Best of Both Worlds: Making Word Sense Embeddings Interpretable

Alexander Panchenko
Language Technology Group, Technische Universitidt Darmstadt
Hochschulstr. 10, 64289, Darmstadt, Germany
panchenko @lt.informatik.tu-darmstadt.de

Abstract
Word sense embeddings represent a word sense as a low-dimensional numeric vector. While this representation is potentially useful for
NLP applications, its interpretability is inherently limited. We propose a simple technique that improves interpretability of sense vectors
by mapping them to synsets of a lexical resource. Our experiments with AdaGram sense embeddings and BabelNet synsets show that it is
possible to retrieve synsets that correspond to automatically learned sense vectors with Precision of 0.87, Recall of 0.42 and AUC of 0.78.

Keywords: word sense embeddings, WordNet, BabelNet, AdaGram, sense matching, lexical semantics

1. Introduction

Two main approaches to represent the meaning of lexical
units, such as words and multiword expressions are lexico-
graphy and statistical corpus analysis. In the first approach,
a human explicitly encodes lexical-semantic knowledge,
usually in the form of synsets (i.e. sets of synonyms),
typed relations between synsets and sense definitions. A
prominent example of this approach is the Princeton Word-
Net (Miller, 1995). The second approach makes use of text
corpora to extract relations between words and feature rep-
resentations of words and senses. These methods are trying
to avoid manual work as much as possible. Whereas lexi-
cal resources are manually created, in the second approach
most methods extract the information from text without hu-
man intervention. Examples of the second group of meth-
ods include classical” vector-based (Baroni and Lenci,
2010) and symbolic (Biemann and Riedl, 2013) distribu-
tional models, as well as word embeddings (Mikolov et al.,
2013; Pennington et al., 2014).

One of the strongest sides of lexical-semantic resources
is their interpretability — they are entirely human-readable
and drawn distinctions are motivated by lexicographic or
psychological considerations. On the downside, these
WordNet-like resources are expensive to create, and it is
not easy to adapt them to a given domain of interest or lan-
guage. Besides, sense inventories of lexical resources are
often too fine grained to be useful in downstream applica-
tions (Brown, 2008).

At the same time, corpus-driven approaches are strong at
adaptivity — they can be re-trained on a new corpus, thus
naturally adapting to the domain at hand. If fitted with a
word sense induction algorithm, corpus-driven approaches
can also discover new senses (Erk et al., 2009). However,
the representations they deliver are often not matching the
standards of lexicography, and they rather distinguish word
usages than senses. Moreover, dense numeric vector repre-
sentations as present in latent vector spaces (Schiitze, 1998)
and word embeddings are barely interpretable.

Word sense embeddings (Huang et al., 2012; Tian et al.,
2014; Neelakantan et al., 2014) extend word embeddings so
that a word is represented by several vectors corresponding
to meanings of the word. Li and Jurafsky (2015) show that
sense embeddings can significantly improve performance

of part-of-speech tagging, semantic relation identification
and semantic relatedness tasks, but yield no improvement
for named entity recognition and sentiment analysis. Sense
embeddings suffer the same interpretability limitations as
other dense vector representations.

The contribution of the paper is a technique that links
word sense embeddings to a lexical resource, making them
more interpretable. The main motivation of the technique
is to close the gap between interpretability and adaptivity
of lexical-semantic models. We demonstrate the perfor-
mance of our method by linking AdaGram sense embed-
dings, proposed by Bartunov et al. (2015) to synsets of
BabelNet (Navigli and Ponzetto, 2010). However, the ap-
proach can be straightforwardly applied to any combination
of a WordNet-like resource and a word sense embeddings
model. Scripts and datasets related to this experiment are
available online.!

To our knowledge, this is the first attempt to tag sense em-
beddings with interpretable synsets from a lexical resource.
While other approaches exist that use distributional infor-
mation for enriching lexical resources (c.f. the next sec-
tion), we are not aware of any other approach that utilizes
corpus-induced senses in the form of sense embeddings for
this purpose.

