
  Adapting the TANL tool suite to Universal Dependencies 

Giuseppe Attardi, Maria Simi 
Dipartimento di Informatica 

Largo B. Pontecorvo 3, 56127 Pisa, Italy 

E-mail: attardi@di.unipi.it, simi@di.unipi.it 

Abstract 

TANL is a suite of tools for text analytics based on the software architecture paradigm of data driven pipelines. The strategies for 
upgrading TANL to the use of Universal Dependencies range from a minimalistic approach consisting of introducing 
pre/post-processing steps into the native pipeline to revising the whole pipeline. We explore the issue in the context of the Italian 
Treebank, considering both the efforts involved, how to avoid losing linguistically relevant information and the loss of accuracy in the 
process. In particular we compare different strategies for parsing and discuss the implications of simplifying the pipeline when detailed 
part-of-speech and morphological annotations are not available, as it is the case for less resourceful languages.  The experiments are 
relative to the Italian linguistic pipeline, but the use of different parsers in our evaluations and the avoidance of language specific 
tagging make the results general enough to be useful in helping the transition to UD for other languages.  
 

Keywords:  Linguistic pipeline, dependency parsing, Universal Dependencies 
 
 
 
 

1. Introduction 

TANL (Natural Language Text Analytics) is a suite of 

tools for text analytics based on the software architecture 

paradigm of data pipelines. TANL pipelines are 

data driven, i.e. each stage pulls data from the preceding 

stage and transforms them for use by the next stage. Since 

data is processed as soon as it becomes available, 

processing delay is minimized improving data 

throughput. The processing modules can be written in 

either C++, Python or PHP and can be combined using 

few lines of scripts to produce full NLP applications. 

TANL provides a set of modules, ranging from 

tokenization to POS tagging, from parsing to NE 

recognition. A TANL pipeline can be processed in parallel 

on a cluster of computers by means of a map/reduce 

streaming framework.  

The architecture of the TANL pipeline, its modules and 

some sample applications where presented at LREC 2010 

(Attardi et al. 2010).  

Given that most of the tools are based on machine 

learning techniques, the pipeline can be used to process 

texts in several languages: English, Italian, Spanish.  

For Italian in particular we have been contributing to the 

development of training resources for the various tools: an 

Italian lexicon, a resource for training the POS tagger, 

and, along the years, several treebanks of increasing size 

for training dependency parsers: ISST-CoNLL (released 

for CoNLL-2007), MIDT (the Merged Italian 

Dependency Treebank), ISDT (the Italian version of the 

Stanford Dependencies). 

Our team joined since the beginning the Universal 

Dependencies (UD) project, a recent initiative to develop 

cross-linguistically consistent treebank annotations for 

several languages, that aims to facilitate multilingual 

parser development and cross-language parsing (Nivre, 

2015). As part of this effort, we released in May 2015 the 

first version of the Italian treebank adhering to the UD 

guidelines: UD-it 1.1. 

In this paper we analyze how to adapt the TANL linguistic 

pipeline in order to fully support the Universal 

Dependencies style of text annotation.  

Given that specific guidelines are being developed for any 

level of analysis (data format, sentence splitting, 

tokenization, POS tagging, morphology, parsing), full 

support of the new standard has an impact on the whole 

chain of linguistic tools and training resources, as well as 

their use in a cascade.   

In particular for parsing we need to carefully evaluate two 

alternative strategies: using native parsers and converters 

or using parsers directly trained on the UD resources. For 

this issue we will report the results of a comparative 

experiment for Italian. 

The benefits in return from this endeavor are the ability to 

support language analytics applications for a wider range 

of languages: the number of available UD treebanks is 

indeed growing, counting to 33 at the time of this writing. 

2. The Tanl Pipeline 

The following modules are currently available as part of 

the TANL pipeline: 

 Sentence Splitter: splits the text into sentences  

 Word Tokenizer: deals with the segmentation of a 

sentence into tokens 

 Word Aggregator: combines polyrematic expressions 

of common use into a single token (e.g. “a meno che” 

becomes “a_meno_che”) 

 POS Tagger: enriches tokens within a sentence with 

attributes representing the POS and lemma  

 Morph Splitter: splits the POS of each token into 

separate POS and morpho-features and also splits 

clitic forms into two or more tokens (e.g. the verb 

“avercelo” becomes “aver- ce- lo”) 

 Parser: parses sentences producing dependency parse 

trees. The module uses DeSR, a state-of-the-art 

multilingual dependency parser based on the 

transition-based paradigm (Attardi, 2006; Attardi et 

1672



al., 2009a and 2009b). 

