
A Neural Lemmatizer for Bengali

Abhisek Chakrabarty, Akshay Chaturvedi, Utpal Garain
CVPR Unit, Indian Statistical Institute
203 B.T. Road, Kolkata-700108, India

abhisek0842@gmail.com, thegphenomenon@gmail.com, utpal@isical.ac.in

Abstract
We propose a novel neural lemmatization model which is language independent and supervised in nature. To handle the words in a
neural framework, word embedding technique is used to represent words as vectors. The proposed lemmatizer makes use of contextual
information of the surface word to be lemmatized. Given a word along with its contextual neighbours as input, the model is designed
to produce the lemma of the concerned word as output. We introduce a new network architecture that permits only dimension specific
connections between the input and the output layer of the model. For the present work, Bengali is taken as the reference language. Two
datasets are prepared for training and testing purpose consisting of 19, 159 and 2, 126 instances respectively. As Bengali is a resource
scarce language, these datasets would be beneficial for the respective research community. Evaluation method shows that the neural
lemmatizer achieves 69.57% accuracy on the test dataset and outperforms the simple cosine similarity based baseline strategy by a
margin of 1.37%.

Keywords: Bengali, lemmatization, neural network

1. Introduction
In this article, we propose a novel neural network based
lemmatization method and show its effectiveness for a
highly inflected language namely, Bengali. Bengali belongs
to the group of major Indic languages and currently finds
its place among the top 10 most popular languages in the
world. The very first hurdle in computational processing of
major Indic languages is the presence of various morpho-
logical variants of root words in the text. Existence of mor-
phological richness in those languages creates problems for
developing several text processing tasks like Natural Lan-
guage Processing (NLP), Information Extraction (IE), In-
formation Retrieval (IR) etc. For IR, stemming serves the
purpose well (Majumder et al., 2007; Paik and Parui, 2011;
Paik et al., 2011a; Paik et al., 2011b; Paik et al., 2013) but
where semantic processing is needed (e.g. Word Sense Dis-
ambiguation (WSD), Machine Translation (MT) etc.), there
lemmatization stands as a mandatory pre-processing mod-
ule. The role of a lemmatizer is to map a surface word in a
context to its root form. In the lexical resources, the roots
of the language are listed with their syntactic and semantic
descriptions. Hence, determining the appropriate lemma is
crucial for knowing the meaning or other linguistic proper-
ties of a word in a raw text.

1.1. State of the Art
So far, there has been a little research conducted on
developing efficient lemmatization algorithms for Ben-
gali (Faridee et al., 2009; Loponen et al., 2013; Bhat-
tacharyya et al., 2014). The Bengali morphological ana-
lyzer built by Faridee et al. (2009) is a rule based one
and capable of lemmatizing only colloquial words in the
language. Also, the lemmas for verbs produced by their
method are basically stems, and consequently they can-
not be linked to standard dictionaries. The work by Lo-
ponen et al. (2013) was primarily targeted for improving
IR performance. Bhattacharyya et al. (2014) proposed a
lemmatization technique for Indic languages, that initially

organizes all dictionary root words in a trie structure and
for an input surface word, produces a set of prospective
roots from the trie. If the obtained set contains more than
one candidate, some heuristics are applied to select the ap-
propriate lemma from them. But, this technique does not
take the contextual information of the word to be lemma-
tized into account as well as its evaluation strategy is non-
deterministic. Recently, we developed a lemmatizer for
Bengali (Chakrabarty and Garain, 2016) that, given a sur-
face word, selects a set of potential roots from dictionary
using the string distance measure defined by Majumder et
al. (2007) and then finds the lemma from them using ma-
nipulation of frequent suffixes found in the language. How-
ever, this approach does not consider the named entities for
lemmatization and depends on a list of valid suffixes. Ad-
ditionally, there are two prerequisites of the algorithm: 1.
a part of speech tagger in the language 2. a sense inven-
tory of the root words containing their semantic definitions.
Apart from these, there has been no significant research on
lemmatization for Bengali.

