NNBIlocks: A Deep Learning Framework for Computational Linguistics Neural
Network Models

*Frederico Tommasi Caroli, *Jodo Carlos Pereira da Silva, “*André Freitas, ~“Siegfried Handschuh

“Universidade Federal do Rio de Janeiro, ““Universitit Passau
“Rio de Janeiro, ““Passau
ftcaroli @ gmail.com, jcps @dcc.uftj.br, andre.freitas @uni-passau.de, siegfried.handschuh @uni-passau.de

Abstract
Lately, with the success of Deep Learning techniques in some computational linguistics tasks, many researchers want to explore new
models for their linguistics applications. These models tend to be very different from what standard Neural Networks look like, limiting
the possibility to use standard Neural Networks frameworks. This work presents NNBlockd a new framework written in Python to
build and train Neural Networks that are not constrained by a specific kind of architecture, making it possible to use it in computational

linguistics.

Keywords: Deep Learning, Artificial Neural Network, Computational Linguistics

1. Introduction

Neural Networks (NN) are a kind of statistical learning
methods that has been gaining a lot of attention with the
appearance of a variety of techniques that make possible
the so-called Deep Learning (DL). DL happens when a
statistical model, normally a NN, learns layers of high-
level abstractions in the data. This idea became popular
in 2006(Hinton et al., 2006), but just recently this kind of
learning has being applied successfully in computational
linguistics. This is partially driven by the fact that linguis-
tics features are highly complex and tend to not fit in tra-
ditional NNs architectures. The most notable example is
Multilayer Perceptron, that cannot handle variable sized in-
puts.

With the creation of new kinds of NNs architectures, re-
searchers can fit their linguistics tasks and experiment with
them, but this comes with a great load of implementing
the model and training it from scratch, since standard NNs
frameworks are not always ready to deal with architectures
that are very different from the standard ones applied for
other tasks.

NNBIlocks is a Deep Learning framework written in Python
that aims to solve this problem, being very expandable and
easy to use, while providing state-of-the-art training tech-
niques without a single modification to the model. The easy
training of NN is achieved by using Theano(Bergstra et al.,
2010), a math expression compiler and automatic symbolic
derivation framework, as workhorse of NNBlocks. This
also gives NNBIlocks the ability to run on GPU without any
modifications to the code. NNBlocks makes it possible to
implement and test NNs that are very different from stan-
dard ones.

The first section presents some related work, the second
section discusses NNs architectures used for computational
linguistics tasks, the third section presents the framework
and the fourth concludes discussing how NNBlocks can
achieve the previously discussed architectures.

2. Related Work

Some Deep Learning frameworks with variable degrees of
flexibility exists. In this section we will review some of

them and discuss what points could be improved.

The first framework we will talk about is Lasagnell]
This framework, like others, has an approach similar to
NNBIlocks, in which processing blocks are connected with
each other to create a complete NN. This framework is able
to build a complex processing graph with its blocks and
is somewhat easy to be extended with new blocks. The
main flaw in this framework is the overexposure to Theano
mechanisms. Some user wanting to use the framework is
obligated to learn how Theano works too, which can be
time costly. The framework also lacks ways to easily han-
dle variable sized data and a Recursive NN implementation.
Lasagne is probably the most similar work to NNBlocks.
Another framework normally used is ChainerE] This frame-
work has different objectives than NNBlocks. It is not made
to be easily extended. It provides fast implementations to
known architectures and is easy to use. NNBlocks is differ-
ent in the sense that is made to be flexible enough to be eas-
ily extended. A framework similar to Chainer is Torch7E]
It is similar in the sense that is made to be easy to use and
fast, but not flexible and extendable.

One final framework that is worth mentioning is Google’s
TensorFlow[] This framework is similar to Theano and has
all of the same objectives. The problem with using Tensor-
Flow directly is that much of the implementation work for
NNs will still be necessary. The advantages of this frame-
work is that is easier to use than Theano and is made to
run on distributed environments. One thing that could be
considered as future work for NNBlocks is the usage of
TensorFlow as an alternative workhorse.