 Sequence tagger: a generic tagger for sequences 

based on Conditional Markov Models, applicable to 

Named Entity tagging and SuperSense tagging. 

 Time annotation tagger based on HeidelTime 

(Strötgen and Gertz, 2013). 

The current pipeline for Italian is based on TANL POS 

tags, which are the same ones used in MIDT and ISDT 

and can therefore run smoothly with those treebanks. 

3. Universal dependencies 

Universal Dependencies are an attempt at standardization 

of syntactic annotations that provide detailed guidelines 

for all levels of linguistic analysis
1
. In particular: 

 data encoding: UTF-8; 

 data format: an extension of the tab separated 

CoNLL-X format; 

 sentence splitting: only one root per sentence; 

 tokenization: one syntactic word per token; 

multiword expressions span several tokens; no empty 

tokens or traces are allowed; 

 PoS tags and morphological features are to be taken 

from a fixed inventory (Zeman, 2008); a column with 

language specific tags is also allowed. 

 dependencies: categories from a fixed inventory 

along with careful guidelines for their use. 

3.1 Italian UD 

The core of the UD-it Italian treebank is the result of a 

conversion from the ISDT (Italian Stanford Dependency 

Treebank), released for the shared task on dependency 

parsing of Evalita-2014 (Bosco et al., 2013 and 2014). 

ISDT is a resource annotated according to the Stanford 

dependencies scheme (de Marneffe et al. 2008, 2013a, 

                                                           
1
 https://universaldependencies.github.io/docs/ 

2013b): it was obtained through a semi-automatic 

conversion process starting from an extended version of 

MIDT, the Merged Italian Dependency Treebank (Bosco, 

Montemagni, Simi, 2012).  

MIDT in turn was obtained by merging two existing 

Italian treebanks, with different annotation schemes: 

TUT, the Turin University Treebank (Bosco et al. 2000), 

and ISST-TANL, first released as ISST-CoNLL for 

CoNLL-2007 (Montemagni and Simi, 2007). The ISDT 

corpus consists of 97,500 tokens derived from the TUT 

and 81,000 tokens derived from the ISST-TANL. 

Moreover a gold test dataset of 9,442 tokens was 

produced for the Evalita 2014 shared task.  

UD-it is a larger resource including the previous texts, a 

new corpus of questions, and data obtained from ParTUT 

(the Multilingual Turin University Treebank) for a total of 

316,660 tokens (12,880 sentences). For release 1.2, UD-it 

was randomly split into train, development and test data 

sets. Both development and test include 489 sentences 

each (~12,600 tokens). 

3.2 Novelties introduced by UD 

Universal Dependencies can be seen as an evolution of 

the Stanford Dependencies into a multi- language 

framework and introduce significant novelties. Affecting 

the conversion from MIDT to UD, is for example the 

decision that articulated preposition are to be split into 

their components (article and preposition), coherently to 

what was already done (in MIDT and ISDT) for clitics. 

At the level of dependencies structure, UD introduces two 

major changes (deMarneffe et al., 2014), concerning: (i) 

the treatment of copulas and (ii) the treatment of 

prepositions with case marking.  

Stanford Dependencies already recommended a treatment 

of the copula “to be” (“essere” in Italian) as dependent of 

a lexical predicate. In UD this becomes prescriptive and is 

motivated by the fact that many languages often lack an 

overt copula. This entails that the predicate complement is 

linked directly to its subject argument and the copula 

becomes a dependent of the predicate.  

The second major change is the decision to fully adhere to 

the design principle of directly linking content words, and 

to abandon treating prepositions as a mediator between a 

modified word and its object: prepositions (but also other 

case-marking elements) are treated as dependents of the 

noun with specific case or mark labels. 

The combined effect of these two decisions leads to parse 

trees with substantially different structure from those of 

MIDT and ISDT, as illustrated in figures 2 and 3. 

