
Correcting Errors in a Treebank Based on Tree Mining

Kanta Suzuki1, Yoshihide Kato2 and Shigeki Matsubara1

1Graduate School of Information Science, Nagoya University
2Information & Communications, Nagoya University

ksuzuki@db.ss.is.nagoya-u.ac.jp

Abstract
This paper provides a new method to correct annotation errors in a treebank. The previous error correction method constructs a pseudo
parallel corpus where incorrect partial parse trees are paired with correct ones, and extracts error correction rules from the parallel
corpus. By applying these rules to a treebank, the method corrects errors. However, this method does not achieve wide coverage of
error correction. To achieve wide coverage, our method adopts a different approach. In our method, we consider that an infrequent
pattern which can be transformed to a frequent one is an annotation error pattern. Based on a tree mining technique, our method seeks
such infrequent tree patterns, and constructs error correction rules each of which consists of an infrequent pattern and a corresponding
frequent pattern. We conducted an experiment using the Penn Treebank. We obtained 1,987 rules which are not constructed by the
previous method, and the rules achieved good precision.

Keywords: error correction, synchronous tree substitution grammar, FREQT

1. Introduction

It is inevitable for annotated corpora to contain errors
caused by manual or semi-manual annotation process. So,
detecting and correcting errors in annotated corpora are im-
portant tasks. Many studies suggest methods of detecting or
correcting errors in various kinds of annotated corpora (see
(Dickinson, 2015) for a survey). There are several meth-
ods of detecting annotation errors in a phrase structure tree-
bank (Dickinson and Meurers, 2003; Ule and Simov, 2004;
Dickinson and Meurers, 2005; Boyd et al., 2007; Dickin-
son, 2009; Przepiórkowski and Lenart, 2012; Kulick et al.,
2013; Faria, 2014). However, there is little work on tree-
bank error correction.

One exception is the work of Kato and Matsubara (2010).
Their method constructs a pseudo parallel corpus where
incorrect parse trees are paired with correct ones, and ex-
tracts error correction rules from the parallel corpus. The
rules transform incorrect tree patterns to correct ones. By
applying these rules to a treebank, the method corrects er-
rors. However, this method does not achieve wide coverage
of error correction.

To solve this problem, we propose another approach to con-
struct error correction rules. Our method does not construct
a pseudo parallel corpus. In our method, we consider that
an infrequent tree pattern which can be transformed to a
frequent one is an annotation error pattern. Based on a tree
mining technique, our method seeks such infrequent pat-
terns efficiently. The method constructs error correction
rules by pairing the infrequent tree patterns with the fre-
quent ones. We conducted an experiment using the Penn
Treebank. We obtained 1,987 rules which are not con-
structed by the previous method, and the rules achieved
good precision.

This paper is organized as follows: Section 2 introduces the
previous method of correcting errors in a treebank. Section
3 explains our method which is based on tree mining. Sec-
tion 4 reports experimental results using the Penn Treebank.

NP VP

S

VPTO

NP VP

S

VP

PP

TO

targetsource

VB PPVB

Figure 1: An example of STSG rule

2. Previous Work
Kato and Matsubara (2010) propose a method of correct-
ing annotation errors in a treebank. Their method is based
on synchronous tree substitution grammar (STSG) (Eisner,
2003). An STSG defines a tree-to-tree mapping, and con-
sists of rules each of which is defined as a pair of trees
called elementary trees. The one tree is called source,
and the other is called target. Figure 1 shows an exam-
ple of STSG rule. The rule transforms the structure which
matches the source into the target’s structure. To correct an-
notation errors in a treebank, the method constructs STSG
rules which transform incorrect structures to correct one
and applies them to the treebank.
The STSG rules are constructed as follows:

1. Make a pseudo parallel corpus, which is a collection
of pairs of partial parse trees which cover a same word
sequence.

