achieve accuracy of 91-97% for a limited
inventory (25-80 signs) (Assaleh et al., 2008; Vogler and
Metaxas, 2001; Yang and Lee, 2013; Nayak et al., 2012;
Sarkar et al., 2011; Yang and Sarkar, 2006), and often from
single-subject data (Assaleh et al., 2008; Nayak et al., 2012;
Sarkar et al., 2011; Yang and Sarkar, 2006; Gao et al.,
2004). Accuracy quickly degrades to 85-90% with some-
what more extensive vocabulary (100-250 signs) (Elons et
al., 2013b; Kong and Ranganath, 2014) and subject inde-
pendence (Kong and Ranganath, 2014).

None of the work mentioned above takes into account the
existence of sign types other than lexical and/or finger-
spelled. Classifier constructions, which occur with high
frequency in signed languages, are largely ignored. Fur-
thermore, prior work on recognition from continuous sign-
ing does not apply different strategies based on differenti-
ation of types of signs; and recognition research generally
focuses on a single type of sign (e.g., there is some research
on recognition of lexical signs, other research on recogni-
tion of fingerspelling).

3. Our contribution

In order to tailor recognition strategies to the distinct sign
classes (Tsechpenakis et al., 2006; Tsechpenakis et al.,
2008; Dilsizian et al., 2014), we must first be able to seg-
ment continuous signing video into subsequences corre-
sponding to the distinct types of sign production (i.e., se-
quences of one or more signs of the same class). We in-
troduce here a multiple instance learning (MIL) system for
this task. Our contributions are three-fold:

e Unlike most previous research, we detect classifier
signs.

e Our novel feature extraction method does not require
pre-segmented hands of specific size and scale, thus
eliminating the need for a hand tracker.

o We formulate sign classification as an intra-frame MIL
problem, allowing us to capture indirectly important
relationships among multiple moving regions in the
image.

We test our system on 500 utterances containing 3,085
signs captured across 7 subjects from the National Cen-
ter for Sign Language and Gesture Resources (NCSLGR

<http://secrets.rutgers.edu/dai/queryPages/>) corpus of ut-
terances collected and annotated at Boston University
(Neidle and Vogler, 2012). Our system produces sign class
labels that match those of human annotators for 91.27% of
the video frames; the remaining 8.73% include marginal
cases that are too short (e.g., fingerspelled “on”), cases with
articulatory properties consistent with more than one sign
class, as well as some cases where the human annotation
turned out to be inaccurate (see section 7).

4. Problem formulation

In ASL, hand, arm, upper body, and head movement con-
veys important linguistic information of various kinds, as
do facial expressions. However, since moving body parts
are more relevant for recognition than stationary ones, we
extract relevant features solely from image regions with
significant motion, without restricting attention to specific
body parts.

We formulate sign class recognition as a multiple instance
learning (MIL) problem (Ben-Hur and others, 2012). In the
MIL context a video frame is represented by a bag of mul-
tiple moving regions (e.g., hands, arms, face). The number
of moving regions is not regulated. The task is then to find
the frame type (sign class) given the set of moving regions,
without attempting to find the sign class for each moving
region. Thus, MIL indirectly captures the relationship be-
tween different moving body parts.

Not all moving regions inside the frame are relevant to the
actual signing. For example, background motion or cloth-
ing with salient texture can produce significant local mo-
tion detector output. Given sufficient quantities of data, the
MIL framework will filter out the moving regions (like legs
in Figure 1a) that are inconsistent with the training data.
We use the Citation KNN (k-Nearest Neighbors) (Wang
and Zucker, 2000) implementation of the MIL paradigm.
This implementation builds a distance map between the
training examples using ranked Hausdorff distance between
two point sets (sets of moving regions in the case of our ap-
plication). Hausdorff distance is not necessarily symmetric.
Therefore, there is a difference between the nearest neigh-
bors of the given frame and the frames that would consider
the given frame as their nearest neighbor.

For each new frame, R references and C citers are com-
puted using training data. References are the nearest neigh-
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bors of the new frame. Citers are the training frames that
would consider the new frame their nearest neighbor within
a certain rank. The rank is passed to the algorithm as pa-
rameter c. Weused R = 2 and c = 2.

