
Lemmatization and morphological tagging in German and Latin: A
comparison and a survey of the state-of-the-art

Steffen Eger1, Rüdiger Gleim2, Alexander Mehler2
1 Ubiquitous Knowledge Processing Lab, Technische Universität Darmstadt, Germany

2Text Technology Lab, Goethe Universität Frankfurt am Main, Germany
eger@ukp.informatik.tu-darmstadt.de,{gleim,mehler}@em.uni-frankfurt.de

Abstract
This paper relates to the challenge of morphological tagging and lemmatization in morphologically rich languages by example of
German and Latin. We focus on the question what a practitioner can expect when using state-of-the-art solutions out of the box.
Moreover, we contrast these with old(er) methods and implementations for POS tagging. We examine to what degree recent efforts in
tagger development pay out in improved accuracies — and at what cost, in terms of training and processing time. We also conduct
in-domain vs. out-domain evaluation. Out-domain evaluations are particularly insightful because the distribution of the data which is
being tagged by a user will typically differ from the distribution on which the tagger has been trained. Furthermore, two lemmatization
techniques are evaluated. Finally, we compare pipeline tagging vs. a tagging approach that acknowledges dependencies between
inflectional categories.

Keywords: morphological tagging, lemmatization, morphologically rich languages

1. Introduction
Lemmatization and part-of-speech (POS) tagging are criti-
cal preprocessing steps for many natural language process-
ing (NLP) tasks such as information retrieval, knowledge
extraction, or semantic analysis. In morphologically rich
languages such as German and Latin, both problems are
non-trivial due to the variability of lexical forms. This re-
sults both in large tagsets for POS tagging — which list
such inflectional categories as case, gender, degree,
etc., besides coarse-grained POS labels — and a large
number of (potentially unseen) forms associated with each
lemma. In this work, we survey tagging and lemmatization
techniques for the two languages mentioned. Our survey
includes both older, such as the TreeTagger (Schmid, 1994)
and TnT (Brants, 2000), and more modern approaches to
tagging and lemmatization. Although our expectation is
clearly that technology steadily improves with time, it is
apropri not obvious how large the gap between older and
more modern approaches is, and also what the ordering of
the most recent generation of systems is. We test our sys-
tems under the following requirements:1

• Ideally, we would want a learned system to perform
well on the distribution (a specific text genre, histori-
cal language variant, etc.) on which it has been trained
(in-domain (ID)) but also to perform decently on cor-
pora of similar but different genres, registers, language
varieties, etc. (out-domain (OD)).

• Since coarse-grained POS tagging may be insufficient
for linguistic applications and unsatisfactory for prac-
titioners, we expect a system to perform well on fine-
grained morphological tagging, not only on coarse-
grained POS labels.

1An ideal system can also make use of the fact that there
are strong dependencies between POS tagging and lemmatization,
which should substantially improve its performance relative to ap-
proaches where the tasks are treated independently (Müller et al.,
2015).

• Finally, run times of systems may be of considerable
interest for practitioners. Therefore, we include both
training and testing time estimations of the different
techniques.

2. Lemmatization
We view lemmatization as the problem of transforming a
word form into its canoncial form, or lemma. In a machine
learning context,2 lemmatization has e.g. been considered
as a character-level string transduction process (Dreyer et
al., 2008; Nicolai et al., 2015; Eger, 2015), a prefix and suf-
fix transformation problem (Jursic et al., 2010; Gesmundo
and Samardzic, 2012) or as a pattern matching task (Durrett
and DeNero, 2013; Ahlberg et al., 2014). While character-
level string transducers may yield excellent results (Nico-
lai et al., 2015), particularly when trained and tested on
lists of words randomly extracted from a lexicon (Eger,
2015), they tend to be slower to learn and typically consider
the lemmatization problem in isolation, ignoring contextual
word form cues.3

In this work, we experiment with two approaches to lemma-
tization, both based on prefix and suffix transformations.
LemmaGen (Jursic et al., 2010) learns ‘ripple down rules’
(Compton and Jansen, 1988), that is, tree-like decision

2Alternatively, lemmatization can also be implemented with
the help of a lexicon. Problematic about lexicons is not only that
they are hard to acquire but also that performance is usually com-
paratively low: lexicons cannot discriminate between alternative
readings (being unaware of the distributions of forms in real text)
and they cannot store an infinite number of words. However, a
lexicon could typically ‘assist’ a learned system, e.g., via features
that trigger on whether a form occurs in the lexicon (e.g., in a
similar manner as outlined below).