2. Related Work

Aligning senses across several lexicographic resources has
been sought as a means to achieve more comprehensive
sense inventories. Recent approaches include methods
used to build BabelNet and UBY (Gurevych et al., 2012).
Both of these lexical resources automatically interlink word
senses across multiple dictionaries and encyclopaedias,
such as Wiktionary?, Wikipedia® and Omega Wiki*. This
line of research is focused on interlinking manually created
lexical resources. However, they not attempt to align any
corpus-driven sense inventory.

While sense coverage and disambiguation coverage is in-
creased through more and richer sense representations,

"http://tudarmstadt-It.github.io/vec2synset
*http://www.wiktionary.org
*http://www.wikipedia.org
*http://www.omegawiki.org

2649

these extended resources suffer from alignment errors, as
well as the disadvantages of lexicographic resources as dis-
cussed in the introduction.

While lexicographic work mostly relies on corpus-based,
yet hand-picked evidence, Hanks (2013) presents an ap-
proach to systematize and formalize this approach, based
on word characteristics as yielded by the Sketch Engine
corpus analysis tool (Kilgarriff et al., 2014).

The need of corpus-based adaptation of lexical resources is
discussed by McCarthy et al. (2004), who define a method
to find the dominant sense of a word with respect to a text
collection, in order to inform the most frequent sense base-
line in word sense disambiguation. In (Agirre et al., 2006),
automatically induced senses are mapped to WordNet via
hand-labelled instances in the training set.

Automatically induced sense inventories were used in word
sense disambiguation tasks by Biemann (2010), yet as fea-
tures and without explicit mapping to WordNet senses.
While most word embedding approaches represent a term
with a single vector and thus conflate senses, there are few
approaches to produce word sense embeddings from cor-
pora (Huang et al., 2012; Tian et al., 2014; Neelakantan
et al., 2014; Bartunov et al., 2015; Li and Jurafsky, 2015).
However, these representations have, to our knowledge, not
been directly mapped to a lexicographic resource.
Approaches that compute embeddings directly on knowl-
edge bases are presented by Bordes et al. (2011) and
Camacho-Collados et al. (2015). Rothe and Schiitze (2015)
combine un-disambiguated embeddings to WordNet synset
to obtain synset representations in the embeddings space.
The approach is evaluated on lexical sample tasks by
adding synset embeddings as features to an existing WSD
system. While this setup is flexible with respect to the kinds
of embeddings used, it requires a large number of training
instances per lexeme and is not able to find new senses in
the underlying corpora. Our approach is different as we do
not try to learn embeddings for all synsets in a lexical re-
source, but instead retrieve synsets that correspond to input
sense embeddings.

3. Two Worlds of Lexical Semantics

This sections describes the two resources we link with our
method and their comparison.

3.1. Lexicographic Resource: BabelNet

BabelNet consists of several lexical, such as Word-
Net, and crowd-constructed resources, such as Wikipedia,
Wiktionary and Freebase’, which are aligned semi-
automatically across different languages. For our experi-
ments, we use the English part of BabelNet in version 3.0.
BabelNet represents a word sense with a synset consisting
of a set of lexical items, definitions and taxonomic rela-
tions. BabelNet synsets are easily interpretable as they fea-
ture explicit sense definitions, manually selected usage ex-
amples complemented by additional features that help to
grasp word meaning, such as pictures illustrating the sense,
taxonomic relations and even domain information as illus-
trated on Figure 1.°

>http://www.freebase.org
®http://babelnet.org/synset?word=bn:01713224n

3

@ Python (programming language) «» m - Pythonista « - Python
programming « - Python 3K « - Python philosophy <

Python is a widely used general-purpose, high-level programming language. <) @

+ Dynamic programming language * object-oriented programming language €3

© More relations

E‘ o
)Ut . S
=]

Figure 1: BabelNet synset bn:01713224n that corre-
sponds to the word “python” in the programming language
sense. Definitions, synonyms, taxonomic relations and im-
ages make this representation easily interpretable.