1.2. Our Contribution
Recent advances in NLP research are mostly governed by
the statistical machine learning (ML) based algorithms. To
tackle the lemmatization problem from ML paradigm, the
following challenges appear. If we consider it as a classifi-
cation task, then the number of classes equals to the num-
ber of roots present in the language. As there are around
50k roots in Bengali, so the very first challenge is to de-
sign an efficient classifier for this huge classification prob-
lem. Next, preparing the training data to train the classifier
needs extensive manual labour. In this present work, we
rather model lemmatization as a task of lemma transduc-
tion. The problem is formulated as follows: given an input
surface word along with the context, whether it is possible
to generate the appropriate lemma of the concerned word.
We employ neural network to achieve the objective. For
handling the words in a neural net based framework, trans-

2558



forming them in numerical form is obvious. So, the concept
of distributed representation of words as vectors (Mikolov
et al., 2013) is used to build our model. We use the FIRE
Bengali news corpus1, Wikipedia and Tagore’s short sto-
ries collection2 together to obtain the vector embeddings.
Given a word along with its context represented in an array
of vectors as input, a novel network architecture is designed
in such a way so that the output vector should correspond
to the appropriate lemma of the input surface word. Ini-
tially the network is trained on a set of <surface word with
context, lemma> mapped pairs to learn its parameters and
then the trained model is tested to find the lemma of un-
known surface words. Throughout the experiment, we set
3 as the context size i.e. combination of the previous word,
the surface word and the next word together constitutes the
context. However, the proposed model can be extended to
support arbitrary context length.
The paper is organized as follows. In the next section,
we describe the neural lemmatization model. Method of
preparing the datasets and experimental results are provided
in Section 3. Section 4 concludes the paper.

2. The Proposed Model
Our proposed model is a feedforward neural network as
shown in Figure 1. All words are handled by their cor-
responding vector embeddings and we use the word2vec
tool (Mikolov et al., 2013) to obtain the 200-dimensional
word vectors. For training of the recurrent neural model
of word2vec, we use continuous bag of words (cbow) ar-
chitecture and in the output layer of the model, negative
sampling is used.

Figure 1: Architecture of the proposed neural lemmatiza-
tion model.

Consider n training samples present in the training set and
(w1

i , w
2
i , w

3
i ) be the ith training sample representing the re-

spective vectors of the preceding word, the target surface
word and the succeeding word. Let oi be the output for the
ith sample. For an arbitrary word vector w, its jth dimen-
sion is denoted by w(j). The input layer of the model ac-

1http://fire.irsi.res.in/fire/data
2http://www.rabindra-rachanabali.nltr.org

cepts an array of three contextual word vectors and hence,
consists of total 600 nodes and the output layer contains to-
tal 200 nodes corresponding to the transduced lemma vec-
tor. The network architecture is designed in a novel way.
Instead of making all to all connections between the in-
put and the output layer, we propose a dimension specific
architecture of the network. Since every dimension of a
word vector preserves a specific characteristic of the cor-
responding word, so we restrict that a particular dimension
of the output would be attributed only from that same re-
spective dimensions of the three input word vectors. That
is, ∀ j = 1, . . . , 200, oi(j) is influenced by w1

i (j), w
2
i (j)

and w3
i (j) only. So, there are total 600 (200 × 3) synap-

tic connections present in the network. Let θ ∈ R200×3

be the weight matrix where θ[j, k] is the weight of the con-
nection connecting oi(j) and wk

i (j) ∀ j = 1, . . . , 200 and
∀ k = 1, 2, 3. Here we use batch mode learning to obtain
the optimum θ. To make the model work as a transducer,
instead of choosing a bounded function like sigmoidal or
hyperbolic tangent, we select the identity function for acti-
vation i.e.

oi(j) =
3∑

k=1

wk
i (j)× θ[j, k], ∀ j = 1, . . . , 200. (1)

Figure 1 shows the schematic diagram of the proposed net-
work model. We train our model in the following way. Our
main objective is to increase the cosine similarity between
oi and the desired word vector for ith training example, say
di. di corresponds to the vector of that particular dictionary
root word which is the appropriate lemma for ith training
instance. We define the cost function for the ith training
example Ji as follows

Ji = 1− cosine sim(di, oi) (2)

where cosine sim(di, oi) denotes the cosine of the angle
between di and oi. The overall cost function J is the aver-
age of Ji over all n training examples. From equation (1)
and (2) it can be derived that for the ith training example,

∂Ji
∂θ[j, k]

= − wk
i (j)

‖di‖‖oi‖

[
di(j)−

di · oi
‖oi‖2

(oi(j))

]
∀ j = 1, . . . , 200 ; ∀ k = 1, 2, 3

(3)

where di · oi denotes the dot product between di and oi
and ‖·‖ denotes the Euclidean norm operation. We min-
imise the cost function J using batch gradient descent with
a learning rate of 0.1. θ[j, k] for the next iteration is updated
by the following rule.

θnext[j, k] = θprevious[j, k]−
0.1

n

n∑
i=1

∂Ji
∂θ[j, k]

(4)

The process to obtain the lemma of a test sample is as
follows. If there are m root words r1, r2, . . . , rm present in
the dictionary and o is the output vector of the neural model
for the input test sample, then choose ri as the lemma where
ri ← argmax

rj

cosine sim(vec(rj), o) ∀ j ∈ {1, . . . ,m}.