3. Linguistics Neural Network Models

Most times the first thing noticed when trying to use NNs in
linguistics tasks is that the standard Multilayer Perceptron
NN (Figure [I) cannot handle variable sized inputs. This
limits greatly its ability to deal with things like sentences,

1http://lasagne.readthedocs.org/en/
latest/

“http://chainer.org/

*http://torch.ch/

*https://www.tensorflow.org/

2081

http://lasagne.readthedocs.org/en/latest/
http://lasagne.readthedocs.org/en/latest/
http://chainer.org/
http://torch.ch/
https://www.tensorflow.org/

Input Qutput

Input Layer Hidden Layers Qutput Layer

Figure 1: Multilayer Perceptron

Qutput

. . _______ Corﬁzgﬂrion

Inputs

Figure 2: Recursive Neural Network

that are highly variable in size. Other models, such as the
Recursive NN (Figure (Goller and Kuchler, 1996) finds
success dealing with parse trees of sentences naturally. Al-
though the latter model found its place in linguistics tasks, it
is rarely implemented in NNs frameworks. One framework
that implements a variation of this architecture is DL4Jf]
Here we present some popular architectures for NNs in
computational linguistics, explaining briefly how they work
and what kind of results they achieve.

3.1. Continuous Bag-of-Words

The Continuous Bag-of-Words (CBOW)(Mikolov et al.,
2013)) is a model for estimating continuous representation
of words, often called word vectors. This neural network
has as input C' one-hot vectors of size |V'|, where C is the
context window size and V' is the vocabulary. The output
of this NN is another vector of size |V].

The objective of this model is to predict:

P(wt|wt7C7 Wt—C41y oeey Wi—1, W41y ooy W C—1, wt+c)

where w; are words, represented as one-hot vectors in the
model. In other words, the model tries to determine the
probability of the occurrence of a word given a context win-
dow. It does it by first applying a projection layer that aver-
ages the input vectors and feeds this average to D neurons,

Shttp://deeplearningdi.orqg/
recursiveneuraltensornetwork.html

Qutput

|" e
N m}k
=] =] =] e
L
~
Input

Figure 3: Recurrent Neural Network

D being the size of the wanted word vectors:

1 C C
h = %W(; We—q + ;wtﬂ-)

where W is the weight matrix for the D neurons. Next the
h vector is fed to a Softmax classifier that gives the output
probabilities.

After training the model with the objective of predicting a
word given its context, the matrix W has |V| column vec-
tors that capture contextual information about each word
in the vocabulary. These vectors, the word vectors, can be
used as features for other tasks that require semantic and
syntactic information about words.

3.2. Recursive Neural Network

Recursive NN (Figure[2) uses a binary tree structure to map
its variable size input to a single output. This tree structure
is great for using parse trees of sentences and word vectors
as leafs. The model recursively applies a composition func-
tion following the tree structure. This kind of NN has great
results in compositionality tasks. The simplest Recursive
NN is the one where a parent vector p is

p=c(W [Cl] +0b) (1)
C2

where ¢ and ¢y are child vectors, W is a weight matrix,
b is a bias vector and ¢ is an activation function, e.g. the
sigmoid function. The result of this recursive process, the
last parent vector, can then be used as a semantic feature
of the sentence. These kind of compositional vectors have
great results in parsing(Socher et al., 2013a), paraphrase
detection(Socher et al., 2011), entities relationship classi-
fication(Socher et al., 2012)), sentiment detection(Socher et
al., 2013b) and more.

Normally, the simple composition function in is not
enough to fully capture semantic relationships between
words or phrases. One Recursive NN that tries to overcome
this is the Recursive Neural Tensor Network(Socher et al.,
2013b). This Recursive NN uses layers of a tensor V' to
compose each dimension of the parent vector.

3.3. Recurrent Neural Network

Recurrent NNs (Figure [3)), just like the Recursive NN, can
handle variable sized inputs. The idea behind this kind of

2082

http://deeplearning4j.org/recursiveneuraltensornetwork.html
http://deeplearning4j.org/recursiveneuraltensornetwork.html

network is to keep some kind of memory of previous re-
sults as features for the next input. And just like the Recur-
sive NN, this NN is a good way to capture semantic aspects
of sentences. This kind of network has great results with
language models(Mikolov, 2012)), compositionality(Le and
Zuidema, 2015)) and more.