3.2. Word Sense Embeddings: AdaGram

The training objective of the Skip-gram model (Mikolov
et al., 2013) is to find vector word representations that are
useful for predicting the surrounding words in a sentence
or document. The model represents a word sense as a low-
dimensional vector. AdaGram (Bartunov et al., 2015) is a
Bayesian nonparametric extension of the Skip-gram model
that learns several embeddings per word corresponding to
word senses.

We chosen AdaGram for experiments as they outperform
the approach of Neelakantan et al. (2014) according to sev-
eral word sense disambiguation benchmarks and have an
open source implementation in contrast to the method of
Li and Jurafsky (2015). Few other approaches have impor-
tant limitations, so we did not consider them either. For
instance, the method of Tian et al. (2014) assumes a fixed
number of senses for all words, which is undesirable due to
exponential distribution of number of senses. The approach
of Huang et al. (2012) performs offline clustering of word
contexts and thus is computationally expensive for large
corpora. On the other hand, AdaGram can be considered as
an online clustering of contexts, which therefore can scale
to large corpora keeping a reasonable memory footprint. It
is scalable due to an online variational learning algorithm
used for training. As opposed to (Tian et al., 2014), the
number of prototypes is found automatically, while senses
granularity is regulated by the resolution parameter c.

As opposed to the interpretable BabelNet representation il-
lustrated in Figure 1, an embedding is a dense vector typi-
cally in a 100-500 dimensional space, where the meaning of
the dimensions is not specified in any human-interpretable
format. The vectors themselves are therefore uninter-
pretable by humans.

However, one can interpret a sense vector by comparing it
to other vectors. Namely, a list of nearest neighbours in
the vector space can be used to interpret a sense. For in-
stance, ten nearest neighbours of the vector corresponding
to the word “python” in the programming language sense

2650

obtained during our experiments is as following: “perl, php,
java, smalltalk, ruby, lua, tcl, scripting, javascript, bind-
ings”. While in some cases, this list of related words can be
sufficient for interpretation of a word sense, it does not con-
tains the wealth of additional information present in Babel-
Net synsets, such as taxonomic relations, human-readable
definitions, images, and so on.

For the purpose of this paper, we have trained” an AdaGram
model on an English corpus consisting of Web documents
and Wikipedia articles with the default meta-parameters.
Namely the resolution parameter o was set to 0.05, yielding
4.2 senses per word in average, and the number of dimen-
sions in sense vectors was set to 100. The choice of the de-
fault parameters is dictated by the goal of our experiment.
The idea was to show feasibility of linking two resources,
rather than finding an optimal granularity for such align-
ment. In particular, we used surface forms of ukWaC and
WaCkypedia_EN corpora by Baroni et al. (2009).8

3.3. Comparison of AdaGram and BabelNet
Word Sense Inventories

There are often considerably more BabelNet senses than
AdaGram senses. From Figure 2, we can observe a huge
discrepancy in granularity of their sense inventories. The
inventory of the embeddings is coarse-grained, while in-
ventory of the lexical resource is extremely fine-grained.
The maximum number of senses in our AdaGram model,
controlled by o parameter, is five, while for the BabelNet it
reaches up to 200 senses for some words.

Inspection revealed that many of these senses are named
entities, such as three roller-coasters named “Python”
with BabelNet IDs bn:00279773n, bn:03501078n and
bn:14645852n. Some words, like “pilot” “angel” or
“gold”, have over 100 senses in BabelNet, many represent-
ing rare named entities.

Our technique can be used to tag any word sense embed-
dings with synsets from any WordNet-like resource, but
BabelNet is especially well suited in this context due to its
high coverage of different domains, rare senses and multi-
ple languages. The more senses lexical resource contains
the higher the probability that an automatically induced
sense will be linked to a synset.

