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Abstract
Computer-assisted transcription promises high-quality speech transcription at reduced costs. This is achieved by limiting human effort
to transcribing parts for which automatic transcription quality is insufficient. Our goal is to improve the human transcription quality via
appropriate user interface design. We focus on iterative interfaces that allow humans to solve tasks based on an initially given suggestion,
in this case an automatic transcription. We conduct a user study that reveals considerable quality gains for three variations of iterative
interfaces over a non-iterative from-scratch transcription interface. Our iterative interfaces included post-editing, confidence-enhanced
post-editing, and a novel retyping interface. All three yielded similar quality on average, but we found that the proposed retyping
interface was less sensitive to the difficulty of the segment, and superior when the automatic transcription of the segment contained
relatively many errors. An analysis using mixed-effects models allows us to quantify these and other factors and draw conclusions over

which interface design should be chosen in which circumstance.
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1. Introduction

Manual speech transcription by human transcribers has
risen in popularity in recent years (Ipeirotis, 2010). This
may be surprising, because at the same time automatic
speech recognition (ASR) technology has celebrated im-
pressive advances. Even so, manual transcription through
crowd-sourcing has been established as an attractive alter-
native and supplement to fully automatic transcription. In
addition, there has also been a rise in computer-assisted
transcription, in which automatic transcription is used as a
starting point and human intervention is only needed when
the ASR produces errors (Rodriguez et al., 2007). Both ap-
proaches promise better reliability than ASR, while being
more affordable than fully manual expert transcription.

Our goal in this paper is to design a computer-assisted
transcription user interface such that the outcome quality is
optimized while avoiding unnecessary effort. The key inter-
face feature we investigate is support for iterative transcrip-
tion. This term is borrowed from iterative human computa-
tion processes (Little et al., 2010), in which humans solve
tasks by improving upon a previously obtained solution.
We consider computer-assisted transcription performed in
an efficient segment-by-segment fashion, where only low-
confidence segments are selected for manual transcription
(Roy and Roy, 2009; Sperber et al., 2014b). Our iterative
interfaces then provide the initial transcription as created by
the ASR as a starting point for each segment, upon which
the transcriber improves (cf. Figure 1). The benefit of the
iterative interfaces is that the transcriber can simply use the
initially correct parts from the ASR as-is, and focus atten-
tion on the problematic parts. Ideally, words that were rec-
ognized correctly by the ASR will not be changed, reducing
the chance of correction errors. In addition, the iterative ap-
proach can assist transcription of parts that are difficult for
the transcriber to understand by providing a first guess.

Computer-assisted transcription is traditionally per-
formed by having the transcriber post-edit ASR results,

(a) Non-iterative
(ASR: I, like many of you)
2. Manually transcribe |[[__] & Type blindly
3. Use ASR output (ASR: two billion peaple)
4. Manually transcribe | [[____| = Type blindly

(b) lterative
(ASR: |, like many of you)
(ASR: can one of the)
one ... |> Improve ASR

Segments
1. Use ASR output

(ASR: unworthy who)

> Improve ASR

Figure 1: Computer-assisted transcription, low-confidence
segments are manually transcribed with non-iterative (a) vs.
iterative (b) interfaces. The actual utterance is “I like many
of you am one of the two billion people on earth who...”

which is an iterative approach. However, a straightforward
alternative would have been to type the correct transcrip-
tion for each segment from-scratch. This would be the non-
iterative approach. The difference of these two approaches
is still poorly understood, so we conduct experiments to di-
rectly compare them in terms of quality and speed. More-
over, we examine two iterative extensions. First, the post-
editing approach is enhanced by showing the ASR output
with low-confidence words highlighted in red. This may
help focus transcriber attention and decrease the chance of
missing errors, a danger in traditional post-editing. Sec-
ond, the from-scratch approach is extended into a retyping
approach, again by displaying the confidence-highlighted
ASR transcript above each segment. However, the text in-
put box is initially empty and the transcriber is forced to
retype every single word. Retyping also has the potential to
focus transcriber attention and prevent missing errors.