Figure 2. Example parse tree in MIDT 

 

Enumerator<line> 

Sentence Splitter 

Enumerator<Vector<Token>> 

Tokenizer 

Enumerator<Vector<Token>> 

Word Aggregator 

Enumerator<Vector<Token>> 

Pos Tagger 

Enumerator<Vector<Token>> 

Morph Splitter 

Enumerator<Vector<Token>> 

SuperSense Tagger 

Enumerator<Vector<Token>> 

Parser 

Anaphora Tagger NamedEntity Tagger 

PlainText 

Figure 1. The TANL pipeline 

1673



Figure 3. Example parse tree in UD 

Moreover UD introduces an extension of the classical 

CoNLL-X tab separated format, called CoNLL-U. The 

main difference is the introduction of a notation for 

representing aggregated words (e.g. verbs with clitics or 

articulated prepositions), which are split into their 

constituents. The representation allows preserving the 

aggregated form by using a separate line, which is 

numbered with the range of the ID’s of the individual 

tokenized constituents. The following is an example from 

the guidelines: “vámonos al mar” [let’s go to the sea]: 

1-2    vámonos   _ 

1      vamos     ir 

2      nos       nosotros 

3-4    al        _ 

3      a         a 

4      el        el 

5      mar       mar 

4. Pipeline Enhancements for UD 

Relevant research questions in adapting the TANL 

linguistic pipeline are: 

(i) Which extensions to the pipeline are most appropriate 

for dealing with the new CoNLL-U format? Should 

we create a new pipeline accommodating the 

CoNLL-U format natively or just add pre-processing 

and post-processing steps for converting to/from 

CoNLL-U? 

(ii) Given that UD-it is obtained by conversion from an 

enhanced version of MIDT, should we use a MIDT 

trained parser and convert to UD afterwards or use 

an UD trained parser directly?  

(iii) Can we avoid any loss of linguistic information and 

loss of accuracy in the process? 

(iv) Can rich POS tags, which are language specific,  be 

dispensed by using word embedding features or 

word clusters? 

4.1 POS tagging and morphology 

The Universal tag set used in the UD (Zeman, 2008) 

consists of 17 categories and is not as rich as the Italian 

tag set, which consists of 37 categories.  

Moreover, for the purpose of the pipeline, the TANL POS 

tags are combined with morphological features making up 

around 165 categories, which are dealt by a single 

efficient and accurate POS and morphology tagger. 

Fortunately, this level of detail can be retained in the 

language specific XPOSTAG column of the CoNLL-U 

format. 

Writing a converter to produce the UPOSTAG column 

with universal tags it is a trivial task. Moreover the UD 

specifications introduce very detailed and potentially 

useful morphological features. Most of them can be 

obtained from the output of the TANL tagger using a 

different Morph Splitter; some however were not 

considered in the original design of the TANL tag set. 

Here are a few examples:  

 clitic pronouns (when they do not play specific 

syntactic roles) are tagged as PC; UD specifications 

require a finer grained distinction in order to identify 

reflexive and  impersonal pronouns and encode them 

as morphological features; 

 Similarly, the UD specifications for morphology 

contemplate specific features for superlatives and 

comparative adjectives or adverbs. 

The support for these additional lexical features would 

entail a revision of the lexicon and of the training resource 

for the tagger. 

While POS tags and morphological features are 

linguistically relevant, they might not be essential for the 

purpose of parsing. We will explore later whether they 

could be replaced by features extracted from 

distributional word representations, i.e. word 

embeddings, which can be created by unsupervised 

learning methods and thus can be easily produced for any 

language. 

4.2 Dealing with CoNLL-U 

In the CoNLL-U numbering scheme, multiword tokens 

are included in separate lines indexed with integer ranges 

corresponding to component tokens. Lines with 

comments may also be introduced before sentences.  

This extra information can be preserved in the TANL 

pipeline by means of the context field present in the 

representation of tokens, which can hold arbitrary 

attributes and can be nested and carried along the stages, 

even if not used. 

5. Experiments 

At LREC 2014 (Simi, Bosco, Montemagni, 2014) we 

compared the performance of a statistical parser (DeSR), 

trained on an augmented version of the Merged Italian 

Dependency Treebank (MIDT), with the results of the 

same parser directly trained on the Italian version of the 

Stanford Dependencies (ISDT). The experiments 

demonstrated that the accuracy of the DeSR parser trained 

on the reduced dependencies inventory of MIDT, 

followed by a conversion to ISDT, was slightly higher 

than the performance of the parser directly trained on 

ISDT. “Less is more” was our conclusion. 