4. Linking Embeddings to Synsets

Our matching technique takes as input a trained word sense
embeddings model, a set of synsets from a lexical resource
and outputs a mapping from sense embeddings to synsets of
the lexical resource. The method includes four steps. First,
we convert word sense embeddings to a lexicalized repre-
sentation and perform alignment via word overlap. Second
we build a bag-of-word (BoW) representation of synsets.
Third, we build a bag-of-word representation of sense em-
beddings. Finally, we measure similarity of senses and link
most similar vector-synset pairs. Below we present each
step in detail.

"https://github.com/sbos/AdaGram.jl
8http://wacky.ssImit.unibo.it/doku.php?id=corpora

150

— BabelNet
— AdaGram

100+

50

Number of word senses

0 1000 2000 3000

Word

4000 5000

Figure 2: Comparative number of senses in BabelNet and
AdaGram for 4724 frequent words.

4.1. Representation of Synsets

A bag-of-words that represents a synset is constructed of
synset words, glosses, categories assigned to the synset and
captions of images representing the synset. Glosses, cate-
gories and captions are lemmatized and cleaned from stop-
words. For morphological analysis in our experiment we
rely on SpaCy.® A word in a bag-of-words is weighted
with its normalized frequency w € [0;1]: We build fre-
quency dictionary of words coming from synsets, glosses,
categories and captions and simply normalize word counts
by the largest word count.

4.2. Representation of Sense Embeddings

For each sense vector, we build a bag-of-words featuring
the 200 most similar words and their lemmas according to
the AdaGram model using the built-in function for nearest
neighbors computation. Similarity of a sense to its neigh-
bours is used as bag-of-word weight w € [0; 1].

4.3. Linking Sense Representations

We experimented with two strategies that link sense vectors
to synsets: the global threshold and the disambiguation.

4.3.1. Linking via Global Threshold

Let a word have n synsets and m sense vectors each repre-
sented by a bag-of-words. Then, in the first approach, we
would calculate all nxm pairwise similarities between these
senses and link pairs with similarity above certain global
threshold t, where t is the same for all words:

1 if sim(v;, s5) >t

match(v;, s5) = { 0 otherwise

Here sim(v;,s;) is a similarity score between a bag-of-
word representing a sense vector v; and a bag-of-word
representing the synset s;. The similarity between bag-
of-words is calculated with either cosine or overlap. The
global threshold method enables many-to-many mapping
desirable in this context. As exemplified in Table 1, the

*https://spacy.io

2651

Word AdaGramID BabelNetID Sim. AdaGram BoW BabelNet BoW
perl, php, java, smalltalk, ruby, fua, language, programming, python-
) tel, scripting, javascript, bindings, ista, python programming, python3,
python 2 bn:01713224n0.103 binding, programming, coldfusion, python2, level, computer, python-
actionscript, net, . . . istas, python3000, python, . ..
monty, circus, spamalot, python, monty, comedy, monty python,
) magoo, muppet, snoopy, featurette, british, monte, monte python,
python ! bn:01157670n 0.102 disney, tunes, tune, classic, shorts, troupe, pythonesque, foot, artist,
short, apocalypse, . . . record, surreal, terry, . . .
spectacled, unicornis, snake, giant, molurus, indian, boa, tigris, tiger
. caiman, leopard, squirrel, crocodile, python, rock, tiger, indian python,
python 3 bn:00046456n 0.066 horned, cat, mole, elephant, opos- reptile, python molurus, indian rock
sum, pheasant, zebra, . .. python, coluber, bivittatus, . . .
circus, fly, flying, dusk, lizard, moth, lr;?t?:ﬁ Cr?lr;fiy’ rrnn;?g py:ﬁg:
python 4 bn:01157670n 0.063 unicorn, puff, adder, vulture, tyran- ’ ’ python,
troupe, pythonesque, foot, artist,
nosaurus, zephyr, badger, . . .
record, surreal, terry, . . .
monty, circus, spamalot, python, pictures, monty, python monty pic-
) magoo, muppet, snoopy, featurette, tures, limited, company, python
python ! bn:00473212n — 0.060 disney, tunes, tune, classic, shorts, pictures limited, kingdom, picture,
short, apocalypse, . . . serve, director, united, five, . ..
monty, circus, spamalot, python, film, horror, movie, clabaugh,
python | bn:03489893n 0.056 magoo, muppet, snoopy, featurette, richard, monster, century, direct,

disney, tunes, tune, classic, shorts,
short, apocalypse, . ..

snake, python movie, television,
giant, natural, language, for-tv, . ..