The main contributions of this paper are introduction
of the retyping interface approach, and an analysis of how
retyping and the described three traditional iterative and
non-iterative interfaces compare in terms of transcription
quality and speed, in which we analyze how segment diffi-
culty, mechanical effort, and other factors influence quality
and speed. Specifically, we carry out a user study in which
expert and non-expert participants transcribe automatically
selected segments based on an ASR transcription, using the
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- ASRCONF + ASRCONF
| can one of ...
FS IamonI IamonI
| can one of ...
PE | | [&]g] one of the [l one of the

Figure 2: The four interface combinations: Typing from-
scratch in an empty box (top), post-editing the ASR output
(bottom), and unrolling the ASR output in sync with the
audio while coloring low-confidence words in red (right).

four transcription interface designs. Our results show that
non-iterative from-scratch transcription is a poor choice in
general, even for skilled transcribers. All three iterative in-
terfaces were roughly on par on average, but our retyping
approach gave the best results for segments with high word
error rate (WER) in the automatic transcript. This finding
was consistent across transcribers. Savings in transcription
time can be gained by switching to post-editing for seg-
ments with low ASR-WER.

2. Investigated Transcription Interfaces

The first interface feature we evaluate is typing from-
scratch (FS) vs. post-editing (PE) the ASR output. Gener-
ally, post-editing needs less typing but requires additional
effort for verification and navigation within the ASR out-
put. Post-editing also carries the risk that the transcriber
may miss some errors due to lack of attention.

The second feature (ASRCONF) displays the ASR out-
putin a text label above the input field and unrolls it in sync
with audio playback. ASR confidence scores are visualized
by coloring words in shades between black (confident) and
red (uncertain). Used for from-scratch transcription (FS™),
we obtain a novel retyping extension that offers the bene-
fits of iterative transcription. Compared to post-editing, re-
typing may increase transcriber attention because the tran-
scriber explicitly needs to (re-)type every single word. Us-
ing ASRCONF for post-editing (PE™), the confidence vi-
sualization might prevent missing errors. FS™ and PE~
denote the traditional interfaces without ASRCONF.

The four possible combinations (FS~, PE~, FST,
PE™) are shown in Figure 2.

3. Experiment Design

We conducted experiments in order to find out which
interface is best under what circumstances, regarding qual-
ity of the outcome and cost. We asked nine participants
from different backgrounds to transcribe a selection of seg-
ments with varying length and difficulty. Transcription in-
terfaces were alternated between segments. Segments were
selected from automatically transcribed TED! talks. TED
talks are short English talks directed to a general audience,
presented by well-prepared speakers. The high quality of
both audio and available reference transcripts allow for a
well-controlled study with limited outliers and noise issues.
The four talks in our evaluation set totaled 6,813 words or
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Figure 3: Screenshot of the transcription tool.

48 minutes of audio. They were selected from the IWSLT
dev2012 development set (Cettolo et al., 2014), for which
high-quality reference transcriptions are available.

3.1. Transcription Data

As a starting point, we automatically transcribed these
talks using a TED-optimized ASR system, described in de-
tail in (Kilgour et al., 2014). This system showed state-
of-the-art results in the 2014 IWSLT evaluation (Cettolo et
al., 2014), which allows assessing if and by how much our
computer-assisted transcription approach improves over a
strong, fully automatic setup.

We focused on low-confidence segments for human
transcription. This choice improves the balance in number
of ASR errors between segments and makes our statisti-
cal analysis more robust. Moreover, it simulates a practical
use-case in which no effort is wasted on transcribing seg-
ments with high ASR confidence. We selected these low-
confidence segments using SESLA (Sperber et al., 2014b),
which divides a transcript into segments that are of com-
fortable length for transcription, and consist mostly of low-
confidence words. This method requires word-wise con-
fidence scores, which we extracted from the lattice. We
configured SESLA’s optimization criterion such that 90%
of the uncertainty mass would be transcribed. This resulted
in 461 segments for transcription, with length between 1
and 15 words. These segments contained 53% of all words.
The WER of the four talks averaged 11.3%. The WER for
the high-confidence segments that were skipped by the tran-
scribers was 2.5%, while for low-confidence segments that
were chosen for transcription the WER was 21.2%.

3.2. Software

We used the tool SESLA Transcriber (Sperber et al.,
2014a) to conduct our study (Figure 3). This tool takes
a pre-segmented automatic transcription and displays the
segments as boxes, aligned next to a vertically oriented
waveform. Clicking a segment plays back the correspond-
ing audio and allows typing the corresponding transcrip-
tion. To convey enough context, segments chosen not to
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be corrected are also displayed with their ASR output. The
tool highlights misspelled words in red while typing, and
suggests spelling corrections via a context menu.