The starting point of our investigation is the observation 

that the order in which the different tools are used may 

have an impact in the accuracy of the final result. For this 

reason, we wanted to evaluate different strategies for 

parsing, before engaging in the revision of the linguistic 

pipeline. In the experiments, three different pipeline 

strategies were compared according to the accuracy of the 

final output. In the following we describe the 

experimental setup, the parsers used in the evaluation, the 

pipeline strategies and the results obtained. 

1674



5.1 Experimental setup 

In the experiments we used as a benchmark the UD-it 1.2 

version of the Italian Treebank and its official split in 

training, development and test. 

An issue that we did not consider so far are revisions to 

the first stages of the pipeline, namely tokenization, 

sentence splitting, POS tagging and the generation of 

morphological features. For one thing, sentence splitting 

and tokenization are already compliant with the UD 

specifications; POS tagging could be revised to produce 

finer grained morphological features, but the impact on 

the final performance is expected to be minimal. This is 

confirmed by the experiments presented in section 6. 

Given that the first stages (up to the morphological 

analysis) are fixed, we are still left with alternatives on 

how to perform dependency parsing. The strategies range   

from a minimalistic approach, consisting of introducing 

post-processing steps after the native pipeline, to revising 

and adapting the pipeline to the new standard before 

parsing. 

In order to support automatic conversion into UD, the 

MIDT Treebank was extended with extra information (we 

call the enhanced version MIDT+). In particular: 

additional categories for vocative, discourse, and 

appositions (appos) had to be manually introduced
2
; 

similarly, open clausal complements had to be annotated 

manually in order to account for the subtle xcomp/ccomp 

distinction. 

The tools we developed or used for the experiments are 

the following: 

1. Morph Splitter: from a rich TANL POS tag which 

includes morphological features, it produces the 

CPOSTAG, POSTAG and MFEATS columns of the 

CoNLL-X format. This is a native tool in the TANL 

pipeline. 

2. MIDT+toUD: a converter from MIDT+ to UD in 

CoNLL-X format; it takes care of converting POS, 

morphology and dependencies and producing the 

CPOSTAG, POSTAG, MFEATS and DEPREL fields 

according to the UD specs. 

3. toCoNLL-U: a converter from CoNLL-X format to 

CoNLL-U format; it takes care of splitting articulated 

prepositions and of producing lines with index ranges 

for verbs with clitics and articulated prepositions. 

4. ConvertFeats: converts only POS and morphological 

features into the UD standard. 

Moreover we used three different state-of-the-art parsers 

in order to make our results more general. 

5.2 Dependency parsers 

In addition to DeSR, the fast transition based parser that 

we use in our pipeline, we repeated the experiments with 

two other state-of-the-art parsers, both graph-based: 

MATE (Bohnet, 2010; Bohnet and Kuhn 2012) and Turbo 

Parser (Martins et al., 2013).  

                                                           
2

 These extensions to MIDT are different from the ones 

proposed for the conversion into ISDT. 

DeSR was chosen as a representative of transition-based 

parsers for two main reasons, besides our own interest in 

developing this technology: (i) it allowed us to 

experiment with different feature sets, by exploiting its 

declarative configuration mechanism; (ii) other parsers in 

this category, in particular MaltParser (Nivre et al.), were 

consistently reported to achieve inferior results in 

previous Evalita evaluation campaigns for Italian. 

In our experiments we avoided resorting to parser 

combinations, which typically provide some small 

improvements in accuracy, since we are interested in a 

relative comparison of parser effectiveness and, besides, 

parser combinations may not be a viable solution for a 

pipeline where efficiency is important. We provide below 

a short description of the state-of-the-art parsers chosen 

for our experiments.  

DeSR MLP is a transition-based parser that uses a 

Multi-Layer Perceptron algorithm (Attardi 2006, 

Attardi et al., 2009a and 2009b). We trained it on 300 

hidden variables, with a learning rate of 0.01, and early 

stopping when validation accuracy reaches 99.5%. The 

feature model used in the experiments is detailed in 

(Attardi, Saletti, Simi 2015). 