3In addition, we found in preliminary experiments that for
real-world lemmatization, where forms in texts must be lemma-
tized whose distribution is marked by many irregular forms, sim-
pler systems, such as prefix and suffix transformation systems,
may be competitive with the more sophisticated string transduc-
ers.

1507



structures, from pairs of strings. Rule conditions are suf-
fixes of word forms, and rule consequents are transforma-
tions which replace the suffix in question by a new suffix.
The second approach we experiment with is the casting
of lemmatization as a classification task (Gesmundo and
Samardzic, 2012), which we call LAT: lemmatization is
viewed here as a 4-tuple indicating the prefix and suffix
transformations involved in the lemmatization process. For
example, the transformation of German verb form gespielt
into its lemma spielen is encoded by the tuple (2, ∅, 1, en),
indicating that, to derive spielen, the first two characters
of gespielt are replaced by the empty string, and the last
character is replaced by en. This compact encoding allows
to view lemmatization as a classification problem where
the size of the output space is relatively small, on the or-
ders of at most hundreds or thousands of labels. Moreover,
lemmatization can then also be treated as a sequence label-
ing problem, where dependence between subsequent labels
may be taken into account.

3. POS tagging
POS tagging (or sequence labeling) has witnessed several
milestones such as including dependencies between output
labels (as in Markov models such as HMMs or CRFs), the
broad use of lexical features (Ratnaparkhi, 1996; Toutanova
et al., 2003), or the concept of the margin introduced in
SVMs. The most recent class of taggers is characterized
by the availability to include word representations learned
from unlabeled data, the possibility to apply feature-rich
models to problems with large output spaces, and/or by
making use of deep (rather than shallow) models such as
neural networks that can in addition function without hand-
crafting features.
In this work, we consider the following part-of-speech tag-
ging systems, listed by the order of their year of publi-
cation: TreeTagger (Schmid, 1994), TnT (Brants, 2000),
Stanford tagger (Toutanova et al., 2003), Lapos (Tsuruoka
et al., 2011), Mate (Bohnet and Nivre, 2012). We also in-
clude the OpenNLPTagger, an official Apache project.4

For these systems, we refer to the original works for de-
scriptions. Among the most recent generation of taggers,
we consider the MarMoT (Müller et al., 2013) tagger,
which implements a higher order CRF with approximations
such that it can deal with large output spaces. In addition,
MarMoT can be trained to fire on the predictions of lexi-
cal resources as well as on word embeddings, real vector-
valued representations of words. FLORS (Schnabel and
Schütze, 2014) tags a given word by constructing a feature
vector representation of its local context and then classify-
ing this vector by an SVM. The feature vector representa-
tion of each word in a context includes distributional, shape,
and suffix information and the feature vector for the entire
context is the concatenation of the word vector representa-
tions.5 In principle, the vector representations of words are
the same for known and unknown words, whence FLORS is
potentially very well-suited for OD tasks. In our work, we

4See https://opennlp.apache.org/.
5The implementation of FLORS includes language (= En-

glish) specific features. This is expected to decrease its perfor-
mance on the Latin and German datasets we consider.

use online FLORS (Yin et al., 2015), which incrementally
updates word representations for each new test sentence en-
countered.6

In Table 1, we list some of the properties of our surveyed
taggers. While most models make use of features (except
for HMMs as TnT is based on, for which the inclusion of
arbitrary features is non-trivial), not all of them allow users
to specify user-defined features.

4. Datasets

corpus language sentences tokens
Tiger German 50,472 888,238
TGermaCorp German 7,274 123,742
Capitularies Latin 15,572 481,578
Proiel Latin 1,147 22,280

Table 2: Statistics of corpa used in the experiments.