Table 1: Result of the mapping of the AdaGram sense embeddings to the BabelNet synsets for the word “python” with
the threshold of 0.05. The AdaGram BoW contains top nearest neighbours in the vectors space, while the BabelNet BoW
contains most frequent words from synset, related words and glosses. This mapping helps to interpret sense vectors linking
them to human-understandable synsets available by the BabelNet ID (c.f. Figure 1).

“Monty Python” sense of the word “python” is repre-
sented with two sense embeddings (AdaGram IDs 1 and
4) and two synsets (BabelNet IDs bn:01157670n and
bn:00473212n).

Sample output of the mapping between sense embeddings
and synsets of the word “python” is presented in Table 1.
Further examples of linking AdaGram embeddings to Ba-
belNet of 4724 frequent words are available online.'?

4.3.2. Linking via Disambiguation

The second linking approach starts with disambiguation of
a synset using the corresponding built-in AdaGram func-
tion, which performs a Bayesian inference based on the
learned model, c.f. (Bartunov et al., 2015). Namely, we
pass a list of words from the bag-of-words to this function
as context of the target word. Next, we decide to link the
assigned sense depending on similarity of either confidence
of disambiguation or overlap of the bag-of-words of v; and
s;. Here again we rely on the global threshold ¢ of these
similarities, but in the second strategy, one vector is linked
to at most one synset.

5. Evaluation

We evaluate our linking techniques with respect to a manual
mapping of senses. In particular, we built an evaluation
dataset for 50 ambiguous words presented in Table 2. More
specifically, we selected words with homonymous senses
i.e. senses with unrelated meanings, such as “python” in
the animal and the programming language senses. Some

10Result of linking of AdaGram sense embeddings to BabelNet
synsets for 4724 frequent words: https://goo.gl/dAN6WSG

of these words, such as “bank” and “plant” are commonly
used in word sense disambiguation evaluations (Navigli et
al., 2007; Manandhar et al., 2010; Jurgens and Klapaftis,
2013); others, like “delphi” or “python” may refer to both
nouns and named entities.

For each of these words, we retrieved all BabelNet and
AdaGram senses. Next, we generated all 3795 possible
matching combinations for these 50 words and annotated
them binarily.

As mentioned above, BabelNet is very fine grained and
contains more senses than AdaGram. Word sense embed-
dings used in our experiments are on the countrary coarse-
grained with at most five senses per word (this is tunable by
the o parameter). Therefore, the corpus-based model can-
not learn a fine-grained polysemic inventory featuring tens
of senses. For instance, AdaGram does not contain separate
senses for “apple fruit”!! and “apple fruit as a symbol”!?
found in BabelNet. Instead, it contains senses that corre-
spond to “apple (computer)” and “apple (fruit)”. That is
why, during annotation, we often positively linked a coarse-
grained AdaGram sense to a more specific BabelNet sense.
The negatively linked senses are those with completely un-
related meanings, such as “apple” in the company and fruit
senses. The final dataset contains 423 positive and 3372
negative sense alignments. '3

http://babelnet.org/synset?word=bn:00005054n
Zhttp://babelnet.org/synset?word=bn:00319426n
Evaluation dataset: https://goo.gl/F2kuBA