TurboParser is a graph-based parser that uses third-order 

feature models and a specialized accelerated dual 

decomposition algorithm for making non-projective 

parsing computationally feasible (Martins et al., 2013). 

TurboParser was used in configuration “full”, enabling 

all third-order features. 

Mate is a graph-based parser that uses passive aggressive 

perceptron and exploits reach features (Bohnet, 2010; 

Bohnet and Kuhn 2012). The only configurable 

parameter is the number of iterations (set to 25).  

5.3 Pipeline strategies 

The three pipelines we have experimented with share the 

following preliminary stages
3
: 

1. Sentence splitting 

2. Tokenization 

3. POS Tagging 

Moreover we have assumed gold data as a result of the 

first stages for the three pipelines. Therefore the final 

results are discounted of errors coming from sentence 

splitting, tokenization and POS tagging. As a 

consequence, the results can only be used for the sake of 

comparison but they do not mean to account for the 

performance of the whole analysis process. The 

experiments intend to measure instead different strategies 

according to the order in which the different tools are 

applied at the parsing level. 

The tables show the LAS and UAS of the three parsers on 

the resulting parse tree with respect to the official gold 

test. The evaluation scores do not include punctuation. In 

the final results the development dataset has been 

included in the train dataset.  

                                                           
3
 Word aggregation is not performed. 

1675



5.3.1 Pipeline 1: parsers trained on MIDT+ 

In the first pipeline the conversion to UD was performed 

as post-processing step of the native MIDT pipeline. The 

parsers where trained on MIDT+, the test data were 

parsed with MIDT+ parsers and evaluated against a 

MIDT+ annotated gold standard. After conversion to UD 

in CoNLL-X format, the resulting test set was evaluated 

again. A final step takes care of producing the CoNLL-U 

format and evaluating the output against the gold 

CoNLL-U data test. The steps involved in the experiment 

(following  steps 1-3) are: 

4. Parsing with parsers trained on MIDT+ 

5. MIDT+toUD conversion, in  CoNLL-X format. 

6. Conversion to CoNLL-U format. 

Table 1 shows the results of the output of the 

corresponding three steps of this process in terms of 

Labeled Attachment Score (LAS) and Unlabeled 

Attachment Score (UAS). 

 
MIDT+ parser MIDT+toUD toCoNLL-U 

 
LAS UAS LAS UAS LAS UAS 

DeSR-MLP4 87.55 90.72 87.90 90.38 89.03 91.32 

Mate 89.99 93.33 90.52 92.93 91.22 93.45 

TurboParser 88.78 92.27 89.07 91.76 89.85 92.34 

Table 1. Results of Pipeline 1. 

5.3.2 Pipeline 2: parsers trained on UD-it in 
CoNLL-X format 

In the next experiment we trained the parsers on the same 

resources converted to the UD annotation scheme in 

CoNLL-X format, and converted the results to CoNLL-U 

afterwards, taking care of splitting articulated 

prepositions after parsing. The steps involved in the 

experiment are: 

4. Parsing with parsers trained on UD-it in CoNLL-X 

format (before splitting articulated prepositions) 

5. Conversion to CoNNL-U. 

Table 2 shows the evaluation of the output of UD parsers 

and the test data obtained after the final conversion step. 

The configuration of DeSR for UD was different from the 

case of the MIDT parser. The feature model is described 

in detail in (Attardi, Saletti, Simi 2015). For the 

experiments on the UD corpus, the base feature model was 

used with 28 additional 3
rd
 order features. MATE and Turbo 

Parser where instead used in the same configuration. 

  UD-it parser toCoNLL-U 

  LAS UAS LAS UAS 

DeSR-MLP5 87.06 89.54 88.02 90.31 

Mate 89.86 92.32 90.60 92.88 

TurboParser 88.77 91.54 89.58 92.15 

Table 2. Results of Pipeline 2. 

                                                           
4 With configuration 160-m 
5 With configuration 3-g 

5.3.3 Pipeline 3: parser trained on UD-it in 
CoNLL-U format 

As a final experiment we trained the parsers on the final 

resources in CoNLL-U format, where articulated 

prepositions are split as well. The only step involved in 

the experiment is parsing with parsers trained on UD-it in 

CoNLL-U format, after splitting articulated prepositions. 