For German, we train and test on the Tiger corpus (Brants
et al., 2004) and TGermaCorp (Lücking et al., 2016). For
Latin, we similarly use the capitularies (Mehler et al., 2015;
Eger et al., 2015) and the Proiel corpus (Haug and Jøhndal,
2008).7 See Table 2 for details. In general, for ID exper-
iments, we perform 3-fold random subset validation with
a 90%/10% split on one of the corpora for each language.
For the OD experiments, we use the entire corpora, per lan-
guage, as training and test sets, respectively. As additional
resources, we include the following:

• We train CBOW word embeddings using word2vec
(Mikolov et al., 2013) on the German Wikipedia and,
for Latin, on the Patrologia Latina8.

• As lexicons, for German, we extract a lexicon from the
German Wiktionary9. Extracting lemmas and syntac-
tic words (including all grammatical categories avail-
able) from a Wiktionary instance in a thorough and ro-
bust way is not a trivial task. Even though guidelines
and templates exist they differ significantly between
Wiktionary instances and also vary in the way they are
used within the same language. Our approach parses
the HTML code of a Wiktionary instance that has
been setup on a local server using the XML-dump10

from 2015-09-01. This is, according to our experi-
ence, more accurate than trying to parse the Medi-
aWiki sources directly and it saves bandwith on the of-
ficial Wiktionary servers. For the current experiments

6We also wanted to include NonLexNN (Labeau et al., 2015),
a non-lexicalized neural network architecture for POS tagging.
By operating on the subword/character-level it promises to yield
higher performance on OD tasks, similarly as the FLORS tagger.
However, we could not make this tagger perform on-par with the
other taggers surveyed. One reason for this was its immense run-
time — on the orders of several days on a single training fold —
so that we could not sufficiently experiment with its parameters.

7We used a random subset of Proiel for which tag labels had
been manually synchronized with those of the capitularies.

8http://patristica.net/latina
9http://de.wiktionary.org

10https://dumps.wikimedia.org/
dewiktionary/20150901/

1508



User-defined features Large output spaces external resources label dependencies
FLORS X X
Lapos X

MarMoT X X X X
Mate X X

OpenNLP X
Stanford X X

TnT X X
TreeTagger X

Table 1: Systems and selected properties.

detailed below, we used a lexicon containing 67,034
lemmas and 1,817,735 syntactic words. This lexicon
consists of nouns, proper nouns, verbs and adjectives.
For Latin, we make use of Collex-LA (Mehler et al.,
2015).

Among our taggers, only the MarMoT tagger can make
use of these additional resources. Finally, we feed the first
500,000 sentences from German Wikipedia to the FLORS
tagger as additional resource from which to induce word
representations.11

5. Experiments
In this section, we detail our experiments. For POS tag-
ging, we pursue two sets of experiments. First, we train
and test on each subcategory (pos, case, gender, etc.)
independently (pipeline learning). Subsequently, we train
on complex tag labels, which encode the different subcate-
gories (‘joint learning’). Of course, joint learning is more
accurate in principle — though not always computationally
feasible, depending on the tagger — since it better captures
the dependencies between the different categories (a noun
does not admit a comparison degree, for example). We note
that we generally perform no hyperparameter optimization,
which may be considered an art in itself. Rather, we treat
the taggers as block boxes and use default parametriza-
tions.12

5.1. POS Tagging
5.1.1. Pipeline learning
We start by focussing on the results for pos (see Table 3)
and case (Table 6), as tagging pos is the classical instance
of (coarse-grained) POS tagging, and case is the most dif-
ficult category for both German and Latin. Here we run all
taggers without additional resources.
For pos, MarMoT and FLORS perform best and for case,
MarMoT and Lapos achieve best accuracies, although the
performances of FLORS and Mate are not substantially
worse. It is interesting to observe that the accuracies of the
feature-poor models TnT and TreeTagger are substantially
worse on case (up to 11 percentage points), relative to the

11Due to memory limitations, we could not include the full
Wikipedia.

12We note that hyperparameter optimization would generally
have hardly been feasible in our case, given the running times
of the systems we consider and the amount of experiments we
conduct.

best taggers, than they are on pos (less than 2 percentage
points). Concerning run times, TnT and TreeTagger are ex-
tremely fast, while feature-richer models take substantially
longer to both train and test. This hints at an interesting
time-accuracy tradeoff.
The results also demonstrate the significant loss of accu-
racy when the training and test datasets stem from different
domains (OD): the accuracies typically drop about 8-10%,
across all taggers, and even beyond 30% points in particular
cases. Table 4 shows, however, how the results for MarMoT
improve for the OD tasks when we supply the system with
additional resources in the form of embeddings and lexicon
predictions. Improvements are particularly striking when
training data is scarce, as is the case for the Proiel dataset.
For example, accuracy in the scenario Proiel→Capit im-
proves from 63.13% to 71.17%, when both embeddings and
the lexicon is included.

