
Filtering Wiktionary triangles
by linear mapping between distributed word models

Márton Makrai
Research Institute for Linguistics
Hungarian Academy of Sciences
Benczúr u. 33, H-1068 Budapest

makrai.marton@nytud.mta.hu

Abstract
Triangulation infers word translations in a pair of languages based on translations to other, typically better resourced ones called pivots.
This method may introduce noise if words in the pivot are polysemous. The reliability of each triangulated translation is basically
estimated by the number of pivot languages (Tanaka and Umemura, 1994).
Mikolov et al. (2013b) introduce a method for scoring word translations. Translation is formalized as a linear mapping between
distributed vector space models (VSM) of the two languages. VSMs are trained on monolingual data, while the mapping is learned in
supervised fashion, using a seed dictionary of some thousand word pairs.
We apply linear mapping to filter triangulated translations, and show that scores by the mapping are smoother measure of merit than the
number of pivots. The methods we use are language-independent, and the training data is easy to obtain for many languages. We chose
the German-Hungarian pair for evaluation, in which the filtered triangles resulting from our experiments are the greatest freely available
list of word translations we are aware of.

Keywords: word triangulation, word embedding, Wiktionary

Word translations arise in dictionary-like organization as
well as via machine learning from corpora. The former
is exemplified by Wiktionary, a crowd-sourced dictionary
with editions in many languages. Ács et al. (2013) ob-
tain word translations from Wiktionary with the pivot-based
method, also called triangulation, that infers word transla-
tions in a pair of languages based on translations to other,
typically better resourced ones called pivots. Triangulation
may introduce noise if words in the pivot are polysemous.
The reliability of each triangulated translation is basically
estimated by the number of pivot languages (Tanaka and
Umemura, 1994).
Mikolov et al. (2013b) introduce a method for generating
or scoring word translations. Translation is formalized as
a linear mapping between distributed vector space models
(VSM) of the two languages. VSMs are trained on mono-
lingual data, while the mapping is learned in a supervised
fashion, using a seed dictionary of some thousand word
pairs. The mapping can be used to associate existing trans-
lations with a real-valued similarity score.
This paper exploits human labor in Wiktionary combined
with distributional information in VSMs. We train VSMs
on gigaword corpora, and the linear translation mapping on
direct (non-triangulated) Wiktionary pairs. This mapping is
used to filter triangulated translations based on scores. The
motivation is that scores by the mapping may be a smoother
measure of merit than considering only the number of pivot
for the triangle. We evaluate the scores against dictionar-
ies extracted from parallel corpora (Tiedemann, 2012). We
show that linear translation really provides a more reliable
method for triangle scoring than pivot count.
The methods we use are language-independent, and the
training data is easy to obtain for many languages. We
chose the German-Hungarian pair for evaluation, in which
the filtered triangles resulting from our experiments are the
greatest freely available list of word translations we are

aware of.

1. Triangulation
A method for creating dictionaries is triangulation through
better-resourced ones called the pivot (Tanaka and
Umemura, 1994). The idea is that if the English transla-
tion of the Hungarian word letartóztat is arrest, and the
German translation of arrest is verhaften, then the German
translation of letartóztat is verhaften, see fig. 1.

hu:letartóztat de:verhaften

en:arrest

Figure 1: Triangulation

Triangles are corrupted by ambiguity in the pivot word (the
one in the middle): German Dose can be translated as can
to English (as a synonym of tin), which, as a verb, translates
to tud in Hungarian, which is unrelated to Dose. Saralegi
et al. (2011) analyze two methods for pruning wrong tri-
angles: one based on exploiting the structure of the source
dictionaries, and the other based on distributional similar-
ity computed from comparable corpora. This paper is more
similar to the later in that it uses distributional information
applying a method connected to neural language modeling.