3.3. Participants

We selected a heterogenous group of people as partic-
ipants. In order of decreasing expertise, participants in-
cluded skilled German transcribers with linguistic back-
ground (group LING), German computer science students
(group CS), both with excellent English skills, and several
Filipino workers with no higher education but who are flu-
ent in English (group CROWD). We believe that the mo-
tivation of all participants was reasonably high, and that
differences in transcription quality are primarily caused by
transcriber skill, and less by lacking motivation or cheating
attempts as is sometimes an issue in crowd sourcing.

The variety in participants allowed us to examine
whether people of different backgrounds require different
interface designs. Moreover, observations that are consis-
tent among the participants will likely generalize to other
groups of non-experts. All participants were asked to tran-
scribe the same selection of segments in the same order. For
the first participant, we randomly assigned one of the four
input methods described above to each segment. For fol-
lowing participants, we rotated the input method for each
segment based on the previous participant’s segments. In
this way, each particular segment is transcribed according
to all input methods in a balanced fashion, and by each tran-
scriber at most once.

3.4. Collected Data

Most transcribers finished the transcription of all four
TED talks, although a small number of talks were not
transcribed by everyone. In total, we obtained 3304 ob-
servations (transcribed segments) from 9 people. These
observations consist of a number of features: tran-
scriber/speaker/segment identity, input method, edit dis-
tances between ASR, correction, and reference, and tran-
scription time. We lowercased corrections and removed
punctuation. We also normalized spelling variants via
hand-written rules derived from manual inspection of all
observed confusion pairs. These steps are important to en-
sure that we only count actual errors in our analysis. We
performed a thorough outlier detection, removing 359 seg-
ments with detected transcriber idleness or with extreme
feature values. Both user interface demo and data are avail-
able on our website.”

3.5. Mixed-Effects Model Analysis

Each segment in our experiment is transcribed once by
various transcribers with various methods. The resulting
observations are thus not directly comparable, because we
do not know whether differences are caused by transcriber
characteristics or by experimental settings. More generally,
our experiments involve “random” factors that are difficult
to control for, and that potentially have a significant influ-
ence on our observations. In fact, this is a common prob-
lem in user studies. Recently, linear mixed-effects models

2www.msperber.com/research/lIrec-iterative-gui

(short: mixed models) have become popular as a conve-
nient way of dealing with such situations. For instance,
mixed models have been used for error analysis in ASR
(Goldwater et al., 2010) and machine translation (Federico
et al., 2014), and for analysis of post-editing for translation
(Green et al., 2013).

Mixed models are specified by the following compo-
nents:

® Response variable: The central quantity for which we
wish to determine how it is influenced by other mea-
sured covariates. In our experiments, this will be the
post-correction error rate or the transcription time.

e Fixed effects: Numerical or categorical attributes that in-
fluence the response variable in a meaningful way. In
this paper, we assume a linear relationship. In the case
of categorical variables, the assumption is that the obser-
vations include all values out of a finite set. Because cat-
egorical variables have no ordering, non-binary categor-
ical variables are split into several binary variables. Our
fixed effects include the user interface, segment length,
number of errors, and other factors.

e Random effects: Categorical factors that are hard to con-
trol for or hard to understand. Generally, the observa-
tions include only a limited sample of values out of a
large set of possible values. In our case, random effects
are the particular transcriber, talk, and segment. In the
simplest case, for each random effect a random intercept
is estimated by the model. Thus, e.g. for each transcriber
a mean correction accuracy is estimated to explain some
of the observed variance that could otherwise only be
explained by a general error term. Random effects are
modeled to obey a Gaussian distribution with the ob-
served sample mean and variance to be estimated. For
transcribers, we extend the random effect to also account
for variations in the slope of each fixed effect. For ex-
ample, the strength of influence of the user interface on
outcome quality differs between transcribers, a fact that
we thus explicitly model.

e Error term: The variance in observations that is not ex-
plained by the random effects is finally modeled by the
general error term.

We restrict ourselves to linear mixed models, because
adding more complexity to the models increases the risk of
unstable fits and inspection did not reveal any strong non-
linearities. We also experimented with polynomial mixed
models, but did not observe any model improvements.

We tested the significance of all fixed effects in our
models via likelihood ratio test (for p < 0.05). That is, we
built a null-model with the effect in question removed, and
examined whether this significantly reduced the model like-
lihood. We used R (R Core Team, 2014) and /me4 (Bates et
al., 2013) to perform our mixed model analysis.