+Embeddings +Embeddings+Lexicon
Capit→Proiel 88.40 88.79
Proiel→Capit 66.28 71.17

Table 4: Accuracy for pos tagging using MarMoT on Latin
OD tasks.

Table 7 depicts the accuracies of all systems when fine-
grained morphological tagging is the goal (under the cur-
rent pipeline approach). Here, all subcategories have to
match with the gold-standard. The top three systems in this
setting are MarMoT, Lapos, and FLORS, while the worst
two systems are TnT and the TreeTagger. Overall, differ-

training testing
FLORS 5:11:55 3:55
Lapos 6:44 0:13
MarMoT (Em.&L.) 5:00 (16:42) 0:10 (1:12)
Mate 30:12 0:36
OpenNLP 11:02 0:06
Stanford 27:08:17 0:08
TnT 0:02 0:01
TreeTagger 0:01 0:01

Table 5: elapsed time (in hh:mm:ss) for pos tagging and
testing of a Tiger subset. Training and test data consists of
45,424 and 5,048 sentences, respectively.

1509



FLORS Lapos MarMoT Mate OpenNLP Stanford TnT TreeTagger
TG 92.36 93.02 93.63 93.06 91.75 91.05 92.39 92.40
Tiger 97.75 97.89 98.04 97.93 96.85 97.31 97.32 97.25
TG→ Tiger 89.09 89.62 89.86 88.22 86.65 84.02 88.28 87.74
Tiger→ TG 90.59 90.18 89.83 90.13 88.66 88.37 89.49 89.29
Capit 95.33 95.97 95.93 95.71 94.73 94.86 95.31 95.04
Proiel 92.80 95.23 95.42 94.93 93.12 90.97 93.63 93.21
Capit→ Proiel 84.50 87.34 87.36 86.54 82.46 81.41 85.62 85.34
Proiel→ Capit 62.39 63.60 63.13 64.05 62.38 54.43 62.92 61.23

Table 3: pos accuracy in %

Tiger Capit
FLORS 92.36 94.28
Lapos 92.58 94.71
MarMoT 92.46 94.76
Mate 92.29 94.62
OpenNLP 91.92 93.53
Stanford 90.14 93.18
TnT 84.38 92.97
TreeTagger 81.74 88.46

Table 6: case accuracy in %

Tiger Capit
FLORS 86.26 86.94
Lapos 85.86 88.63
MarMoT 86.79 88.47
Mate 83.38 87.73
OpenNLP 81.77 84.11
Stanford 81.94 85.53
TnT 76.87 86.00
TreeTagger 72.68 83.11

Table 7: all categories (pipeline) - accuracy in %

ences across tagging tasks accumulate to an up to 14% dif-
ference on the fine-grained morphological tagging task be-
tween systems.

5.1.2. Joint learning
In this subsection, we train systems on complex POS la-
bel, which comprise the different subcategories. All sys-
tems gain now significantly (Table 8). The ordering of
systems in terms of accuracy is virtually the same as for
pipeline learning, however. In Table 9, we zoom in on
the MarMoT tagger as we provide additional resources to
the system: adding word embeddings increases accuracy
on morphological tagging from 90.56% to 90.91%; includ-
ing the Wiktionary lexicon further increases this number to
91.04%. Table 10 shows analogous improvements for the
FLORS tagger as we supply the tagger with the unlabeled
Wiktionary data.
Table 11 summarizes the best possible performances of all
systems for the fine-grained morphological tagging task.
Here, MarMoT is clearly the best system and the only sys-
tem surpassing the 90% accuracy threshold, for both the

Tiger Capit
FLORS 88.46 89.33
Lapos x x
MarMoT 90.56 90.66
Mate 84.91 89.73
OpenNLP 85.50 87.33
Stanford x x
TnT 85.34 89.41
TreeTagger 80.91 86.97

Table 8: all categories (joint) - accuracy in %

German and Latin ID datasets.