2. Vector space language models
In this section we introduce vector space language models
as two interrelated families of word representations. The
traditional method takes the co-occurrence matrix as a start-
ing point, while more recent representations are learned as
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weights (word embeddings) in neural networks (deep learn-
ing). Interestingly, the probably most popular neural lan-
guage model, skip-gram with negative sampling (Mikolov
et al., 2013a) is not so deep in architecture, and has been
shown (Levy and Goldberg, 2014) to be equivalent with a
method based on the co-occurrence matrix, shifted point-
wise mutual information.
The primary source of information about the meaning of a
word is how often it is used in different contexts, an idea
called the distributional hypothesis by linguists going back
to Harris (1951), and often quoted in the form that “You
shall know a word by the company it keeps" (Firth, 1957).
One simple formalization of word distribution in a corpus is
the co-occurrence matrix whose rows correspond to words
in the vocabulary, columns to contexts, and cells contain the
occurrence count of the word corresponding to the row ap-
pearing in the context corresponding to the column. What
is meant by context depends on the application. In Latent
Semantic Analysis (Deerwester et al., 1990), columns of
the original (unreduced) matrix correspond to documents.
In matrix-based vector space language models (Turney and
Pantel, 2010) on the other hand, columns originally corre-
spond to words, and counts express how often the words
corresponding to the row and the column collocate in a
window of some fixed length (say 5). Both in LSA and
co-occurrence based VSMs, the number of contexts is at
least in the thousands and gets reduced to some hundred
dimensions for computation efficiency.
Neural language models (Bengio et al., 2003), on the other
hand, are neural nets, trained on gigaword corpora by iterat-
ing over words in their contexts and updating some weights
of the model at each word. The resulting VSMs represent
similar words with similar vectors, and VSMs also reflect
relational similarities between words like king−queen ≈
man−woman (Mikolov et al., 2013c).

3. Linear translation
Mikolov et al. (2013b) discovered that VSMs of different
languages have such similarities that a linear mapping can
map representations of source language words to the repre-
sentation of their translations. The method belongs to the
paradigm of supervised machine learning: specifically it
makes use of a great amount of monolingual data i.e. gi-
gaword corpora for training, needing to be supervised by
a seed dictionary of some thousand words. Mikolov et al.
formalize translation as linear mapping W ∈ Rd2×d1 from
the source (monolingual) VSM Rd1 to the target one Rd2 :
the translation zi ∈ Rd2 of a source word xi ∈ Rd1 is
approximately its image Wxi by the mapping. The trans-
lation model is trained with linear regression on the seed
dictionary

min
W

∑
i

||Wxi − zi||2

and can be used to collect translations for the whole vocab-
ulary (by choosing zi to be the nearest neighbor of Wxi)
or to score a translation z coming from some other source
(with the score being the distance between Wxi and zi).1

1Mikolov et al. use a surprising combination of vector dis-

documents 3208
sentences 3.2 M
German tokens 23.3 M
Hungarian tokens 19.7 M
extracted word pairs 29.1 K

Table 1: The German Hungarian section of the OpenSubti-
tles2013 parallel corpus (Tiedemann 2012)

In the original setting of the collection mode, evaluation is
done on another thousand seed pairs.
A common error in linear translation is when there are
target words that are returned as the translation of many
words, which is wrong in most of the cases. Dinu et al.
(2015) propose a method for downplaying the importance
of such target words they call global correction. Our exper-
iments use this method.

4. Data
Direct and triangulated Wiktionary translations have been
extracted with wikt2dict2 (Ács et al., 2013) that handles 43
editions of Wiktionary.
The German VSMs have been trained on SdeWaC (Ba-
roni et al., 2009) and the Hungarian on the concatenation
of the Hungarian Webcorpus (Halácsy et al., 2004) and
the Hungarian National Corpus (Oravecz et al., 2014) with
word2vec3 (Mikolov et al., 2013a).4

For training and using the linear mapping, we forked5 the
implementation by Dinu et al. (2015). The German to Hun-
garian mapping was trained on the 5K direct word pairs that
are supported by the most pivots in Wiktionary. All the tri-
angles were scored. Glue code we wrote for this project is
freely available6.
The scoring has been evaluated against a dictionary in
the OPUS project7 that has been extracted by Tiedemann
(2012) from the OpenSubtitles2013 parallel corpus, a col-
lection of translated movie subtitles8. OpenSubtitles2013
contains 59 languages. Some sizes of the German Hungar-
ian section are shown in table 1.
Most of our training data are general in their domain: web
corpora (SdeWaC, the Hungarian Webcorpus), a curated
corpus (the Hungarian National Corpus, as far as a corpus
of 754 million words may be curated), and a crowd-sourced
but otherwise causal dictionary (Wiktionary). One may ask
whether the domain of the reference dictionary extracted

tances, Euclidean distance in training and cosine similarity (and
distance) in collection (and, respectively, scoring) of translations.
This choice is theoretically unmotivated, but we (Makrai, 2015)
also found it to work better than more consistent combinations of
metrics. However, see Xing et al. (2015) for opposing results.