  UD-it parser 

  LAS UAS 

DeSR-MLP-3g 87.74 90.11 

Mate 90.46 92.60 

TurboParser 89.40 92.07 

Table 3. Results of pipeline 3 

5.4 Discussion 

These experiments seem to confirm our initial intuition 

that there is an advantage for dependency parsers in 

dealing with a simpler annotation scheme, such as MIDT, 

and convert to UD as a final step. The best results in fact, 

with all the parsers we tested, where achieved through the 

process described as Pipeline 1. 

Looking in more detail at the data provided in Table 1, we 

observe that the LAS scores for the parsers trained on 

MIDT are not the highest, but the parsers seem to be able 

to predict attachments fairly well (as shown by the UAS 

scores); eventually, since the conversion step takes care of 

converting and normalizing labels, this leads to the most 

accurate parse trees, also in terms of LAS.  

In comparison the results of parsers trained directly on 

UD-it resources in CoNLL-X format are worse both in 

terms of LAS and UAS (ref. Table 2). Not surprisingly the 

simple mechanical step of splitting articulated 

prepositions (carried out by toCoNLL-U) improves the 

result in both Pipeline 1 and 2. 

Pipeline 3 performs better on average than Pipeline 2: the 

difference in the resource for training and testing is only 

the presence of additional dependencies that are easy to 

learn for a statistical parser, those connecting articles and 

prepositions to a noun (with dependency det and case 

respectively). 

6. Dispensing with language specific tags 

In the previous experiments we took the first stages of 

pipeline for granted, discounting the errors that may be 

produced in sentence splitting, tokenization and POS 

tagging. Instead of measuring the performance of the 

corresponding tools, we decided, in a different set of 

experiments, to evaluate whether POS and morphology 

could be avoided altogether. Since this linguistic 

information may not be available for some language, this 

can be seen as a way to generalize the results obtained for 

Italian.  

6.1.1 Dropping POS tags and morphology 

We started by measuring the contribution of Italian 

specific POS tags and morphology on parser accuracy by 

1676



getting rid of the fine-grained POS and morphology fields 

and retaining only the universal tags. We obtained the 

following results: 

 

  UD-it parser 

  LAS UAS 

DeSR-MLP-3g 86.92 89.51 

Mate 89.53 91.57 

TurboParser 88.45 91.40 

Table 4. Results without XPOSTAG and no morphology 

Table 4 shows that parsing performance decreases for all 

the parsers but the effect is not as dramatic as could be 

expected (less than 1% decrease in LAS wrt results 

reported in Table 3). This is encouraging.    

6.1.2 Using word clusters 

We further explored whether one could replace the 

language specific POS with information obtained from 

word embeddings. 

We trained word embeddings using word2vec (Mikolov 

et al., 2013) on the text extracted from the Italian 

Wikipedia using WikiExtractor
6
. We tested vectors of size 

50, 100 and 200.  

We then produced clusters from these vectors using the 

dbscan algorithm
7
 with distance sizes of 0.8, 1.2 and 1.6. 

This produces sets of clusters of sizes 59, 575 and 975 

respectively. We trained the parsers using the cluster 

number as a feature instead of the language specific POS, 

obtaining the following results: 

 

  UD-it parser  

  clusters LAS UAS 

DeSR-MLP 59 87.53 90.40 

DeSR-MLP 575 87.40 90.06 

DeSR-MLP 975 85.93 89.15 

TurboParser 59 89.50 92.22 

TurboParser 575 88.89 91.57 

TurboParser 975 89.18 92.01 

Table 5. Results using clusters instead of POS. 

We are not reporting results with the Mate parser, since it 

cannot be configured for dealing with alternative features 

to POS tags and morphology, and using clusters instead of 

POS causes a major drop in accuracy.  

By comparing the best results in Table 5 (obtained with 

fewer clusters) with results in Table 3, we can notice that 

they are comparable and the loss in accuracy involved in  

giving up language specific POS and morphology, is 

nearly recovered by information gathered by an 

unsupervised process of computing word clusters. 