Baseline +Emb +Emb+Lex
pos 98.01 98.16 98.20
case 94.45 94.52 94.53
degree 99.60 99.65 99.65
gender 96.83 97.13 97.27
mood 99.39 99.41 99.42
number 97.90 98.06 98.07
person 99.42 99.44 99.45
tense 99.45 99.48 99.49
ALL 90.56 90.91 91.04

Table 9: MarMoT-‘Joint learning’ — Tiger, ID

Baseline +Wiki
pos 97.35 97.50
case 93.30 93.46
degree 99.39 99.44
gender 95.73 95.99
mood 99.26 99.28
number 97.33 97.52
person 99.29 99.31
tense 99.31 99.34
ALL 88.46 88.81

Table 10: FLORS-‘Joint learning’ — Tiger, ID

1510



Tiger Capit
FLORS 88.81 89.33
Lapos 85.86 88.63
MarMoT 91.04 91.57
Mate 84.91 89.73
OpenNLP 85.50 87.33
Stanford 81.94 85.53
TnT 85.34 89.41
TreeTagger 80.91 86.97

Table 11: Summarizing the best performances: accuracy in
%

TG Tiger TG→Tiger Tiger→TG Capit
LAT 91.75 98.24 87.48 87.70 95.30
LGen 91.37 98.10 85.95 87.61 95.19

Table 12: Direct lemmatization accuracy in %

5.2. Lemmatization
Here, we train systems on (form,lemma) pairs as avail-
able in the respective training data.13 For LAT, we con-
sider lemmatization as tagging task as in Gesmundo and
Samardzic (2012). We use the MarMoT tagger for this,
without any additional resources. In contrast, Lemma-
Gen cannot learn to lemmatize words in context. We
find (Table 12) that LAT is consistently better than Lem-
maGen, which corroborates results from (Gesmundo and
Samardzic, 2012). We also note that ID accuracy on Tiger
is higher than on TGermaCorp. This is due to the fact that
Tiger is a larger database than TGermaCorp (around 50,000
sentences vs. around 7,500) and that Tiger is more homo-
geneous, while TGermaCorp contains poems, various sorts
of literature, etc. Finally, the OD results seem pretty low,
compared to ID results, similarly as for tagging. We remark
here that specific lemma conventions differ across the two
datasets. In addition, TGermaCorp contains spelling mis-
takes (Widersehen) and historical variants (Capital) that are
conventionally lemmatized by their modern lemma forms
(Kapital). Such cases are difficult for the trained systems to
handle since they are absent in Tiger.

6. Discussion
In terms of accuracy, FLORS, Lapos, Mate, and particu-
larly MarMoT are the methods of choice when (especially)
fine-grained morphological tagging is the goal. Moreover,
the lexical resources as well as the word embeddings de-
rived from unlabeled data that can be fed in to MarMoT
(and FLORS) make the systems more robust to change of
domain, which is an immensely important aspect of real-
world POS tagging. But it is also interesting to have a
closer look at the elapsed time for training and testing (see

13It is also possible to train a lemmatizer for each POS class and
apply the respective lemmatizer after a specific tagger has made
its predictions (Eger et al., 2015). In auxiliary experiments not in-
cluded here, we found this pipeline approach to be overall slightly
worse than not relying on tagger outputs, most likely due to error
propagation.

Table 5).14 TnT and TreeTagger, while typically perform-
ing worse — sometimes badly — in terms of accuracy, take
only a fraction of training and testing time of the more re-
cent tagger generation. For a practicioner, computing time
can be a critical issue, however. For example, when it
comes to tagging large corpora such as the entire Wikipedia
even a few seconds more per processed text can make a
huge difference. So depending on the task at hand, even the
older approaches may still be attractive.