The resulting system captures local motion inside the
frame, but does not capture global temporal changes. How-
ever, local motion within a frame can be consistent with
multiple sign classes. Therefore, we used a one state per
frame CRF (Lafferty et al., 2001) on top of the MIL-
framework output to model the global interframe dynamics.
For the MIL-framework input, we use a set of fixed-size
feature descriptors for each of the moving parts. Popular
feature descriptors, such as Shape Context (Belongie et al.,
2002), SIFT (Lowe, 1999), or HOG (Dalal and Triggs,
2005), either do not describe regions or do not result in
constant-size feature vectors. We, therefore, propose a new
feature descriptor suitable for our application.

5. Feature Extraction

Our approach extracts two types of features:

1. features to detect the moving regions of interest, e.g.,
the hands; and

2. spatio-temporal features from the regions of interest,
suitable for recognizing the type of sign

For (1), we use optical flow (Fleet and Weiss, 2006) to
find the moving regions with significant speed (sX, sY') at
location X, Y in the image. We compute the PDF (prob-
ability density function) of the distribution of the product
|sX]| - |sY]| (Figure 1a-1c) and threshold the data on prob-
ability density <0.1 (Figure 1d) to include only highly no-
ticeable motion.

We then collect regions with an area of >100 pixels (10x 10
pixels, which is of the order of magnitude of a fingernail for
the 640x480 frames in the NCSLGR dataset); see Figure
le.

In step 2, we extract features related to the shape and ve-
locity of the moving regions (e.g., hands). For implemen-
tation, we choose the set of image filters shown in Table
1, which allows us to capture predominant orientations and
ridge strength signatures of both shape (intensity) and lo-
cal motion (optical flow speeds). Each filter response is
computed over the Gaussian pyramid of the input image to
account for scale issues. We have observed that each filter
response consistently follows a specific parametric distri-
bution for all regions of interest (Figure 2). The parameters
of that distribution become a part of the feature vector. The
total feature vector length is 14; and each frame would have
approximately from 1 to 6 feature vectors corresponding to
the high local motion regions.

6. Experimental evaluation

We used the Weka (Hall et al., 2009) implementation of
the Citation KNN MIL (Wang and Zucker, 2000) classifier,
trained on the pre-segmented NCSLGR data. For training
we used 570 randomly chosen instances of each sign class
(lexical, fingerspelled, classifiers) for a total of 1,710 sign
instances across 7 subjects. Using the trained MIL clas-
sifier, we obtained frame labels for 1,110 utterances. We
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Figure 2: Filter responses and their parametric distribu-
tions. All fitting procedures converged to a 95% confidence
interval.

Fs
A

. Number
Filter P.arametpc of pa-
distribution
rameters
Gabor absolute value on Gamma
shape (Stacy, 2
1962)
Gabor absolute value on | Laplace
speeds s X, sY obtained | (Kotz et al., 2,2
from optical flow 2001)
Maximum Eigen value
of the Hessian on speeds | Laplace 2
sX,sY 1
Maximum Eigen value
of the Hessian on shape Laplace 2
sX,sY Laplace 2,2

Table 1: Image filter responses and their parametric distri-
butions over the Gaussian pyramid. Total feature descriptor
length is 14.

removed movement epenthesis frames and frames belong-
ing to sign classes not included in the current research, and
used the rest to train a CRF.

We tested on 500 complete utterances across the same 7
subjects. These utterances consisted of 3,085 relevant signs
(42,947 relevant frames plus 21,535 frames of movement
epenthesis or sign classes not considered here). Therefore,
our test and training datasets were significantly different in
temporal structure.

7. Results and Discussion

The system labeling matched that of the human annotators
for 91.27% of the 42,947 relevant frames. Sample utter-
ances are presented in Figures 3 and 4 (gloss labels include
the prefix “fs-” for fingerspelled signs and “BCL-”, “DCL-”
or “SCL-” for (different types of) classifier constructions).
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Human Annotation .......

Classifier e —
Fingerspelled
. 1 23
Lexical —— —
100 120 140 180

0 20

Our system output

Classifier

Fingerspelled

Lexical - e —

| | | 1 |
0 20 40 60 80 100 120 140 160 180

[1JKNOW [2]SIT [3]TO/UNTIL [4]EAT [5](Lh)HAVE [6]fs-TRAY [7]DCL:1"tray" [8]WITH [9]fs-BIB [10]DCL:1"bib"

Figure 3: Some transitional motions that were labeled as fingerspelling in the human annotations and are not actually part
of the immediately following fingerspelled signs [orange and magenta insets].