2. Extract STSG rules which represent a correspondence
in the pseudo parallel corpus.

To select useful rules for error correction, they define a
score function. Let ⟨τs, τt⟩ be a rule whose source is τs
and whose target is τt. The score of ⟨τs, τt⟩ is defined as
follows:

Score(⟨τs, τt⟩) =
f(τt)

f(τs) + f(τt)

1540

�����������	������

�

���� ���

���

��	
���	

�
�

�
	��� �� ��

�

������

�

��

�

	���

��

�� ��

��

��

�� ��

��� 	��� ����

��

��

�

����������	
��������

�

���� ���

���

��	
���	

�
�

�
	��� �� ��

�

������

�

��

�

	���

��

�� ��

��

��

�� ��

��� 	��� ����

��

��

�

����������	
��������

�

���� ���

���

����

�
�

������� �� ��

�

������

�

��

�

�����

��

�� ���

��

��

��

����

����
���

��	��

Figure 2: Examples of parse trees

where f(τ) is the frequency of an elementary tree τ in a
treebank. They assume that the frequency of an incorrect
parse tree in a treebank is very low. The lower f(τs) is, the
higher Score(⟨τs, τt⟩) is. STSG rules with high scores are
useful for error correction.
For example, let us consider a treebank which includes the
parse trees shown in Figure 2. The parse tree (a) is correct,
but (b) and (c) include a same annotation error. In (a) and
(b), the word sequence “to sell at the same time” has differ-
ent partial parse trees enclosed within the dotted line. The
method makes a pair of these partial parse trees and extracts
the STSG rule shown in Figure 1 from the pair. Applying
this rule to the treebank, we can correct the error in (b).
Moreover, the error in (c) can be corrected by this rule.
However, this method has a problem. It can not extract
any rule from a partial parse tree assigned to a word se-
quence which occurs only once in a treebank. So, annota-
tion errors included in only such partial parse tree can not
be corrected by the method. Let us consider another case
where the treebank does not include (b). In (c), the word
sequence “to trade on Nasdaq” has incorrect partial parse
tree. But, the method can not makes a pair of partial parse
trees enclosed within the dotted lines in (a) and (c). This

S → NP VP

VP → TO VP

2

NP → -NONE-

1

-NONE- → *

1

TO → to

1

VP → VB PP

2

VB → sell

1

NP → DT JJ NN

2

DT → the

1

NN → time

2

JJ → same

3

PP → IN NP

2

IN → at

1

Figure 3: A derivation tree

is because these partial parse trees have different word se-
quences. This means that it constructs no rule. As the re-
sult, the method fails to correct the annotation error in (c).

3. Correcting Errors by Tree Mining
To solve the problem described in Section 2, we adopt a
different approach. Our method does not construct a pseudo
parallel corpus. STSG rules are constructed based on a tree
mining technique.

3.1. Definition
In this section, we give some definitions.

3.1.1. Derivation Tree
In our method, a parse tree is represented by a derivation
tree. Figure 3 shows the derivation tree corresponding to
the partial parse tree enclosed within the dotted line in Fig-
ure 2(a). A derivation tree for a parse tree is defined as
follows: for each inner node v of a parse tree, there exists
a node v′ which corresponds to v. v′ preserves the parent-
child relations on v. The label of v′ is the following gram-
mar rule:

l(v) → l(c1) l(c2) ... l(cn)

where l(v) is the label of v and c1, c2, . . . , cn are the chil-
dren of v. We label the edge between v′ and c′i with i in
order to indicate that a grammar rule l(c′i) is applied to the
i-th element of the right-hand side of l(v′).

3.1.2. Pattern
We define a pattern as a connected subgraph included in a
tree. Figure 4 shows examples of patterns. τ1, τ2 and τ3 are
included in the derivation tree shown in Figure 3. A pattern
with k nodes is called k-pattern.
In a derivation tree pattern, if no grammar rule is applied
to an element in the right-hand side of a grammar rule as-
signed to a node, we call such element leaf element. A leaf
element corresponds to a leaf node of the original parse tree
pattern. In Figure 4, leaf elements are underlined.

3.1.3. Error Correction Rule
As described in Section 2, Kato and Matsubara (2010) as-
sume that the frequency of an incorrect pattern is very low.
According to this assumption, we consider that an infre-
quent pattern which can be transformed to a frequent one is
an annotation error pattern. Our method seeks such patterns
in a treebank and constructs STSG rules which transform
them to corresponding frequent ones.