The simplest case for Recurrent NN is when the recurrence
function is:

ht = O'(Whht_l + Wr.’)ﬁt + b)

where W}, and W, are weight matrices, h;_; is the re-
sult of the previous recurrence and z; is the current in-
put. Other more complicated recurrence functions exists,
the Long Short Term Memory(Hochreiter and Schmidhu-
ber, 1997) being a particularly popular choice.

4. NNBlocks

Two things that all of models presented above have in com-
mon are: (a) they have some very different aspects from
common Multilayer Perceptrons and (b) they all have a
lot of architectural variations depending on the task. This
makes these kinds of models very hard to be served by NNs
frameworks, because such frameworks cannot implement
an architectural variation just for the sake of a single task.

NNBIlocks deals with these problems by serving modular
operations of the right complexity for computational lin-
guistics and freedom to combine these operations in a lot
of ways. NNBlocks does this while providing simple ways
to extend the framework’s operations in few lines of code.
How NNBIlocks achieves this is described in this section.

4.1. Models

NNBIlocks builds NNs architectures using objects that ex-
tends the class Model. This class represents the NNs oper-
ations discussed previously. These basic blocks will have
their outputs connected to another Model’s inputs. Basi-
cally anything that has any number (possibly 0) of inputs
and outputs in the network is a Model.

A Model can also have any number of optimizable param-
eters too. These are normally connections’ weights, but it
can be anything that plays a role in the network’s computa-
tion.

NNBIlocks comes with some out-of-the-box models, some
of them:

o Input layer
e Perceptron layer
e Softmax layer

e Recurrent and Recursive NNs — These are highly cus-
tomizable versions of the simple standard Recurrent
and Recursive NN, as we shall see.

e Convolutional NN
e LSTM recurrence

And if the already implemented Models are not enough for
a wanted architecture, as in any realistic case, NNBlocks
provides a nice way of creating a custom Model without

PerceptronLayer PerceptronLayer

InputLayer

00000
00000
00000

=)
2
PerceptronLayer
—
MeanSquareError
InputLayer

Figure 4: Connecting Models

the need of extending the Model class. The next example
shows how to create and connect a Model that simply mul-
tiplies a number by 2.

import nnb

#Function to be turned into a model
times_2 = lambda x: 2 % x

#Blocks

X = nnb.InputLayer (ndim=0)

TIMES2 = nnb.CustomModel (fn=times_2)
MODEL = X | TIMES2

#Compile and test
f = MODEL. compile ()
print ’2_times.2:.’
#2 times 2: 4.0

+ str(f(2))

4.2. Connecting Models

With NNBIlocks, the models can be combined in any way
wanted. Consider the architecture presented in Figure 4]
where an input X is fed to a Multilayer Perceptron, then
the results are fed to a MeanSquareError Model that
computes the mean square error between the results and
another input Y. Such architecture can be easily achieved
with few lines of code just by using Horizontal Joins, where
a model’s outputs are connected directly in another model’s
input, and Vertical Joins, where a model’s output is split in
two or two model’s outputs are joined in the next model.
The exact way these models connect can be viewed at the
framework’s website.

import nnb

#Declare blocks

X = nnb.InputLayer(ndim=1, name="X")

L1 = nnb.PerceptronLayer (insize=INP_SIZE ,
outsize=HIDI1_SIZE)

L2 = nnb.PerceptronLayer(insize=HID1_SIZE,
outsize=HID2_SIZE)

L3 = nnb.PerceptronLayer (insize=HID2_SIZE,
outsize=HID3_SIZE)

Y = nnb.InputLayer(ndim=1, name="Y")

E = nnb.cost.MeanSquareError ()

2083

#Connect blocks
NN =X | L1 | L2 | L3
COST = (NN & Y) | E

4.3. Training

After building the architecture, training can take place us-
ing the TrainSupervisor and one of NNBlocks’ out-
of-the-box trainers, some of them being:

o SGD trainer
e Adagrad trainer
e Momentum-based SGD

Training can also be customizable with custom evaluation
metrics and custom procedures that can plot, adjust training
parameters at run-time and set custom stopping conditions.
The following example continues where the previous left
off.

TRAINER = nnb.SGDTrainer (model=COST,
learning_rate =0.1)

SUP = nnb. TrainSupervisor (trainer=TRAINER,
plot=True,
dataset=DATASET,

eval_dataset=EV_DATASET,

batch_size =20,
epochs_num=100)

SUP. train ()

4.4. Models Inside Models

As noted above, the Recurrent and Recursive NNs are a
special kind of NN Model. This is because they use another
Model to perform every step of the recurrence / composi-
tion. That gives a lot of flexibility to the models.