4. Results: Transcription Quality

Sufficient quality of the resulting transcript is often the
most important requirement. Insufficient quality might ren-
der all cost and labor useless. As a case in point, we ob-
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Method ASR || FS~ | PE~ | FST | PE*
Avg. WER || 17.6 || 21.2 | 13.1 | 144 | 134
Avg. PER 15.4 || 13.3 8.2 9.2 8.3

Figure 4: Average WER/PER for different input methods
according to fitted model.
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Figure 5: Estimated per-transcriber random effects of post-
correction WER, for different input methods.

served that some of our transcribers actually increased the
WER compared to the ASR for some interface setups.

To obtain a first overview over the results, we fitted
a simple mixed model for the post-correction WER, with
the transcription interface as a fixed effect, and random in-
tercepts and slopes as described above. Figure 4 (WER
row) shows the fitted intercepts for our fixed effects. It
shows that using the ASR transcription as a starting point
does in fact improve human transcription quality: The non-
iterative, plain from-scratch (FS™) interface was clearly
outperformed by the three iterative interfaces, and was the
only method that did not improve over the automatic base-
line. PE~ seems to be the best method on average, although
the interface fixed-effect was not statistically significant be-
tween PE~, FST, and PE™ observations. Taking a closer
look at the random fit for each transcriber (Figure 5) reveals
that the poor performance of FS™ was largely attributed to
the non-expert group CROWD, who were not able to beat
the ASR output with this method. However, note that even
for several top transcribers, iterative interface design in-
creased quality.

Next, we analyzed how presence or absence of ASR
errors impacted the correction quality. We extended the
previous mixed model by a new fixed effect, the ASR-
WER, which interacts with the interface (i.e. the influence
of ASR-WER is modeled to vary between interfaces). We
also added this interaction as a random slope for transcriber
identities. Figure 6 shows the fitted model. It can be seen
that the presence of ASR errors considerably increased the
chance of correction errors. The effect was strongly present
for post-editing, indicating that transcribers missed more
errors when more errors needed to be edited. It was present
to a weaker degree even for plain from-scratch (FS™), in-
dicating that segments that were hard to transcribe for an
ASR system were also hard for humans. Interestingly, FS™
provided an appealing tradeoff between both: The impact
of ASR errors was weaker, and the resulting quality better
for segments with a WER of 29% or higher.

Given the variety in participants, is the sensitivity to
the difficulty of a segment consistent across different tran-
scribers? To answer this, we inspected the fitted random
effects across transcribers. Figure 7 shows all transcribers’
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Figure 6: Influence of ASR WER on post-correction WER.
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Figure 7: Transcribers’ sensitivity to transcription difficulty
for FS* and PE™ input methods.

slopes for how fast post-correction WER grows when ASR-
WER grows, concentrating only on FS* and PE™. The
sensitivity to difficulty varies considerably across tran-
scribers, but there is no clear trend between the transcriber
groups. It can be seen that sensitivity was consistently
smaller for FS™ than PE™, regardless of transcriber skill.
In fact, the slope of the ASR-WER was consistently smaller
for FS* than for both PE~/*, and larger than FS— for
seven out of nine transcribers. Computing the crossing
points, that is, the ASR-WER above which FS* yielded
the better correction, gave a median of 19.5%, consider-
ably lower than the sample mean of 29%. Given the linear
nature of our model, the crossing points should not be taken
as precise numbers, but more as a rule of thumb. In conclu-
sion, retyping can be expected to be the superior interface
for ASR-WERs above 20-30%. Given that such segments
are usually more crucial to correct than the lower WER seg-
ments, it would also be a reasonable default choice of tran-
scription interface.

A question remains: Given the observed human tran-
scription errors, how severe are these errors actually? Fig-
ure 4 can give us a clue by comparing the WER to the
phoneme error rate (PER), a measure for acoustic similar-
ity. These numbers were computed by replacing the seg-
ment WER by the segment PER in our first mixed model. It
can be seen that according to PER, even FS™ outperformed
the ASR. The relative distances between the methods re-
main the same. In other words, humans appear better at
choosing acoustically similar words than the ASR, even if
the word is incorrect. Evaluating the semantic quality of
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Figure 8: Linear mixed-model estimates illustrating how
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Figure 9: Linear mixed-model estimates illustrating how
cost is affected by input interface, and by mechanical effort
for post-edited input.

errors would also be interesting, but is outside the scope of
this paper.