2652

ant (3]11), apache (3|19), apollo (3]28), apple (4|15), atom (2|19), bank (4|29), bass (5]19), blizzard (2|9), bosch (3|5), brother (4|24),
canon (5|18), capital (4|28), cassandra (2|20), citizen (4|7), cloud (4|24), cobra (3]34), commercial (5/10), corvette (2|5), delphi (2|10),
focus (5/38), jaguar (4|21), java (4|17), jena (2|8), julia (4|30), lotus (5|23), market (3]13), mouse (5/22), mustang (4|13), network
(4]19), oracle (4|25), organ (5|11), pascal (3]10), plant (5|17), port (4|25), puma (3|19), python (4|17), raspberry (3|8), ruby (4|39), rust
(4|17), sex (5]25), shell (5|33), soul (4]18), spark (4|37), sphinx (2|24), spider (5|24), tiger (4|35), tomcat (2|7), viper (3|24), vladimir
3|11), word (5|17)

Table 2: List of ambiguous words used in the evaluation dataset. Here “ant (3|11)” denotes that the word “ant” has 3
AdaGram senses and 11 BabelNet senses. Each word has at least two homonymous senses, e.g. the word “ant” can denote

an insect sense, but also the Java build tool “Apache Ant”.

1.0

(a) |

0.8

g 0.6
0
o
£

0.4

[— global threshold, cosine (AUC = 0.78)
— random (AUC = 0.11)
0.2

’Lw-

0
80 0.2 0.4 0.6 0.8 1.0
Recall

1.0
(b)
0.8
0.6
— recall
— precision

0.4

0.2

0.10 0.15

Threshold

0.05 0.20

Figure 3: (a) Precision-recall curve of the best matching method global threshold cosine compared to the random mapping.
(b) Precision and recall of the the same method function of the threshold ¢.

Method BoW Similarity AUC
random random 0.11
disambiguation confidence 0.53
disambiguation overlap 0.66
global threshold overlap 0.73
global threshold cosine 0.78

Table 3: Performance of methods for linking AdaGram
sense embeddings to BabelNet synsets on the evaluation
dataset of 50 ambiguous words.

Class Precision Recall F-measure Support
match 0.87 0.42 0.57 423
no match 0.93 0.99 0.96 3372

Table 4: Performance of the best linking method global
threshold cosine on the evaluation dataset of 50 ambiguous
words at the threshold value of 0.05.

6. Results

Table 3 presents key results of our experiments. The base-
line that assigns a random synset to a sense vector has an
area under precision-recall curve (AUC) of 0.11.

The matching by built-in AdaGram disambiguation sounds
attractive, as it relies not only on word overlap, but also
on word similarities encoded in the embeddings. Yet, we

observe that it fails for BabelNet senses that have no cor-
respondence in the corpus-induced senses. AdaGram al-
ways assigns one of the senses from its inventory, and in
such cases provides no meaningful indication of disam-
biguation confidence. The comparably low AUC of 0.53
of the disambiguation, confidence method based on confi-
dence scores of the AdaGram, shows that these scores can-
not be used to robustly rank pairs of candidate senses. Us-
ing the word overlap instead confidence of disambiguation
increases AUC from 0.53 to 0.66.

According to our experiments, the best way to map senses
is simply to calculate cosine between their bag-of-words
and then link vector-synset pairs with the similarity above
certain threshold. This approach yields an AUC of 0.78
(see also Figure 3 (a)). Ranking of sense pairs by overlap
provides slightly worse results with AUC of 0.77, showing
the utility of similarity scores in this task.

Figure 3 (b) depicts dependence of the precision and re-
call from the threshold value ¢. Precision increases with
the value of the threshold and thus a user may select the
value that fits best her use-case. For instance, a ¢ value of
0.05 corresponds to precision of 0.87 and recall of 0.42.
Table 4 provides a breakdown of the precision and recall
scores at the threshold value ¢ of 0.05 for the global thresh-
old method using the cosine similarity.

A relatively low recall of 0.42 at the precision level of 0.87
is caused by two issues. First, some BabelNet synsets have

2653

void bag-of-words as no text is associated with their En-
glish synset. For instance, the sense bn:14200967n of the
word “delphi” and the sense bn:14944150n of the word
“java” have no English definitions (this problem may be
fixed in future releases). Second, some positive vector-
synset pairs are not linked as similarity of their BoW repre-
sentations is below the threshold ¢ of 0.05.

