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Abstract
The current study focuses on optimization of Levenshtein algorithm for the purpose of computing the optimal alignment between
two phoneme transcriptions of spoken utterance containing sequences of phonetic symbols. The alignment is computed with the
help of a confusion matrix in which costs for phonetic symbol deletion, insertion and substitution are defined taking into account
various phonological processes that occur in fluent speech, such as anticipatory assimilation, phone elision and epenthesis. The corpus
containing about 30 hours of Russian read speech was used to evaluate the presented algorithms. The experimental results have shown
significant reduction of misalignment rate in comparison with the baseline Levenshtein algorithm: the number of errors has been reduced

from 1.1 % to 0.28 %.
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1. Introduction

The goal of the research presented in this paper is to align
effectively two sequences of phonemes (phonetic transcrip-
tions) that describe the same speech signal. This task is
important for sociolinguistic and dialectological research
on how various people read or speak the same text, e.g.
(Heeringa, 2004), (Valls et al., 2013). Another field of ap-
plication is comparison and alignment of annotations pro-
duced by different human or machine transcribers for the
same speech data, e.g. (Alvarez et al., 2014).

The current work has been done as a part of a research on
inter-speaker variability. There has been a need in predic-
tion of the pronunciation deviation of various Russian na-
tive speakers from Standard Russian. A correct compari-
son of individual pronunciations requires transcriptions to
be perfectly aligned. The linguistic approach assumes that
for a correct alignment of phoneme sequences one should
consider the behavior of phonemes in continuous speech
under different conditions.

Automatic aligners using various linguistic approaches
have been made for many languages, including English
(Alvarez et al., 2014), Spanish (Valls et al., 2013), Dutch
(Elffers et al., 2005), Norwegian (Heeringa, 2004), Basque
(Bordel et al., 2012). Such an aligner for Russian is pre-
sented in the paper. It is based on the usage of phoneme
sets defined in such a way that a phoneme is more probable
to substitute another phoneme from the same set than from
another set. Besides substitutions, the approach suggests
taking into account frequent phone insertions and deletions,
whereas in previous works only substitution cost was esti-
mated.

Section 2. presents briefly the information on phonolog-
ical processes in Russian speech that have been consid-
ered while developing the aligner. Section 3. describes
the modifications that are proposed for basic Levenshtein
aligner. The evaluation procedure for estimating alignment
efficiency is described in section 4.. The achieved results
are shown in section 5..

2. Phonological Processes in Russian Speech

There are both context-dependent and context-independent
phone alternations, elisions or epentheses in the Russian
speech. The majority of these speech events are either
context-dependent assimilation or changes due to position
relative to word stress.

Frequent assimilation processes include regressive voic-
ing/devoicing and palatalization/depalatalization. These
processes occur both within a word and across word bound-
aries when word-final obstruents assimilate with initial ob-
struents. A number of consonants may be vocalized in in-
tervocalic position, e.g. /j/ may be pronounced as /i/.
Position-dependent phonological processes include strong
vowel reduction in unstressed position in continuous
speech, e.g. /i/ is often pronounced instead of /a/ after
palatalized consonants.

Voicing, devoicing, palatalization, depalatalization, sono-
rant vocalization, and unstressed vowel substitutions were
considered as factors influencing phoneme changes in pho-
netic transcriptions.

There are a number of elision processes in continuous
speech that were considered as relevant factors for the rate
of deletions in phonetic transcriptions. These processes in-
clude elision of /j/ in intervocalic position and possible eli-
sion of unstressed vowels, especially in post-stressed sylla-
bles. Data analysis showed that /j/ is elided in more than
50 % of cases, and unstressed vowels are elided in about
4 % of cases.

The majority of insertions are epenthetic vowels within
consonant clusters, especially in position before sonorants,
v/, and /v/ (Evgrafova, 2009). Around 12 % of consonant
junctions in Russian read speech contain epenthetic vowels
(Skrelin et al., 2010).

The phonological processes described above were consid-
ered while developing the efficient algorithm of automatic
transcription alignment. All other phonological processes
were not taken into account due to their low frequency in
Russian.
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Table 1: Alignment of reference rule-based transcription
for a word /bra'sajit/ and transcription describing pronunci-
ation with large number of elisions as /'brs'et/. Comparison
of simple Levenshtein algorithm and correct alignment.

Alignment method Alignment
Reference transcription | b r a s 'a j 1 t
Levenshtein alg. b r - s - - e t
Correct alignment b r - ¢ e - - t

The detailed information about phonological processes in
Russian speech may be found in works of (Avanesov,
1984), (Bondarko, 1998), and (Svetozarova, 1988).