1541

� ���� ��

�

��������

��

� �������

������	 ��

�

�����
�	��

�

�

�

�
�	��
���	�����

�
�	��
�

� ���� ��

������	 ��

�

������� ��

�

�

�

�

������	���������

������	�

� ���� ������

������	 ��

�

�������

�

�

�

�

������	���������

������	�

� ���� �� ��

�����
� ��

�

��

�

���������
������

��������

Figure 4: Examples of patterns

The following formula represents whether or not two pat-
terns τ and τ ′ can be transformed to each other:

Trans(τ, τ ′) ≡
(
root(τ) = root(τ ′)

∧ yield(τ) = yield(τ ′)
)

where root(τ) is the left-hand side of the grammar rule of
τ ’s root and yield(τ) is the list of τ ’s leaf element. τ3 and
τ4 shown in Figure 4 can be transformed to each other since
Trans(τ3, τ4) is satisfied.
We say that a pattern τ is frequent if f(τ) ≥ σ where σ is
a threshold. Let T be a treebank. Let F (T) be the set of
frequent patterns in T . The following set Rule(T) is the
set of rules our method constructs from T :

Rule(T) = {⟨τs, τt⟩ |τs /∈ F (T) ∧ τt ∈ F (T)

∧ Trans(τs, τt)}

3.2. Outline of Our Method
If we can enumerate all tree patterns included in a treebank
and construct STSG rules from them, we can obtain any
kind of rules which can be extracted from the treebank.
However, such naive method is intractable, because it re-
quires an exponential computational complexity. To con-
struct rules efficiently, our method avoids the enumeration
of patterns which do not contribute to error correction by
using tree mining technique.
The procedure of our method is as follows:

1. Enumerate frequent patterns in a treebank by using a
tree mining algorithm FREQT (Asai et al., 2004).

Algorithm FREQT
Input: A threshold σ > 0, a treebank T .
Output: The set F of all frequent patterns in T .
F1 := ∅
for each 1-pattern τ which appears in T do

if f(τ) ≥ σ then
F1 := F1 ∪ {τ}

k := 2
while Fk−1 ̸= ∅ do
Fk := ∅
for each τ ∈ Fk−1 do

for each τ ′ s.t. τ ⇒ τ ′ do
if f(τ ′) ≥ σ then
Fk := Fk ∪ {τ ′}

k := k + 1
Return F = F1 ∪ F2 ∪ · · · ∪ Fk−1.

Figure 5: The algorithm of FREQT

S → NP VP

VP → TO VP

2

S → NP VP

S → NP VP

VP → TO VP

2

VP → VB PP

2

S → NP VP

1

NP → -NONE-

S → NP VP

1

NP → -NONE- VP → TO VP

2

*

*

*

*

〈NP〉

〈NP, TO〉

〈-NONE-〉

⇒

⇒

Figure 6: Examples of expansions

2. Seek infrequent patterns which can be transformed to
frequent ones.

3. Construct STSG rules which transform infrequent pat-
terns to frequent ones.

3.3. FREQT
In this section, we explain FREQT (Asai et al., 2004),
which is the basis of our method. FREQT efficiently enu-
merates all frequent patterns in a tree set. Figure 5 shows
the algorithm of FREQT. First, FREQT creates the set F1

of all frequent 1-patterns by traversing a treebank T . Next,
the algorithm generates candidate 2-patterns by expanding
each frequent 1-pattern τ ∈ F1 by attaching a new node
(We write τ ⇒ τ ′ when τ ′ is obtained by expanding τ). For
each candidate 2-pattern τ ′, if f(τ ′) ≥ σ, τ ′ is added to F2.
The algorithm iteratively expands frequent (k−1)-patterns,
and adds frequent k-patterns to Fk. By continuing this pro-
cess until no patterns are generated, FREQT enumerates all
frequent patterns.
FREQT uses the rightmost expansion technique. When
FREQT expands a pattern, a new node must be attached
to a node on the rightmost branch of the pattern. This en-
ables FREQT to enumerate all candidate pattern without
overlapping. Figure 6 shows examples of expansions.

3.4. Constructing Error Correction Rules
After calculating F (T) by FREQT, our method seeks in-
frequent source patterns by expanding infrequent patterns.