For instance, the BabelNet sense of the word “apple” rep-
resented with the bag-of-words “store, retail, apple store,
stores, chain, apple retail store, applestore, boston,... ” has
a cosine similarity of 0.002 with the AdaGram vector repre-
sented with the BoW “macintosh, hardware, pc, microsoft,
ibm, pcs, dos, emulator, computers, os, beos,...”. Yet, both
these senses are strongly related. Therefore, a major prob-
lem with recall is caused by sparseness of the bag-of-words
representation. Prior research (Bér et al., 2012) suggest
that this limitation can be addressed using word relatedness
measures.

7. Conclusion

Interpretation of clustering results is an inherently difficult
problem. Word sense induction via sense embeddings is
based on clustering of word contexts and therefore also
faces this challenge. We propose a simple yet effective
technique that improves interpretability of embeddings by
linking them to highly human-readable synsets of a lexical
resource, featuring proper definitions, examples of usage,
and so on. The approach is able to link up to 42% of in-
duced senses with precision of 87%. In addition to inter-
pretability, our approach gives rise to hybrid methods (e.g.
word sense disambiguation) that rely on information from
both corpora and lexical resources.

8. Acknowledgements

This research was supported by the Deutsche Forschungs-
gemeinschaft under the project ”Joining Ontologies and
Semantics Induced from Text” (JOIN-T). Thorough com-
ments of Chris Biemann, Martin Riedl, Benjamin Milde
and three anonymous reviewers helped to significantly im-
prove quality of this paper. Besides, I thank Sergey Bar-
tunov for making implementation of the AdaGram avail-
able and for explaining how to operate the system.

9. Bibliographical References

Agirre, E., Martinez, D., Lopez de Lacalle, O., and Soroa,
A. (2006). Evaluating and optimizing the parameters
of an unsupervised graph-based wsd algorithm. In Pro-
ceedings of TextGraphs, pages 89-96, NY, USA.

Bir, D., Biemann, C., Gurevych, 1., and Zesch, T. (2012).
Ukp: Computing semantic textual similarity by combin-
ing multiple content similarity measures. In Proceedings
of the First Joint Conference on Lexical and Compu-
tational Semantics-Volume 1: Proceedings of the main
conference and the shared task, and Volume 2: Proceed-
ings of the Sixth International Workshop on Semantic
Evaluation, pages 435-440. Association for Computa-
tional Linguistics.

Baroni, M. and Lenci, A. (2010). Distributional memory:
A general framework for corpus-based semantics. Com-
putational Linguistics, 36(4):673-721.

Baroni, M., Bernardini, S., Ferraresi, A., and Zanchetta, E.
(2009). The wacky wide web: a collection of very large
linguistically processed web-crawled corpora. Language
resources and evaluation, 43(3):209-226.

Bartunov, S., Kondrashkin, D., Osokin, A., and Vetrov, D.
(2015). Breaking sticks and ambiguities with adaptive
skip-gram. arXiv preprint arXiv:1502.07257.

Biemann, C. and Riedl, M. (2013). Text: Now in 2D! a
framework for lexical expansion with contextual similar-
ity. Journal of Language Modelling, 1(1):55-95.

Biemann, C. (2010). Co-occurrence cluster features for
lexical substitutions in context. In Proceedings of the
2010 Workshop on Graph-based Methods for Natural
Language Processing, TextGraphs-35, pages 55-59, Upp-
sala, Sweden.

Bordes, A., Weston, J., Collobert, R., and Bengio, Y.
(2011). Learning structured embeddings of knowledge
bases. In Proc. AAAI, San Francisco, CA, USA.

Brown, S. W. (2008). Choosing sense distinctions for wsd:
Psycholinguistic evidence. In In Proceedings of Asso-
ciation for Computational Linguistics, pages 249-252,
Columbus, Ohio, USA. Association for Computational
Linguistics.

Camacho-Collados, J., Pilehvar, M. T., and Navigli, R.
(2015). A unified multilingual semantic representation
of concepts. In Proceedings of Association for Compu-
tational Linguistics, Beijing, China.