 

                                                           
6 https://github.com/attardi/wikiextractor 
7 http://scikit-learn.org/stable/modules/generated/ 

   sklearn.cluster.dbscan.html 

7. Conclusions 

Moving from the native annotation style of the treebank 

of one language to the common style of Universal 

Dependencies impacts the whole pipeline used to perform 

text analysis. The strategies for upgrading to the use of 

UD range from a minimalistic approach consisting of 

introducing pre/post-processing steps into the native 

pipeline or revising the whole pipeline. 

We explored the issue in the context of the Italian 

Treebank, considering both the efforts involved, how to 

avoid losing linguistically relevant information and the 

loss of accuracy in the process. 

The experiments were aimed at finding the best trade-off 

between the efforts involved in revising the TANL 

pipeline and accuracy of the resulting output. Efficiency 

was also considered as a side but important issue. 

This evaluation may influence the decision of whether to 

maintain the Italian Treebank in the intermediate MIDT+ 

annotation style or to abandon it in favour of UD. In the 

first case, extending the treebank with new data should be 

done by producing and revising the MIDT+ annotations. 

On the one hand this scheme is simpler for human 

annotators and makes the more performant Pipeline 1 

viable, but on the other hand it forces contributors to learn 

an additional annotation language and corresponding 

guidelines. MIDT served well its purpose of bridging two 

pre-existing Italian resources, but its design choices were 

mostly dictated by practical considerations rather than 

linguistically motivated. In the long run, as soon as new 

gold data becomes available for Italian annotated directly 

in UD, we will have to consider abandoning the MIDT 

resource and consider restructuring strategies as a 

pre-processing step of the UD parser, or find other ways 

to improve on parser technology. 

Considering the three parsers we tested, we observe that 

graph based parsers consistently achieve higher accuracy. 

While for certain applications or for producing new gold 

resources one needs to use the most accurate parser that he 

can get, a transition-based parser still has an advantage in 

raw parsing speed and is competitive for large scale or 

online applications
8
. 

The experience reported here might be useful in helping 

the transition to UD for other languages, since similar 

issues will have to be dealt. 

8. Acknowledgements    

Simonetta Montemagni and Alessandro Lenci contributed 

to the development of TANL Pipeline. With Cristina 

Bosco, they are part of the team developing UD 

guidelines for Italian and the UD-it treebank. 

9. References 

Giuseppe Attardi. 2006. Experiments with a 

Multilanguage Non-Projective Dependency Parser, 

Proc. of the Tenth Conference on Natural Language 

                                                           
8 Disregarding speed-ups due to multithreading, the parsing time 

to analyze the test set was around 16 seconds for DeSR, 47 

seconds for Turbo Parser and nearly 3 minutes for Mate. 

1677



Learning, New York, (NY). 

Giuseppe Attardi, Felice Dell’Orletta. 2009. Reverse 

Revision and Linear Tree Combination for Dependency 

Parsing. In: Proc. of Human Language Technologies: 

The 2009 Annual Conference of the NAACL, 

Companion Volume: Short Papers, 261–264. ACL, 

Stroudsburg, PA, USA. 

Giuseppe Attardi, Felice Dell’Orletta, Maria Simi, Joseph 

Turian. 2009. Accurate Dependency Parsing with a 

Stacked Multilayer Perceptron. In: Proc. of Workshop 

Evalita 2009, ISBN 978-88-903581-1-1. 

G. Attardi, S. Dei Rossi, M. Simi. The Tanl Pipeline. 

Proc. of LREC Workshop on WSPP, Malta, 2010. 

G. Attardi, S. Saletti, M. Simi. Evolution of Italian 

Treebank and Dependency Parsing towards Universal 

Dependencies, Proceedings of CLIC-it 2015, Trento, 

Dec 2015. 

Bernd Bohnet. 2010. Top accuracy and fast dependency 

parsing is not a contradiction. In Proc. of Coling 2010, 

pp. 89–97, Beijing, China. Coling 2010 Organizing 

Committee. 

Bernd Bohnet and Jonas Kuhn. 2012. The Best of Both 

Worlds -- A Graph-based Completion Model for 

Transition-based Parsers. Proceedings of the 13th 

Conference of the European Chapter of the Association 

for Computational Linguistics (EACL), pages 77–87. 

Cristina Bosco, Vincenzo Lombardo, Leonardo Lesmo, 

Daniela Vassallo. 2000. Building a treebank for Italian: 

a data-driven annotation schema. In Proceedings of 

LREC 2000, Athens, Greece. 