5. Results: Transcription Time

Besides quality, transcription speed is another impor-
tant factor to consider. Faster interfaces can reduce cost and
increase transcriber motivation. Therefore, we analyzed
how transcription time is influenced by the transcription in-
terface, while accounting for segment length. We estimated
a mixed model with the segment transcription time as the
response variable, and interface and segment length as in-
teracting fixed effects. Random intercepts and slopes were
as before. Figure 8 shows the fit of this linear model. It
can be seen that while the ASRCONF feature had negligible
effect on transcription speed, post-editing was consistently
about twice as fast as from-scratch transcription. Closer
analysis of the random intercepts and slopes for each tran-
scriber showed that this observation held true for all tran-
scribers.

According to the average segment WER, post-editing
only required editing of 17.64% of the words in each seg-
ment on average. Given that from-scratch transcription re-
quired typing of all the words, its slower speed is not sur-
prising. However, in Section 2. we hypothesized an inher-
ent overhead for post-editing due to verification and naviga-
tion between errors that need correction. If true, segments
with a high WER, for which the typing effort for post-
editing is close to the from-scratch typing effort, might be
faster to transcribe from-scratch. On the other hand, from-

FS~™ | PE~ | FS™ | PE™ | typing effort | error rate

091 | 1.81 | 0.56 | 1.91 3.90 0.98

Figure 10: Fitted model predicting transcription time [sec-
onds ] per word, comparing the effort inherent to user inter-
face, mechanical effort, and influence of difficult words.

scratch transcription involves a higher amount of memo-
rizing of the uttered words when ASRCONF is turned off,
which might also cost time.

To validate this hypothesis, we built a more refined
model that predicted the transcription time per word. The
refined model used the input mode and an approximation of
the mechanical typing effort as fixed effects. The mechani-
cal typing effort is approximated as the proportion of words
in the correction that have to be typed: in the from-scratch
case this is all words, in the post-editing case we use the edit
distance between correction and ASR. The effort is normal-
ized by the reference segment length. The fitted model is
displayed in Figure 9 and reveals that from-scratch editing
is faster than post-editing for high PE typing efforts above
67%. In other words, for comparable mechanical typing ef-
fort from-scratch is faster, confirming our hypothesis about
post-editing overhead. Moreover, FS™ slightly but statisti-
cally significantly improves speed over FS~, possibly be-
cause displaying the ASR hypothesis helps the transcriber
recall the words uttered in the audio faster. However, bear
in mind that most segments will have an edit rate much
lower than 67%, meaning that the reduced typing effort
of post-editing will usually outweigh its inherent overhead
disadvantage.

Finally, we analyzed whether difficult words reduced
transcription speed. We counted incorrectly transcribed
words as difficult and other words as easy. The mixed
model was as before, but with one additional fixed effect:
the word error rate in the segment correction. All fixed ef-
fects were significant according to the likelihood ratio test.
The fitted model is shown in Figure 10. We interpret these
numbers as follows: After accounting for interface over-
heads, the mechanical effort for typing a word amounted to
3.9 seconds and difficult words slowed down correction by
another 0.98 seconds. We conclude that the difficulty of a
word has a strong impact on transcription time, a finding
which might be useful for detection of human transcription
eITors.

6. Related Work

While from-scratch transcription and post-editing have
been in use for many years, to the best of our knowledge
this is the first systematic study of human transcription per-
formance comparing these approaches as well as our exten-
sions, or heterogenous user groups. However, several prior
studies investigated related issues and established impor-
tant prerequisites for our study.

6.1. Human Transcription Quality

Human transcribers are often categorized into profes-
sionals, i.e. trained transcribers, and crowd sourced work-
ers. Professionals generally achieve the highest quality, but
are expensive. Inter-transcriber disagreements have been
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reported at 2-4% (NIST, 2009) and 5% (Novotney and
Callison-burch, 2010). This disagreement results in part
from ambiguities, and in part from a lack of domain knowl-
edge that hinders transcription of specialized terms. High-
quality transcripts are usually created in several passes,
such that an initial expert transcription is verified and cor-
rected by at least one other expert.

Crowd sourced workers on the other hand are inex-
pensive, but lack formal training. They may possess do-
main knowledge, such as students correcting lecture tran-
scripts (Kolkhorst et al., 2012), or may lack domain knowl-
edge, such as workers hired via Amazon Mechanical Turk
(Novotney and Callison-burch, 2010). The mentioned
works report WERs around 22% and 17% compared to
reference transcripts. In the case of student transcrip-
tions, a focus on correction of specialized terms that are
most critical for understandability is reported (Kolkhorst et
al., 2012). Multiple redundant crowd transcripts can be
combined to yield near-expert quality (Audhkhasi et al.,
2011), although larger improvements in ASR model train-
ing are reported by spending money on transcribing more
data once, as compared to transcribing less data redun-
dantly (Novotney and Callison-burch, 2010). Note that the
WERs in our experiments cannot be directly compared, be-
cause we focus on especially difficult parts for transcription
which are harder to transcribe for humans as indicated by
our experiments and by Nanjo et al. (2006).