3. Transcription Alignment

The state-of-the-art solution for alignment of sequences of
strings or symbols is a dynamic programming approach.
The most common way is to calculate Levenshtein distance
between the sequences (Levenshtein, 1965). The Leven-
shtein distance is measured as a minimum number of edit
operations necessary for transformation of one sequence
into the other. These edit operations are substitutions, in-
sertions and deletions. Each operation has its cost, usually
all the operations cost ‘1’. A match operation with a cost of
‘0’ is introduced for calculation simplicity.

When comparing phoneme sequences, this approach is not
the most efficient because it does not account for simi-
larity of phonemes or frequent phonological processes in
speech, such as phone elision, epenthesis, and assimila-
tion. The examples of wrong alignments produced by sim-
ple Levenshtein algorithm are presented in tables 1 and 2,
where ‘—’ denotes phone deletion. The illustrated align-
ment errors would lead to unnatural phonological implica-
tions. The first example illustrates /'e/ pronounced instead
of junction /'aji/. The wrong alignment would show that a
stressed vowel is more likely to be elided than an unstressed
one whereas more correct interpretation would be that the
stressed vowel changes its quality in this case and there is
an elision of post-stress syllable /ji/. The second wrong de-
cision would be that a vowel is likely to be pronounced as
a voiceless stop whereas an unstressed vowel is likely to be
elided and /t/ is assimilated to the following /t//.

A preliminary experiment showed that basic Levenshtein
algorithm produces 1.1 % of errors, that is almost 12,000
sounds for our 30 hours of experimental speech data.
Though it is a very small error rate from the statistical point
of view, it may strongly influence linguistic research. It bi-
ases probability of infrequent phonological processes and
produces unnatural pronunciations, e.g. pronunciation of
vowel /i/ as voiceless stop /t/ in table 1.

There have been efforts to measure phonetic difference
more precisely assuming that a cost of substitution of one
phoneme by another should depend on the phonetic dis-
tance between these phonemes. FElffers with colleagues
proposed to consider a phoneme as a vector of articula-
tory features. Then the phonetic distance between two
phonemes is a sum of absolute differences between feature

Table 2: Alignment of reference rule-based transcription
for a prepositional phrase /'at/ /tli'bla/ and transcription de-
scribing pronunciation /at'ti'bla/. Comparison of simple
Levenshtein algorithm and correct alignment.

Alignment method Alignment
Reference transcription | 'a t ¢ 1 b ‘a
Levenshtein alg. a — ¢ ¢ b ‘a
Correct alignment a ¢ ¢ - P ‘a

values of the phonemes (Elffers et al., 2005). Wieling sug-
gested to estimate the phonetic distance by means of point-
wise mutual information, the number of times phonemes
corresponded to each other in aligned transcriptions (Wiel-
ing et al., 2012). Alvarez and his colleagues tested three
different ways of constructing confusion matrix: using con-
fusion matrix of ASR phone-decoder, using phonemes per-
ceptual similarity and using their phonological similarity
(Alvarez et al., 2014). The best results were obtained with
the help of ASR phone-decoder.

The approach proposed in this paper aimed at improving
phonetic transcription alignment is different and is based on
the idea of defining sets of phonemes that are highly proba-
ble to substitute each other because of certain phonological
processes in continuous speech. All phone substitutions,
deletions and insertions are treated as context-independent
within this research for calculation simplicity. The opti-
mization is done by means of confusion matrices that in-
clude information not only on substitutions but on dele-
tions and insertions as well. The edit operation cost for
phonemes within the same set should be lower than edit
operation cost for phonemes from different sets.

The first modification was to make Levenshtein algorithm
VC-sensitive, i.e. reduce costs for substitution of two con-
sonants and substitution of two vowels. The motivation for
this step is that vowels are rarely substituted by consonants
and vice versa. The speech corpora described in section 4.
shows that it happens in no more than 0.02 % of cases.
The second optimization was to separate consonants into
obstruents and sonorants as they also rarely substitute each
other.

Phoneme /j/ does not behave as other sonorants because of
its frequent elisions and vocalizations. It is elided in more
than 50 % of the cases and vocalized in 8.4 % of cases.
Compare it with 0.1 % of vocalization rate for other sono-
rants. The deletion cost for /j/ was reduced significantly and
the cost of substitution by /i/, i, and /e/ was reduced by the
same value as for all the other phoneme sets.