Erk, K., McCarthy, D., and Gaylord, N. (2009). Investi-
gations on word senses and word usages. In ACL, pages
10-18, Suntec, Singapore.

Gurevych, 1., Eckle-Kohler, J., Hartmann, S., Matuschek,
M., Meyer, C. M., and Wirth, C. (2012). Uby: A large-
scale unified lexical-semantic resource based on Imf.
In In Proceedings of EACL, pages 580-590, Avignon,
France.

Hanks, P. (2013). Lexical analysis: norms and exploita-
tions. The MIT Press.

Huang, E. H., Socher, R., Manning, C. D., and Ng, A. Y.
(2012). Improving word representations via global con-
text and multiple word prototypes. In In Proceedings of
ACL, pages 873-882, Jeju Island, Korea.

Jurgens, D. and Klapaftis, I. (2013). Semeval-2013 task
13: Word sense induction for graded and non-graded
senses. In Second joint conference on lexical and com-
putational semantics (* SEM), volume 2, pages 290-299.

Kilgarriff, A., Baisa, V., Busta, J., Jakubicek, M., Koviaf, V.,
Michelfeit, J., Rychly, P., and Suchomel, V. (2014). The
sketch engine: Ten years on. Lexicography, 1(1):7-36.

Li, J. and Jurafsky, D. (2015). Do multi-sense embeddings
improve natural language understanding? In In Proceed-
ings of the Conference on Empirical Methods in Natural
Language Processing, EMNLP 2015, pages 1722—1732,
Lisbon, Portugal.

Manandhar, S., Klapaftis, I. P.,, Dligach, D., and Pradhan,
S. S. (2010). Semeval-2010 task 14: Word sense induc-
tion & disambiguation. In Proceedings of the 5th inter-
national workshop on semantic evaluation, pages 63—68.
Association for Computational Linguistics.

McCarthy, D., Koeling, R., Weeds, J., and Carroll, J.

2654

(2004). Finding predominant word senses in untagged
text. In Proceedings of the 42nd Meeting of the Associa-
tion for Computational Linguistics (ACL’04), Main Vol-
ume, pages 279-286, Barcelona, Spain, July.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013).
Efficient estimation of word representations in vector
space. Workshop at International Conference on Learn-
ing Representations (ICLR).

Miller, G. A. (1995). Wordnet: a lexical database for en-
glish. Communications of the ACM, 38(11):39-41.

Navigli, R. and Ponzetto, S. P. (2010). Babelnet: Build-
ing a very large multilingual semantic network. In ACL,
pages 216-225, Uppsala, Sweden.

Navigli, R., Litkowski, K. C., and Hargraves, O. (2007).
Semeval-2007 task 07: Coarse-grained english all-words
task. In Proceedings of the 4th International Workshop
on Semantic Evaluations, pages 30-35, Prague, Czech
Republic. Association for Computational Linguistics.

Neelakantan, A., Shankar, J., Passos, A., and McCallum,
A. (2014). Efficient non-parametric estimation of mul-
tiple embeddings per word in vector space. In Proceed-
ings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1059—
1069, Doha, Qatar, October. Association for Computa-
tional Linguistics.

Pennington, J., Socher, R., and Manning, C. (2014).
Glove: Global vectors for word representation. In Pro-
ceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 1532—
1543, Doha, Qatar, October. Association for Computa-
tional Linguistics.

Rothe, S. and Schiitze, H. (2015). Autoextend: Extend-
ing word embeddings to embeddings for synsets and lex-
emes. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1793—-1803,
Beijing, China, July. Association for Computational Lin-
guistics.

Schiitze, H. (1998). Automatic Word Sense Discrimina-
tion. Computational Linguistics, 24(1):97-123.

Tian, F., Dai, H., Bian, J., Gao, B., Zhang, R., Chen, E.,
and Liu, T.-Y. (2014). A probabilistic model for learning
multi-prototype word embeddings. In COLING, pages
151-160, Dublin, Ireland.

2655