Suppose you want the recurrence of a Recurrent NN to
be a simple multilayer perceptron that takes the previous
output and the current word vector concatenated as inputﬁ
Building this recurrence function and passing to the Recur-
rent NN is as simple as building any other architecture in
NNBIlocks.

These Models inside the recurrence / composition can have
every feature an outer Model has, as they are no different
than any other Model.

4.5. Computational Linguistic Utilities
Since NNBlocks is focused on computational linguistics
neural models, there are some utilities that comes with it:

e A WordVecsHelper to read word vectors from a
file or initialize them randomly from a tokenized text.

e A PennTreeBank file format parser.

e A PennTreeBank tree node object that extracts fea-
tures from parsed sentences, so they can be fed in a
Recursive NN.

NNBIlocks is still in development and more tools should be
added in the future.

8This recurrence could be way more complicated, but for the
sake of the example let’s leave it at that.

5. Conclusion

Now that the framework is presented, the implementation
of real models can be discussed. NNBlocks takes advan-
tage of modular behaviour of NNs architectures. So imple-
menting models with NNBlocks is a matter of finding these
modular behaviours.

In the CBOW model, we can identify three simple modular
operations:

1. Averaging of the input vectors — This is not an out-
of-the-box Model in NNBlocks, but as seen in Section
this Model can be easily built with few lines of
code.

2. Doing a feedforward operation in a perceptron layer
3. Feeding the result to a Softmax layer

So it is clear that building such an architecture is easy with
NNBIlocks.

Building a Recursive or Recurrent NN with NNBlocks is
just a matter of choosing the recurrence / composition func-
tion. Again, these functions, represented by Models, can
also have their own modularity inside them. This gives a
great flexibility for building.

As we can see, NNBlocks can be a great tool to build and
train computational linguistics neural models.

6. Bibliographical References

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pas-
canu, R., Desjardins, G., Turian, J., Warde-Farley, D.,
and Bengio, Y. (2010). Theano: a CPU and GPU math
expression compiler. In Proceedings of the Python for
Scientific Computing Conference (SciPy), June. Oral
Presentation.

Goller, C. and Kuchler, A. (1996). Learning task-
dependent distributed representations by backpropaga-
tion through structure. In Neural Networks, 1996., IEEE
International Conference on, volume 1, pages 347-352.
IEEE.

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast
learning algorithm for deep belief nets. Neural compu-
tation, 18(7):1527-1554.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-
term memory. Neural computation, 9(8):1735-1780.

Le, P. and Zuidema, W. (2015). Compositional distribu-
tional semantics with long short term memory. arXiv
preprint arXiv:1503.02510.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013).
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781.

Mikolov, T. (2012). Statistical language models based
on neural networks. Presentation at Google, Mountain
View, 2nd April.

Socher, R., Huang, E. H., Pennin, J., Manning, C. D., and
Ng, A. Y. (2011). Dynamic pooling and unfolding recur-
sive autoencoders for paraphrase detection. In Advances
in Neural Information Processing Systems, pages 801—
809.

2084

Socher, R., Huval, B., Manning, C. D., and Ng, A. Y.
(2012). Semantic compositionality through recursive
matrix-vector spaces. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Language
Learning, pages 1201-1211. Association for Computa-
tional Linguistics.

Socher, R., Bauer, J.,, Manning, C. D., and Ng, A. Y.
(2013a). Parsing with compositional vector grammars.
In In Proceedings of the ACL conference. Citeseer.

Socher, R., Perelygin, A., Wu, J. Y., Chuang, J., Manning,
C.D., Ng, A. Y, and Potts, C. (2013b). Recursive deep
models for semantic compositionality over a sentiment
treebank. In Proceedings of the conference on empirical
methods in natural language processing (EMNLP), vol-
ume 1631, page 1642. Citeseer.

2085

	Introduction
	Related Work
	Linguistics Neural Network Models
	Continuous Bag-of-Words
	Recursive Neural Network
	Recurrent Neural Network

	NNBlocks
	Models
	Connecting Models
	Training
	Models Inside Models
	Computational Linguistic Utilities

	Conclusion
	Bibliographical References