The function vec is defined as follows. Taking a word as an
argument, vec returns the corresponding embedded vector.

2559



Word Context Lemma
‘তার’/taar (i) ইেলকিïক/electric ‘তার’/taar সুপিরবাহী/suparibaahii ‘তার’/taar

(ii) এটা/eTaa ‘তার’/taar িজিনস/jinis ‘তাহার’/taahaar
‘কর’/kara (i) কাজ/kaaj ‘কর’/kara তুিম/tumi ‘করা’/karaa

(ii) তব/taba ‘কর’/kara পśব/pallaba ‘কর’/kara
‘কমল’/kamal (i) সুগŅী/sugandhii ‘কমল’/kamal পুŦ/puShpa ‘কমল’/kamal

(ii) দাম/daam ‘কমল’/kamal িজিনেসর/jiniser ‘কমা’/kamaa

Table 1: Examples showing the impact of context for lemmatization.

3. Experimentation
3.1. Datasets Preparation
For training purpose, a Bengali dataset is developed con-
taining 19, 159 samples involving minimal human inter-
vention. To evaluate the lemmatizer, a test dataset is also
manually built having 2, 126 test instances, each of which
consists of a surface word accompanied with its contextual
neighbours. In Bengali, considering the context of a surface
word is an important factor for lemmatization. Because,
on varying contexts, a particular word may originate from
different roots. Table 1 shows examples of three surface
words (‘তার’/taar, ‘কর’/kara and ‘কমল’/kamal), two differ-
ent contexts for each of them and the appropriate lemmas
of the surface words for the respective contexts. Depend-
ing on the contexts, the lemmas get changed reflecting the
impact of contextual information on lemmatization.
The process of creating the training dataset consists of
two parts: 1. generating the training samples for which
transformation rules from roots to inflections follow reg-
ular patterns (e.g. where simple addition/subtraction of
a frequent suffix to/from a root produces a surface word)
2. generating the irregular samples for which no well-
formed transformation rule works. In Bengali, usually a
root word and its morphological variants are both ortho-
graphically and semantically similar (e.g. root; inflec-
tions: ‘করা’/karaa; ‘করার’/karaar, ‘করলাম’/karlaam). In
cases of irregular samples, only semantic similarity ex-
ists between a lemma and its variants (e.g. root; inflec-
tions: ‘থাকা’/thaakaa; ‘িছেল’/chhile, ‘িছল’/chhila). To gen-
erate the regular samples, we follow the rationale that for
suffixing languages like Bengali, “morphologically-related
words typically share a long common prefix” (Paik et al.,
2011a). Initially, all the roots having length3 greater than
or equal to 6, are mined from the Bengali digital dictionary
available with the Chicago university4. Next, for every root
word, its 10 nearest words in the vector space are consid-
ered (cosine similarity is taken as the distance measure) and
among them, only those are selected for which the overlap-
ping prefix length with the root is atleast 6. Following the
process, we are able to generate a set of <token; lemma>
mapped pairs which mutually have very high syntactic and
semantic association and thus, these mappings are mostly
context invariant. To generate the contexts of the inflec-
tions in the mapped set, we search for their instances in the

3Length of a word is measured in terms of the number of uni-
code character/s present in that word.

4http://dsal.uchicago.edu/dictionaries/list.html

Accuracy
Proposed Lemmatizer 69.57%
Baseline Method 68.20%

Table 2: Lemmatization accuracy.

FIRE corpus and when an instance is found, the surround-
ing context is extracted. There are 9, 536 regular samples
in the training dataset. To generate the irregular samples, at
first 120 different irregular word forms are crafted and out
of them, those ones which have association with fixed lem-
mas irrespective of context, are spotted and their contexts
are randomly picked up from the FIRE corpus. The particu-
lar word forms that have varying lemmas depending on the
context, are handled specially and their combinations with
different context-lemma pairs are manually arranged. In
this way, we get 9,623 irregular samples. Both the regular
and the irregular samples are put in the training data with
almost equal proportion to make the dataset balanced. We
prepare the test dataset by taking samples randomly from
the FIRE corpus. Each sample in the test data consists of 3
adjacent words appearing in the text where the middle one
is the target word for lemmatization. For all the samples,
the respective gold lemmas of the target words are also pro-
vided.