Cristina Bosco, Simonetta Montemagni, Maria Simi. 

2012. Harmonization and Merging of two Italian 

Dependency Treebanks, Workshop on Merging of 

Language Resources, in Proceedings of LREC 2012, 

Workshop on Language Resource Merging, Istanbul, 

May 2012, ELRA, pp. 23–30. 

Cristina Bosco, Simonetta Montemagni, Maria Simi. 

2013. Converting Italian Treebanks: Towards an Italian 

Stanford Dependency Treebank. In: ACL Linguistic 

Annotation Workshop & Interoperability with 

Discourse, Sofia, Bulgaria. 

Andre Martins, Miguel Almeida, and Noah A. Smith. 

2013. Turning on the turbo: Fast third-order 

non-projective turbo parsers. In: Proc. of the 51st 

Annual Meeting of the ACL (Volume 2: Short Papers), 

617–622, Sofia, Bulgaria. ACL. 

Cristina Bosco, Felice Dell’Orletta, Simonetta 

Montemagni, Manuela Sanguinetti, Maria Simi. 2014. 

The Evalita 2014 Dependency Parsing task, CLiC-it 

2014 and EVALITA 2014 Proceedings, Pisa University 

Press, ISBN/EAN: 978-886741-472-7, 1–8. 

Marie-Catherine de Marneffe and Christopher D. Manning. 

2008. The Stanford typed dependencies representation. 

In COLING Workshop on Cross-framework and 

Cross-domain Parser Evaluation. 

Marie-Catherine de Marneffe, Miriam Connor, Natalia 

Silveira, Bowman S. R., Timothy Dozat, Christopher 

D. Manning. 2013. More constructions, more genres: 

Extending Stanford Dependencies, Proc. of the Second 

International Conference on Dependency Linguistics 

(DepLing 2013), Prague, August 27–30, Charles 

University in Prague, Matfyzpress, Prague, 187–196. 

Marie-Catherine de Marneffe and Christopher D. 

Manning. 2013. Stanford typed dependencies manual, 

September 2008, Revised for the Stanford Parser v. 3.3 

in December 2013. 

Marie-Catherine De Marneffe, Timothy Dozat,  Natalia 

Silveira, Katri Haverinen, Filip Ginter, Joakim Nivre, 

Christopher D. Manning. 2014. Universal Stanford 

Dependencies: a Cross-Linguistic Typology. In: Proc. 

LREC 2014, Reykjavik, Iceland, ELRA. 

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg 
Corrado, Jeff Dean. 2013. Distributed 
representations of words and phrases and their 
compositionality. Advances in Neural Information 
Processing Systems. 

Simonetta Montemagni, Maria Simi. 2007. The Italian 

dependency annotated corpus developed for the 

CoNLL–2007 shared task. Tech. Report, ILC–CNR. 

Joakim Nivre. 2015. Towards a Universal Grammar for 

Natural Language Processing, CICLing (1) 2015: 3–16. 

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006. 

Maltparser: a data-driven parser-generator for 

dependency parsing. In Proceedings of LREC-2006, 

volume 2216–2219. 

Maria Simi, Cristina Bosco, Simonetta Montemagni.  

2008. Less is More? Towards a Reduced Inventory of 

Categories for Training a Parser for the Italian Stanford 

Dependencies. In: Proc. LREC 2014, 26–31, May, 

Reykjavik, Iceland, ELRA. 

Jannik Strötgen and Michael Gertz. 2013. Multilingual 

and Cross-domain Temporal Tagging. Language 

Resources and Evaluation, number 1, 269–298. 

Springer. 

Daniel Zeman. 2008. Reusable Tagset Conversion Using 

Tagset Drivers. In Proceedings of LREC 2008. 

10. Language Resource References 

ISST-CoNLL: http://medialab.di.unipi.it/isst/ 

MIDT: http://medialab.di.unipi.it/wiki/MIDT 

ISDT:http://medialab.di.unipi.it/Evalita2014/ 

       resources.html 

TUT: http://www.di.unito.it/~tutreeb/ 

UD: https://lindat.mff.cuni.cz/repository/xmlui/handle/ 

       11234/1-1548 

 

 

1678