6.2. Transcription User Interface

Akita et al. (2009) conducted a user study with pro-
fessional stenographers who post-edited ASR output. They
report that post-editing time increases when the ASR pro-
duced many errors, and that the stenographers expressed
a subjective preference towards typing from scratch when
the WER of the ASR exceeded 25%. Nanjo et al. (2006)
find that likewise typing from scratch takes more time for
parts in which many ASR errors occur, indicating that parts
that are difficult to transcribe for an ASR are difficult for a
human as well. Our experiments confirm these trends and
enable quantifying the various interacting factors. Bazil-
lon et al. (2008) conduct an experiment including speech
turn segmentation and transcription in a single step. They
report that correcting an automatic segmentation and post-
editing the transcription is much faster than segmenting and
transcribing manually (from-scratch). Their experiments
do not allow to draw conclusions as to how much the au-
tomatic segmentation and the automatic transcription con-
tributed individually to this improvement. Valor Mir¢ et
al. (2015) make similar observations, and in addition in-
vestigate ways to exploit word-level confidence scores in a
two-phase adaptation scenario.

Luz et al. (2008) propose a more advanced user inter-
face for post-editing ASR output, in which low-confidence
parts are highlighted, and alternative words are offered
upon selecting an error. In a small user study, they report
slightly higher accuracy at slightly increased cost for their
user interface, compared to a plain text editor interface. Ac-
curacy improvements are due to a smaller number of missed
errors, possibly thanks to the confidence highlighting. In-
creased cost is caused by the more complex user interface.

In our work, we have evaluated the confidence highlight-
ing but omitted the complex user interface. We think that
alternative lists are especially appealing for touchscreen de-
vices, on which typing is cumbersome (Liang et al., 2014).
Efficiency improvements over post-editing are reported for
alternative lists in Japanese (Ogata and Goto, 2005), while
for English, it is reported that only a third of all errors
can be retrieved via alternative lists (Harwath et al., 2014).
Moreover, Kolkhorst et al. (2012) report that alternative
lists lead users to select suboptimal choices when the cor-
rect choice is not present in the list. Because of these issues,
we refrained from including such more complex interfaces
into our study.

Another popular method for error correction is respeak-
ing (Vertanen and Kristensson, 2009), in which the utter-
ance is repeated by a respeaker in a quiet environment and
with a speaker-adapted ASR. Moore et al. (2004) point out
that, while speech has a higher input rate, content creation
rate (i.e., accounting for error correction) is much lower
than typing on a keyboard. Sperber et al. (2013) show
that respeaking by non-experts can be an option when ASR
transcripts are to be improved, but not made perfect. How-
ever, respeaking requires recording equipment, a quiet en-
vironment, and a clear speaker. These factors that can often
not be guaranteed for, especially in crowd-sourcing situa-
tions.

7. Conclusion

This work investigates the benefit of iterative user inter-
face designs in the context of computer-assisted transcrip-
tion with automatically chosen segments. A user study
showed that a non-iterative, plain from-scratch transcrip-
tion interface is clearly outperformed by our three evaluated
iterative interfaces, regarding both quality and transcription
time. This finding was consistent over transcribers of dif-
ferent skill. These three interfaces include traditional post-
editing (PE™), confidence-enhanced post-editing (PE+),
and a novel retyping approach (FST). PE~ and PE™ be-
haved very similarly, indicating that the visualization of
confidences has little effect on transcription. Quality was
similar on average, but PE~/* yielded better quality for
segments with low ASR-WER, and FS™ better quality for
ASR-WER above 20-30%. PE~/* was considerably faster
except for high edit rates above 0.67. Transcription quality
of less skilled transcribers was especially sensitive to inter-
face design.

In conclusion, FST is an appealing choice to ensure re-
moval of segments with critically high WER, while the ap-
pealing quality of PE~/ is its cost-quality tradeoff. For an
optimal quality-cost tradeoff, we suggest using post-editing
for segments with low ASR-WER, and switching to retyp-
ing for higher ASR-WER. How to automatically predict
which of the two methods should be used remains as fu-
ture work.
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