There were also two setups for taking into account voic-
ing/devoicing and palatalization/depalatalization, because
they are essential for Russian speech. The cost of substi-
tutions within the pairs of obstruents differing in these fea-
tures was reduced. See, for example, the following voiced-
unvoiced pairs: {p, b}, {p’, bi}, {f,v}, {fj, vj}, {t,d},
{#,d}. {s,z}. {s, 2}, {k,g}. {, g’} { 5. 2}.

The last phonological setup was done to take into account
unstressed vowel reduction and frequent vowel epenthesis.
The cost of deletion and insertion of unstressed vowels was
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reduced.

The reduction of operation cost is equal for all the phoneme
sets. For example, if the reduction of operation cost equals
0.1, then substitution of phonemes within a given set costs
0.9, and the substitution of phonemes across sets costs 1. If
a pair of phonemes is found in two phoneme sets, then the
substitution cost for these phonemes is reduced twice.

The last experiment was dedicated to data-driven approach
to building confusion matrix. The costs were not predefined
according to theoretical knowledge, but were trained from
the statistics of phone substitution, deletion and insertion
within the speech data. The costs were estimated with fol-
lowing formula: cost = 1 — P(edit operation|phoneme).
Thus the sum of all edit operations except match equals 1.
The cost of match for any phoneme equals 0 regardless of
how often a phoneme changes its quality in speech.

The experimental results are presented in section 5.

4. Evaluation

All the experiments were performed using CORPRES—
Corpus of Russian Professionally Read Speech (Skrelin et
al., 2010), which consists of recordings of read speech pro-
duced by eight speakers of Standard Russian. The anno-
tated part of the corpus contains about 30 hours of speech
with more than 1.1 mln speech sounds. There are two tiers
with phonetic transcription. The first one was produced au-
tomatically by grapheme-to-phoneme transcriber following
orthoepic rules of the Russian language. The second one
was produced manually by expect phoneticians based on
perceptual and acoustic analysis. These transcriptions were
automatically aligned, and the alignment was manually cor-
rected. The mismatch between two phonetic transcriptions
is about 15.4 %. Phrase length in phones varies from 1 to
568 with a mean value of 20 phones per phrase.
CORPRES contains perfectly aligned phonetic tiers. This
alignment was used as the ‘gold standard’. The orthoepic
transcription was used as the reference transcription, the
manual transcription of a real speaker’s pronunciation was
used as a hypothesis transcription. The evaluation proce-
dure is to compare alignments produced by proposed algo-
rithms and the ‘gold standard’ alignment.

Alignments are produced phrase by phrase. For a given
phrase alignment, each pair of aligned phoneme symbols
is converted into a single token by joining the symbols
with symbol > as a delimiter. Thus the alignment of
two sequences is converted into a sequence of these to-
kens. Such sequence is compared with the one produced
from ‘gold standard’ by means of standard Levenshtein dis-
tance. Table 3 presents an example of such alignment. As
the length of both alignments is the same, only substitu-
tions and matches are possible, and there are no deletions
or insertions. Thus the Levenshtein distance is equal to
the number of mismatches (substitutions) between these
two sequences. Finally, Levenshtein distances for all the
phrases are summed up, which provides a number of errors
produced by a given alignment algorithm.

5. Experimental Results and Discussion

Table 4 presents the efficiency comparison for different
alignment algorithms. The efficiency is given in terms of

Table 3: Alignment of two alignments for a word /'ksen'ija/
pronounced as /'’ks’en’ee/. A comparison of simple Leven-
shtein algorithm and correct alignment.

Correct kk &g ‘e'e o ite ji— ae
standard
Hypothesis | kkk  ¢:is) 'ei'e i) i:— jie ae
alignment

Table 4: Comparison of overall alignment efficiency
showed by algorithms taking into account different phono-
logical processes.

Alignment method Error rate | Total number
(%) of errors
Standard Levenshtein algorithm 1.11 11 899
Data-driven confusion matrix 0.79 8551
V/C separation 0.70 7595
V/S/C separation 0.34 3714
V/IC +/j/ 0.30 3246
V/S/C separation + /j/ 0.28 3022
V/S/C separation + /j/ + 0.28 3039
consonant voicing
V/S/C separation + /j/ + 0.28 3045
consonant palatalization
V/S/C separation + /j/ + 0.28 3036
unstressed vowels sub. and ins.

error rate and absolute number of errors produced by the
algorithms.

The data-driven estimation of costs for the confusion matrix
shows significant improvement against the baseline stan-
dard Levenshtein algorithm. There is 28 % error rate re-
duction.

‘V/C separation’ refers to the approach when the phonemes
are separated into vowels and consonants. This simple op-
timization of Levenshtein algorithm shows slightly better
results than data-driven approach, although the statistical
confidence of the difference between the efficiency of these
two algorithms is questionable.