1542

Algorithm Enumerate infrequent patterns
Input: A threshold σ > 0, a treebank T , the set F of all frequent patterns in T .
Output: The set I of infrequent patterns which includes all source patterns.
C1 := ∅
I1 := ∅
for each 1-pattern τ which appears in T do

if there exists τt ∈ F s.t. root(τ) = root(τt) then
C1 := C1 ∪ {τ}
if f(τ) < σ then
I1 := I1 ∪ {τ}

k := 2
while Ck−1 ̸= ∅ do
Ck := ∅, Ik := ∅
for each τ ∈ Ck−1 do

for each τ ′ s.t. τ ⇒ τ ′ ∧ f(τ ′) > 0 do
if there exists τt ∈ F s.t. root(τ ′) = root(τt) and dl(τ ′) is a prefix of yield(τt) then
Ck := Ck ∪ {τ ′}
if f(τ ′) < σ then
Ik := Ik ∪ {τ ′}

k := k + 1
Return I = I1 ∪ I2 ∪ · · · ∪ Ik−1.

Figure 7: The algorithm of enumerating infrequent patterns

For an infrequent pattern τs, if there exists some τt ∈ F (T)
s.t. Trans(τs, τt), our method constructs the rule ⟨τs, τt⟩.

3.4.1. Efficient Enumeration of Infrequent Source
Patterns

To seek infrequent source patterns efficiently, we focus on
leaf elements of patterns. According as pattern expansion
proceeds from left to right, it is determined whether or not
a grammar rule is applied to a leaf element. Once a leaf el-
ement is skipped, it never has a grammar rule. We call such
element determined leaf. In Figure 4 and 6, determined
leaves are marked with an asterisk. Our method expands
a pattern τ only if there exists a frequent pattern τt which
fulfills the following conditions:

1. root(τ) = root(τt).

2. dl(τ) is a prefix of yield(τt).

where dl(τ) is the list of determined leaves of a pattern τ . If
a pattern τ has no pattern τt satisfying the above conditions,
the pattern τ does not contribute to constructing Rule(T).
This is because there is no target pattern τt ∈ F (T) for any
τ ′ s.t. τ ⇒∗ τ ′. That is, Trans(τ ′, τt) does not hold for
any τ ′ and τt. As an example, let us consider the patterns
τ4 and τ5 shown in Figure 4. Here, dl(τ5) is ⟨NP, VP⟩
and yield(τ4) is ⟨NP, TO, VB, PP⟩. This pair does not
fulfill the condition 2. For any τ ′5 s.t. τ5 ⇒∗ τ ′5, dl(τ ′5)
and yield(τ ′5) are in the form of ⟨NP, VP, . . . ⟩. Therefore,
yield(τ ′5) ̸= yield(τ4). This also means that Trans(τ ′5, τ4)
does not hold.
Figure 7 shows our algorithm of enumerating infrequent
patterns.

4. Experiment
We performed an experiment to evaluate our method. We
applied our method to 49,208 sentences in Wall Street Jour-

nal section of the Penn Treebank (Marcus et al., 1993). We
implemented our method in Java. The experiment was run
on a PC (Intel core i7 3.40GHz) with 8GB main memory,
running Windows 7 Professional. The threshold σ was set
to 100. We obtained 2,379 rules. This took about 34 min-
utes1. In these rules, 1,987 rules can not be obtained by
Kato and Matsubara’s method. To measure the precision of
the rules, we applied rules to the WSJ section. Because
it is time-consuming and expensive to evaluate all rules,
we only evaluated the rules with the 300 highest scores.
A person (not the authors) manually checks whether or not
each rule corrects errors. The precision p is measured in the
same way as (Kato and Matsubara, 2010):

p =
of the positions where an error is corrected

of the positions to which some rule is applied

The number of the positions to which 300 rules are applied
is 605. The number of the positions where an error is cor-
rected is 466. Therefore, the precision of our method is
77.0%. The precision of the previous method (Kato and
Matsubara, 2010) is 71.6%. We measured the precision of
each rule. The precision of 196 rules achieved 100% preci-
sion. 155 of the 196 rules could not be obtained by Kato and
Matsubara’s method. This result shows that our method can
obtain the useful error correction rules which the previous
method can not obtain. Figure 8 shows some examples of
correcting errors which our method correct but the previous
method does not.

1A naive method which enumerates all patterns could not
work.

1543

���

��

�� �� ��

�� ��	�

������
��
�	
��
����������

�

��

��� ��

��

������

� 	
�
�	 ���

�

��

�� ��

�� ��

�� ��	�
������
��
�	�
��
����������

�

��

��� ��

��

������

� 	
�
�	 ���

�

���

�� ����

�� �����

 ��
� �

�� ��

�

!"!

�

���������	����
��#��
�����
 """

��

�� �� ��

��� ��
� �

��

�

!"!