2https://github.com/juditacs/wikt2dict
3https://code.google.com/p/word2vec/
4The German VSM has been a continuous bag of words model

in 300 dimensions (infrequent words have been cut off at 100 oc-
currences), the Hungarian a 600 dimensional one (with a cut-off
of 10). The choice of meta-parameters was not fully systematic.

5https://github.com/makrai/dinu15/
6https://github.com/makrai/efnilex-vect
7http://opus.lingfil.uu.se/
8http://www.opensubtitles.org/
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Figure 2: Accuracy curve of triangles sorted by their pivot
count as baseline, or score in linear translations (cos). The
later is smoother.

from movie subtitles is general to an appropriate extent, or
how far a problem of domain mismatch between train and
test may arise. We hypothesize that the mismatch is negli-
gible and defer a more subtle analysis to further research.

5. Evaluation
We evaluated the vector-based scoring of triangulated trans-
lational word pairs (triangles) in comparison with a dictio-
nary created from the parallel corpus OpenSubtitles2013.
For each (German) word, we consider as gold translations
all the (Hungarian) words that are listed in the OpenSubti-
tles2013 dictionary as its translation.
For evaluation, we sort the triangles in two orders: as base-
line, by the number of pivots for the triangle, and more im-
portantly, by the score in the linear mapping (cos). Then in
each order, we compute accuracy on each 1000-word slice
of the list (e.g. triangles 1–1000, then 1001–2000, etc.) tak-
ing OpenSubtitles2013 translations as gold.
While overall accuracy of the linear scoring (8.58%) is
slightly worse than that of pivot counting (9.32%), fig. 2
suggests that in sort by cos, accuracy descends more
smoothly than in sort by pivot count. (The last 22.73% of
the nearly 160 K triangles is out of the vocabulary of one
or both of the VSMs, so cos cannot be computed.) Now we
turn to a more quantitative support of this visual analysis.

5.1. Quantitative analysis of smoothness
We measure the smoothness of the accuracy curves by how
well they can be approximated by a function in some para-
metric family, see figs. 3 to 6. We tried two families with
similar results. The fist family is exponential functions of
the form

a · exp(−bx) + c,

where x is the index of the vocabulary slice (0 for words 0–
1000, 1 for 1001–2000, etc), and a, b, and c are parameters
to fit. The second family is that of power law functions

a · (bx+ c)k,

0 0.5 1 1.5

·105

0

0.2

0.4

0.6

rank of word

ac
cu

ra
cy

by pivot counting

Figure 3: The accuracy curve of pivot counting approxi-
mated by an exponential function.
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Figure 4: The accuracy curve of scores by the linear map-
ping approximated by an exponential function.

where k is another parameter to fit, and the remaining vari-
ables play similar roles as in the exponential case. The error
of the fit (i. e. the lack of smoothness) is quantified as the
mean squared error (MSE) between the two curves. The
MSE of the two accuracy curves (scoring translations by
pivot counting or cosine score) approximated by the two
families (exponential or power law functions) are shown in
table 2. The MSE of the accuracy curve in pivot counting
is 2.51 (resp. 4.42) times more than that in scoring by the
linear mapping, when both curves are modeled as exponen-
tial (resp. power law) functions. It is probably also worth
mentioning that the accuracy is slightly better for 20–30
000 higher-ranked words in the proposed method than in
the baseline, see figs. 7 and 8.
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Figure 5: Accuracy curves of scores by pivot count approx-
imated by power law functions.
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Figure 6: Accuracy curves of scores by the linear mapping
approximated by power law functions.
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