3.2. Results
We use 10-fold cross validation on the training data to ob-
tain the optimum θ. The proposed lemmatization method is
evaluated on the test dataset by computing the direct accu-
racy i.e. the fraction of the total number of surface words
which are correctly lemmatized. To choose a suitable base-
line, we calculate the respective cosine similarities of the
embedded vector of every surface word in the test dataset
with the vectors of all dictionary root words and select that
root as the lemma for which the corresponding vector pos-
sesses maximum similarity with the surface word vector.
Table 2 presents the experimental results. Our proposed
neural lemmatizer beats the simple cosine similarity based
baseline by a 1.37% margin out of 2, 126 instances i.e. 29
more instances are correctly lemmatized by our method.

4. Conclusion
In this article, a novel neural model for lemmatization is
presented and it is evaluated on Bengali. Due to the super-
vised nature of the proposed method, two Bengali datasets
have been prepared for training and testing purpose. As

2560



Bengali is a resource poor language, these two datasets
will help to advance the research in Bengali NLP. Al-
though we agree that the present work needs a token-lemma
tagged training corpus which is also the requirement of the
state of the art lemmatization algorithms (Gesmundo and
Samardžić, 2012; Müller et al., 2015) for languages like
English, Spanish, German, Hungarian, Czech etc. but port-
ing them for the inflected Indic languages is a major chal-
lenge. The modular log linear model proposed by Müller et
al. (2015) sets the new state of the art in token-based statis-
tical lemmatization but it needs sufficiently large training
corpora. Also, exploring the suitable features to be inte-
grated into their model for lemmatizing Indic languages
is another research issue. Regarding the architecture of
our proposed model, we could have used a more compli-
cated network topology exploiting the inter-relationships
among neighbouring dimensions of the word vectors, but
that would require larger training data. In addition, it will
need considerably more training time. The future direction
of this work would drive us to compare the performance of
the proposed lemmatization method with the state of the art
lemmatization algorithms as well as investigate the impact
of different network architectures on lemmatization accu-
racy.

5. Acknowledgement
We sincerely acknowledge Arjun Das for his support in
preparing the Bengali resources.

6. Bibliographical References
Bhattacharyya, P., Bahuguna, A., Talukdar, L., and Phukan,

B. (2014). Facilitating multi-lingual sense annotation:
Human mediated lemmatizer. In Global WordNet Con-
ference.

Chakrabarty, A. and Garain, U. (2016). Benlem (a bengali
lemmatizer) and its role in wsd. ACM Trans. Asian Low-
Resour. Lang. Inf. Process., 15(3):12:1–12:18, February.

Faridee, A. Z. M., Tyers, F. M., et al. (2009). Development
of a morphological analyser for bengali. In Proceed-
ings of the First International Workshop on Free/Open-
Source Rule-Based Machine Translation, pages 43–50.
Universidad de Alicante. Departamento de Lenguajes y
Sistemas Informáticos.

Gesmundo, A. and Samardžić, T. (2012). Lemmatisation
as a tagging task. In Proceedings of the 50th Annual
Meeting of the Association for Computational Linguis-
tics: Short Papers-Volume 2, pages 368–372. Associa-
tion for Computational Linguistics.

Loponen, A., Paik, J. H., and Järvelin, K. (2013). Uta
stemming and lemmatization experiments in the fire ben-
gali ad hoc task. In Multilingual Information Access in
South Asian Languages, pages 258–268. Springer.

Majumder, P., Mitra, M., Parui, S. K., Kole, G., Mitra, P.,
and Datta, K. (2007). Yass: Yet another suffix stripper.
ACM Trans. Inf. Syst., 25(4):18:1–18:20, October.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. (2013). Distributed representations of words
and phrases and their compositionality. In Advances
in neural information processing systems, pages 3111–
3119.

Müller, T., Cotterell, R., Fraser, A., and Schütze, H.
(2015). Joint lemmatization and morphological tagging
with lemming. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing,
pages 2268–2274, Lisbon, Portugal, September. Associ-
ation for Computational Linguistics.

Paik, J. H. and Parui, S. K. (2011). A fast corpus-based
stemmer. ACM Transactions on Asian Language Infor-
mation Processing (TALIP), 10(2):8:1–8:16, June.

Paik, J. H., Mitra, M., Parui, S. K., and Järvelin, K.
(2011a). Gras: An effective and efficient stemming al-
gorithm for information retrieval. ACM Trans. Inf. Syst.,
29(4):19:1–19:24, December.

Paik, J. H., Pal, D., and Parui, S. K. (2011b). A novel
corpus-based stemming algorithm using co-occurrence
statistics. In Proceedings of the 34th international ACM
SIGIR conference on Research and development in Infor-
mation Retrieval, pages 863–872. ACM.

Paik, J. H., Parui, S. K., Pal, D., and Robertson, S. E.
(2013). Effective and robust query-based stemming.
ACM Trans. Inf. Syst., 31(4):18:1–18:29, November.

2561