‘V/S/C separation’ refers to the approach when the
phonemes are separated into vowels, sonorants, and conso-
nants. This separation shows significant reduction of error
rate against V/C separation, which gives an error rate drop
for another 40 %.

/i’ refers to accounting for /j/ elisions and vocalizations.
This modification shows significant increase in efficiency
against both “V/C” and ‘V/S/C’ separation. The relative re-
duction of error rate against ‘V/S/C’ is lower than for ‘V/C’.
This is because sonorant phoneme set in ‘V/S/C’ includes
/j/ as its member, so adding /j/ to this setup increments effi-
ciency less than in case of ‘V/C’.

‘Consonant voicing’ refers to the setup where substitution
costs are reduced for consonants that differ only by voicing.
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Table 5: Comparison of overall alignment efficiency using
different edit operation costs. The setup is: V/S/C separa-
tion + /j/ elision.

Alignment method | Error rate
(%)
Subs cost =0.99 0.282
Subs cost =0.9 0.282
Subs cost = 0.8 0.282
Subs cost = 0.7 0.280
Subs cost = 0.5 0.279
Subs cost =0.3 0.533
Subs cost = 0.1 0.540

‘Consonant palatalization’ refers to the setup where substi-
tution costs are reduced for consonants that differ only by
palatalization. ‘Non-stressed vowels sub. and ins.” refers to
the setup where insertion and deletion costs for unstressed
vowels are reduced. Accounting for these phonological
processes did not add any improvement to so far the best
algorithm ‘V/S/C separation + /j/°. The reason of this un-
predicted result could be that the presented phonological
processes, such as palatalization/depalatalization or voic-
ing/devoicing, are consistent and produced by all the speak-
ers. The additional experiments showed that in less than
2 % of cases a speaker does not pronounce the assimilated
consonant instead of the original one, or vice versa pro-
nounces it in the context where there is no assimilation pro-
cess. However, one would expect the increase of such mis-
pronunciations in speech of non-native Russian speakers or
in conversational speech where the mismatch rate between
orthoepic transcription and real pronunciation is greater.
Thus the ‘V/S/C separation + /j/* setup is considered to be
the best achieved solution. It showed an error rate reduc-
tion of almost 75 % in comparison with the baseline Lev-
enshtein algorithm. This algorithm was further used for ex-
periments aiming to detect whether the value of cost reduc-
tion is an important factor influencing the overall efficiency.
It should be noted that in majority of cases each misalign-
ment error leads to two phoneme misalignments, see ta-
ble 3. One wrong decision on deleting /i/ instead of /j/ has
led to two misalignments: ‘i:—" instead of ‘i:e’ and ‘j:e’ in-
stead of ‘j:—’.

The exact value of reduction is a matter of question. Thus
a number of experiments were carried out to define the re-
duction cost that gives the best result. The following val-
ues were tested: 0.01, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9. Table 5
presents the efficiency for different alignment algorithms
when using different edit operation costs. The table shows
that the error rate difference is lower than 0.003 % for all
substitution costs above 0.5. The costs below 0.5 work
much worse. The value of cost reduction is not important if
it is above 0.5, as the efficiency is almost the same for cost
values 0.5 and 0.99.

6. Conclusions

The experimental results showed that the simplest way to
increase the efficiency of alignment of phonetic transcrip-

tions is to separate phonemes into three classes: vowels,
sonorants and obstruents, and to ‘forbid’ substitutions of
elements between these classes. Even this approach shows
much better results than a data-driven estimation of costs
for edit operations. Further optimization is possible when
the information on the most crucial phonological processes
is taken into account. Only the elision and vocalization of
/j/ dropped the error rate. The others did not add any ef-
ficiency but on the other hand they did not drop it either.
The achieved efficiency of 0.28 % error rate is almost four
times less than a baseline 1.1 % error rate of Levenshtein
algorithm.

The experiments were performed using read speech, where
the real pronunciation does not differ perceptually from
the standard Russian pronunciation and where speakers do
not differ much from each other. This may be the reason
why accounting for assimilation processes did not play a
role. The conversational speech is much more diverse. One
would expect the assimilation and vowel reduction to be
much more crucial for that kind of speech. The repetition of
these experiments on conversation speech might be a goal
of some further research.

The confusion matrices and Python code used for the exper-
iments are freely available at the web-site of ISCA Special
Interest Group on Russian Speech Analysis within the page
dedicated to Resources (http://www.forma.spbu.ru/?q=en).
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