7. Conclusion
We conducted a study of tagging German and (classical as
well as medieval) Latin texts by examining a range of older
taggers in comparison to younger ones. We experimented
with coarse-grained as well as fine-grained POS tagging
and with lemmatization. Our findings are in support of uti-
lizing most recent achievements in the development of tag-
gers. Especially, MarMoT performed best in most of the
tasks considered here. We also show that out-domain (OD)
tagging leads to a considerable loss in tagging accuracy.
The same is true when we consider pipeline learning of in-
flectional categories. These findings hint at the need of fur-
ther developing taggers possibly by extending the feature
space (e.g., by morphological, syntactic or even semantic
features). However, our experiments also show that such
an extension may lead to a considerable increase of train-
ing and operating time and, thus, may be problematic in the
case of time-critical scenarios. Last but not least, we eval-
uated two lemmatizers. Here, LAT performs best, that is, a
model which regards lemmatization as a contextual classifi-
cation task. Our experiments show once more that accuracy
drops considerably below 90% if the lemmatizer is applied
OD. As before, this is a good argument for further devel-
opments in this area of NLP, in particular, for addressing
domain adaptation.

8. Acknowledgements
This work has been funded by the Bundesministerium für
Bildung und Forschung (BMBF) in the context of the Com-
pHistSem project. We thank Barbara Job and Bianca Hen-
richfreise from Bielefeld University for annotating a subset
of sentences of the Proiel corpus. We also thank Bernhard
Jussen and Tim Geelhaar from Frankfurt University for pro-
viding the capitularies corpus.

Ahlberg, M., Forsberg, M., and Hulden, M. (2014). Semi-
supervised learning of morphological paradigms and lex-
icons. In Proceedings of the 14th Conference of the Eu-
ropean Chapter of the Association for Computational
Linguistics, Gothenburg, Sweden 2630 April 2014, pages
569–578.

14Please note that the computation times shown in Table 5 can
only give a general impression. Firstly, elapsed times depend lin-
early on the hardware being used. Secondly, processing times de-
pend on the configuration of the taggers — especially with regard
to training a new model. Finally, the evaluated taggers are imple-
mented in different programming languages. This particularly ad-
versely affects the FLORS tagger, which, evidently suffers from
an inefficient implementation, see http://cistern.cis.lmu.de/flors/.
However, the results indicate what a black box user may expect
when running each of the implementations.

1511



Bohnet, B. and Nivre, J. (2012). A transition-based sys-
tem for joint part-of-speech tagging and labeled non-
projective dependency parsing. In Proceedings of the
2012 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Lan-
guage Learning, pages 1455–1465, Jeju Island, Korea,
July. Association for Computational Linguistics.

Brants, S., Dipper, S., Eisenberg, P., Hansen-Schirra, S.,
Knig, E., Lezius, W., Rohrer, C., Smith, G., and Uszko-
reit, H. (2004). Tiger: Linguistic interpretation of a ger-
man corpus. Research on Language and Computation,
2(4):597–620.

Brants, T. (2000). Tnt: A statistical part-of-speech tagger.
In Proceedings of the Sixth Conference on Applied Nat-
ural Language Processing, ANLC ’00, pages 224–231,
Stroudsburg, PA, USA. Association for Computational
Linguistics.

Compton, P. and Jansen, R. (1988). Knowledge in context:
A strategy for expert system maintenance. Proceedings
of the 2nd Australian Joint Artificial Intelligence Confer-
ence, pages 292–306.

Dreyer, M., Smith, J., and Eisner, J. (2008). Latent-
variable modeling of string transductions with finite-state
methods. In Proceedings of the 2008 Conference on Em-
pirical Methods in Natural Language Processing, pages
1080–1089, Honolulu, Hawaii, October. Association for
Computational Linguistics.

Durrett, G. and DeNero, J. (2013). Supervised learning
of complete morphological paradigms. In Human Lan-
guage Technologies: Conference of the North American
Chapter of the Association of Computational Linguistics,
Proceedings, June 9-14, 2013, Westin Peachtree Plaza
Hotel, Atlanta, Georgia, USA, pages 1185–1195.

Eger, S., vor der Brück, T., and Mehler, A. (2015).
Lexicon-assisted tagging and lemmatization in Latin: A
comparison of six taggers and two lemmatization mod-
els. In Proceedings of the 9th Workshop on Language
Technology for Cultural Heritage, Social Sciences, and
Humanities (LaTeCH 2015), Beijing, China.

Eger, S. (2015). Designing and comparing g2p-type
lemmatizers for a morphology-rich language. In Sys-
tems and Frameworks for Computational Morphology -
Fourth International Workshop, SFCM 2015, Stuttgart,
Germany, September 17-18, 2015, Proceedings, pages
27–40.