�

���������	����
��#��
�����
 """

���

��

��

$�

��

����
�� ��
 �%�����
�
���
�"""

�

��

��� !&!

��

��
���'#�����
����
�%��� 	��(&

����
��

��

$� ��

��
 �%�����
�
���
�"""

�

��

��� !&!

��

��
���'#�����
����
�%��� 	��(&

���

��

))

��

��

�����
����
�%�
�
�������
��������

�

��

������

�

��

��

��

��

�����
����
�%�
�
�������
��������

�

��

������

�

���

�� ��

�

������

�

��

��

����

��

��

��

��	�
�	����	����

����

�*+����

����

��������	��������

�
�� ���

���
��

*��

����	�

��
�

�

�

�

�

����

��

��

��

��	�
�	����	����

����

�*+����

����

��������	��������

�
�� ���

���
��

*��

Figure 8: Examples of correcting syntactic annotation errors

5. Conclusion

In this paper, we proposed a new method of correcting an-
notation errors in a treebank. Our method is based on tree
mining. An experiment showed that our method can ob-
tain rules which the previous method can not obtain. The
proposed method and the previous one are complementary.
That is, by both method, we can expect to achieve wider
coverage of error correction.

If a source pattern has several target patterns, our method
simply transforms the source to the most frequent target.
To improve the precision, we will explore how to select an
appropriate target.

6. Acknowledgements
This research was partially supported by the Grand-in-Aid
for Scientific Research (B) (No. 26280082) of JSPS.

1544

7. Bibliographical References
Tatsuya Asai, Kenji Abe, Shinji Kawasoe, Hiroshi

Sakamoto, Hiroki Arimura, and Setsuo Arikawa.
2004. Efficient substructure discovery from large semi-
structured data. IEICE Transactions on Information and
Systems, E87-D(12):2754–2763.

Adriane Boyd, Markus Dickinson, and W. Detmar Meurers.
2007. Increasing the recall of corpus annotation error
detection. In Proceedings of the 6th Workshop on Tree-
banks and Linguistic Theories, pages 19–30.

Markus Dickinson and W. Detmar Meurers. 2003. De-
tecting inconsistencies in treebanks. In Proceedings of
the 2nd Workshop on Treebanks and Linguistic Theories,
pages 45–56.

Markus Dickinson and W. Detmar Meurers. 2005. Prune
diseased branches to get healthy trees! How to find er-
roneous local trees in a treebank and why it matters. In
Proceedings of the 4th Workshop on Treebanks and Lin-
guistic Theories, pages 41–52.

Markus Dickinson. 2009. Similarity and dissimilarity in
treebank grammars. In Current Issues in Unity and Di-
versity of Languages: Collection of the papers selected
from the 18th International Congress of Linguists, pages
1597–1611.

Markus Dickinson. 2015. Detection of annotation errors in
corpora. Language and Linguistics Compass, 9(3):119–
138.

Jason Eisner. 2003. Learning non-isomorphic tree map-
pings for machine translation. In Proceedings of the 41st
Annual Meeting on Association for Computational Lin-
guistics, pages 205–208.

Pablo Faria. 2014. Using dominance chains to detect anno-
tation variants in parsed corpora. In 10th IEEE Interna-
tional Conference on e-Science, volume 2, pages 25–32.

Yoshihide Kato and Shigeki Matsubara. 2010. Correcting
errors in a treebank based on synchronous tree substitu-
tion grammar. In Proceedings of the ACL 2010 Confer-
ence Short Papers, pages 74–79.

Seth Kulick, Ann Bies, Justin Mott, Mohamed Maamouri,
Beatrice Santorini, and Anthony Kroch. 2013. Using
derivation trees for informative treebank inter-annotator
agreement evaluation. In Proceedings of the 2013 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, pages 550–555.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated corpus
of English: the Penn Treebank. Computational Linguis-
tics, 19(2):313–330.

Adam Przepiórkowski and MichałLenart. 2012. Simulta-
neous error detection at two levels of syntactic anno-
tation. In Proceedings of the 6th Linguistic Annotation
Workshop, pages 118–123.

Tylman Ule and Kiril Simov. 2004. Unexpected produc-
tions may well be errors. In Proceedings of the 4th Inter-
national Conference on Language Resources and Evalu-
ation, pages 1795–1798.

1545