Classifier __1 11

Fingerspelled -

Lexical - e——— | = &

1 L 1
0 50 100 150 200

Our system output

o GAMBLE++
Classifier — =
Fingerspelled - —
Lexical - - —
1 1 1 1
0 50 100 150 200

[1]SCL:3"vehicle pulling over" [2](2h)alt. GAMBLE++ [3](1h)HAVE(1h) [4]GOOD/THANK-YOU
[5] TIME+ [6]FOR [7]JONE_2 [8]TWO_2 [9]FEW_2 [10]JHOUR [11]SCL:crvd-V"get in" [12]ON

Figure 4: “GAMBLE++", a classifier-like lexical sign has been labeled as a classifier [magenta inset].
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Total
Matches
Human
Annotation
Lexical 29806 774 433 96.11%
Finger- 1225 | 4120 0 77.08%
spelled
Classifier 1181 2 5406 82.05%

Table 2: Per-frame confusion matrix.

The remaining 8.73% include cases involving human inac-
curacy in labeling sign boundaries (Figure 3), signs with
properties consistent with more than one sign class (Fig-
ure 4) or short fingerspelled signs. In Figure 3, orange and
magenta insets display frames in which the hand is getting
into position for fingerspelling. That transition is included
in the region that had been annotated as fingerspelling; i.e.,
a small human labeling error as to the precise start point of
the fingerspelling is corrected by our system.

In Figure 4, “(2h)alt. GAMBLE++", which had been anno-
tated as lexical, was identified by our system as a classi-
fier. However, this sign is profoundly classifier-like and
was only considered lexical by the annotators because it
has come into frequent usage. (It involves a kind of acting
out of rolling dice; the linguistic properties are not typical
of lexical signs.) Thus, the result from the system is rea-
sonable in light of the nature of this sign.

Table 2 shows the per-frame confusion matrix. Finger-
spelled signs and classifiers have a bigger overlap with lex-
ical signs than with each other. In the presentation, we dis-
cuss some of the sources of confusion seen in Table 2 (such
as the confusion between wrist rotation and finger move-
ment).

A more comprehensive analysis of the cases where the sys-
tem and the human disagreed on classification is reported
in the conference presentation. It should be noted that this
performance is based on a clean dataset with no background
clutter or movement. Therefore, the regions of interest
can be trivially extracted based on local motion. In future
work, we will use background subtraction methods (Cui et
al., 2012) to test our system in cases with cluttered back-
grounds.

8. Conclusion and Future Work

In order to tailor sign recognition strategies to structurally
different types of signs, we have developed a system for
segmentation of continuous signing based on the linguistic
type of sign production (lexical signs, fingerspelling, clas-
sifier constructions). The system labeling matched that of
human annotators for 91.27% of the frames from 500 ut-
terances consisting of 3,085 signs. The remaining 8.73%
contain cases that clearly reflect either human inaccuracy
in the “ground truth” labeling of boundaries, or signs with
properties consistent with more than one class of signs. The
segmentation results could be improved by running differ-
ent sign type HMMs simultaneously in cases where the seg-
mentation system produces a low-confidence result.

This is a first step towards creating a complete system for
real-time sign recognition that leverages the linguistic prop-
erties of the distinct sign classes. Incorporation of such
linguistic information would 1) lead to improvements in
the segmentation itself, and 2) be used for sign identifica-
tion within the segmented regions. There is considerable
research on recognition strategies for fingerspelled signs
(Rioux-Maldague and Giguere, 2014; Kim et al., 2013;
Pugeault and Bowden, 2011; Ricco and Tomasi, 2009,
e.g.). For lexical signs, linguistic constraints on the rela-
tionships between the start and end handshapes of a given
sign, and between the handshapes used on the left and right
hands, have already been demonstrated to improve accu-
racy of handshape recognition (a crucial linguistic com-
ponent) (Dilsizian et al., 2014). Work is now in progress
on incorporating 3D tracking of hands, arms, and upper
body to exploit the motion properties of lexical signs for
sign identification (Dilsizian et al., 2016). This approach,
sensitive to the fundamentally different internal structure
of distinct sign types, holds great promise for recognition
of large-scale vocabulary from continuous signing.
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