Gesmundo, A. and Samardzic, T. (2012). Lemmatisation
as a tagging task. In The 50th Annual Meeting of the
Association for Computational Linguistics, Proceedings
of the Conference, July 8-14, 2012, Jeju Island, Korea -
Volume 2: Short Papers, pages 368–372.

Haug, D. T. T. and Jøhndal, M. (2008). Creating a paral-
lel treebank of the old Indo-European Bible translations.
In Proceedings of the Sixth International Language Re-
sources and Evaluation (LREC’08).

Jursic, M., Mozetic, I., Erjavec, T., and Lavrac, N. (2010).
Lemmagen: Multilingual lemmatisation with induced
ripple-down rules. J. UCS, 16(9):1190–1214.

Labeau, M., Löser, K., and Allauzen, A. (2015). Non-
lexical neural architecture for fine-grained pos tagging.

In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 232–
237, Lisbon, Portugal, September. Association for Com-
putational Linguistics.

Lücking, A., Hoenen, A., and Mehler, A. (2016). Tger-
macorp a (digital) humanities resource for (computa-
tional) linguistics. In Proceedings of the Tenth Interna-
tional Language Resources and Evaluation (LREC’16).

Mehler, A., vor der Brück, T., Gleim, R., and Geelhaar,
T. (2015). Towards a network model of the coreness
of texts: An experiment in classifying latin texts sing
the TTLab Latin tagger. In Chris Biemann et al., ed-
itors, Text Mining: From Ontology Learning to Auto-
mated text Processing Applications, Theory and Appli-
cations of Natural Language Processing, pages 87–112.
Springer, Berlin/New York.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. (2013). Distributed representations of words
and phrases and their compositionality. In C.J.C. Burges,
et al., editors, Advances in Neural Information Process-
ing Systems 26, pages 3111–3119. Curran Associates,
Inc.

Müller, T., Schmid, H., and Schütze, H. (2013). Efficient
higher-order CRFs for morphological tagging. In Pro-
ceedings of the 2013 Conference on Empirical Methods
in Natural Language Processing, pages 322–332, Seat-
tle, Washington, USA, October. Association for Compu-
tational Linguistics.

Müller, T., Cotterell, R., Fraser, A. M., and Schütze, H.
(2015). Joint lemmatization and morphological tagging
with lemming. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing,
EMNLP 2015, Lisbon, Portugal, September 17-21, 2015,
pages 2268–2274.

Nicolai, G., Cherry, C., and Kondrak, G. (2015). Inflection
generation as discriminative string transduction. In Pro-
ceedings of the 2015 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 922–931,
Denver, Colorado, May–June. Association for Compu-
tational Linguistics.

Ratnaparkhi, A. (1996). A maximum entropy model for
part-of-speech tagging. In Proceedings of the 1st Con-
ference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), Philadelphia, Pennsylvania.

Schmid, H. (1994). Probabilistic part-of-speech tagging
using decision trees. In International Conference on
New Methods in Language Processing, pages 44–49,
Manchester, UK.

Schnabel, T. and Schütze, H. (2014). FLORS: fast and
simple domain adaptation for part-of-speech tagging.
TACL, 2:15–26.

Toutanova, K., Klein, D., Manning, C. D., and Singer, Y.
(2003). Feature-rich part-of-speech tagging with a cyclic
dependency network. In Proceedings of the 2003 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics on Human Language
Technology - Volume 1, NAACL ’03, pages 173–180,
Stroudsburg, PA, USA. Association for Computational

1512



Linguistics.
Tsuruoka, Y., Miyao, Y., and Kazama, J. (2011). Learning

with lookahead: Can history-based models rival globally
optimized models? In Proceedings of the Fifteenth Con-
ference on Computational Natural Language Learning,
CoNLL ’11, pages 238–246, Stroudsburg, PA, USA. As-
sociation for Computational Linguistics.

Yin, W., Schnabel, T., and Schütze, H. (2015). Online
updating of word representations for part-of-speech tag-
ging. In Proceedings of the 2015 Conference on Em-
pirical Methods in Natural Language Processing, pages
1329–1334, Lisbon, Portugal, September. Association
for Computational Linguistics.

1513


