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Abstract
In this paper, we describe a new database with audio recordings of non-native (L2) speakers of English, and the perceptual evaluation
experiment conducted with native English speakers for assessing the prosody of each recording. These annotations are then used to
compute the gold standard using different methods, and a series of regression experiments is conducted to evaluate their impact on the
performance of a regression model predicting the degree of naturalness of L2 speech. Further, we compare the relevance of different
feature groups modelling prosody in general (without speech tempo), speech rate and pauses modelling speech tempo (fluency), voice
quality, and a variety of spectral features. We also discuss the impact of various fusion strategies on performance. Overall, our results
demonstrate that the prosody of non-native speakers of English as L2 can be reliably assessed using supra-segmental audio features;
prosodic features seem to be the most important ones.
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1. Introduction

Non-native (L2) speakers of English diverge from native
English speakers in terms of linguistic (e.g, morphology,
syntax, lexicon) and phonetic aspects. Phonetic aspects
comprise segmental and supra-segmental (prosodic) phe-
nomena. There are two main tasks within automatic speech
processing where an assessment of non-native traits can
help. First, the performance of Automatic Speech Recog-
nition (ASR) degrades drastically while processing non-
native speech. A central aspect here is the mismatch be-
tween training data from native speech and test data from
non-native speech (Van Compernolle, 2001), preventing the
acoustic models to capture the variability and ‘innovations’
introduced by L2 speakers. By assessing the degree of na-
tiveness in general, and by specifying the speaker’s L1,
it is possible to build speaker- and/or speaker-group spe-
cific acoustic models. Second, such an assessment can
be employed within Computer-Aided Pronunciation Train-
ing (CAPT) for the automatic screening and assessment of
learners.
In this paper, we describe a new database with audio record-
ings of L2 English speakers, and the perceptual evalua-
tion experiment conducted with native English speakers to
obtain judgements of the naturalness of the pronunciation
of each recording with respect to supra-segmental char-
acteristics. These annotations are then used to compute
the gold standard using different methods, and a series of
regression experiments is conducted to evaluate their im-
pact on the performance of a regression model predicting
the degree of naturalness of L2 speech. We use the pub-
licly available general-purpose feature set openSMILE (Ey-
ben et al., 2013) to compute a large set of acoustic fea-
tures. Additionally, to add some more specialised (but

still text-independent features) we also compute duration,
rhythm, and prosodic features derived from a segmentation
of the recordings into vocalic and consonantal intervals,
and from pseudo-syllables derived from that segmentation.
Those vocalic and consonantal intervals were inferred from
the output of a phoneme recognizer (PR) (Schwarz et al.,
2006).

2. Recording and annotation methods
2.1. Collection of voice recordings
We obtained a set of voice recordings from 54 non-native
English speakers with varied degree of proficiency (see Ta-
ble 1 for details). Each speaker was asked to read aloud a
set of 11 sentences from two short stories written in the En-
glish language widely used in phonetics and speech pathol-
ogy research. The data recorded consisted of 5 sentences
taken from the fable “The North Wind and the Sun”, and
6 sentences extracted from “The Rainbow”. All record-
ing sessions took place in a room at the Technische Uni-
versität München (Germany) using the same hardware and
software. The full database comprises 594 recordings (11
sentences * 54 speakers), totalling to 1.4 hours of speech.

2.2. Annotation procedure
The full set of recordings was delivered for annotation to
a group of 27 native English speakers. The group of an-
notators were instructed to rate the naturalness of supra-
segmental characteristics by answering the question “The
English language has a characteristic prosody (sentence
melody and rhythm, i. e. timing of syllables). This sen-
tence’s prosody sounds ...,” using a 5-point Likert scale (1
- normal; 2 - acceptable; 3 - slightly unusual; 4 - unusual;
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Mother tongue (L1)
Arabic (4), Bulgarian (1), Chinese (13), French (1),
German (22), Italian (2), Indian (2), Japanese (1),

Lithuanian (1), Persian (2), Polish (1), Portuguese (1),
Romanian (1), Russian (1), Turkish (1)

Age
M = 31 y.o.; SD = 9 y.o; Range = 20-57 y.o.

Gender
28 female / 26 male

Table 1: Non-native (L2) English speakers’ characteristics.
M - mean; SD - standard deviation

5 - very unusual). 1 Inter-rater agreement (per session and
rater gender) was computed using the Intraclass correlation
(ICC; (Shrout and Fleiss, 1979)). In particular, we com-
puted ICC(2, k) as described by Shrout and Fleiss (1979),
which estimates the absolute agreement between subjects
for k ratings. Results are shown in the last column of Table
2.

Session #recordings #raters ICC(2, k)

1 132
23 (All) 0.96

15 (Female) 0.94
8 (Male) 0.89

2 132
16 (All) 0.92

10 (Female) 0.86
6 (Male) 0.84

3 165
17 (All) 0.93

11 (Female) 0.88
6 (Male) 0.87

4 165
18 (All) 0.95

11 (Female) 0.89
7 (Male) 0.91

mean -
19 (All) 0.94

12 (Female) 0.89
7 (Male) 0.88

Table 2: Rating sessions details: number of raters
(#raters), number of recordings (#recordings) rated in each
session, and inter-rater agreement per session (ICC(2, k)
- Intraclass correlation).

2.3. Gold standard
We tested three different methods to infer the gold stan-
dard from individual annotations. First, we combined the
individual ratings for each instance by calculating the me-
dian across raters for each instance. Second, we com-
puted the arithmetic mean across all raters for each in-
stance. Third, in order to consider individual (unknown)
differences amongst annotators (e.g., level of attention or

1This is a sort of ‘unified’ rating of both melody and rhythm
at the same time – in (Hönig et al., 2012a), it was shown that in-
dependent melody and rhythm assessments correlate highly with
each other. Melody is a rather straightforward concept which has
been dealt with in many different intonation models. Rhythm is
a rather vague concept and could not defined strictly so far; yet,
we have seen that it can be conveyed and used within such rating
experiments.

Figure 1: Histogram of frequencies for each gold standard.

individual biases when providing the ratings), we attempted
to improve the quality of the gold standard calculation by
using the evaluator weighted estimator (EWE) method as
described in (Grimm and Kroschel, 2005). The EWE av-
erage of the individual ratings considers that each evalua-
tor is subject to an individual amount of disturbance during
the evaluation, by introducing evaluator-dependent weights
that correspond to the correlation between the listener’s re-
sponses and the average ratings of all evaluators. The his-
togram of frequencies for each gold standard is shown in
Fig. 1.

3. Feature sets
We used five different features sets for acoustic modelling
of this database as described in the following paragraphs.
OpenSMILE Features (oS): openSMILE (version 2.0;
(Eyben et al., 2013)) is a framework for extracting general-
purpose acoustic and prosodic features, and has been ap-
plied successfully to a garden-variety of paralinguistic
tasks. In this paper we employ the configuration file of
the INTERSPEECH 2013 Computational Paralinguistics
ChallengE (ComParE) (Schuller et al., 2013), which in-
cludes 6373 static features of functionals of low-level de-
scriptor (LLD) contours. In order to evaluate the nature of
acoustic features that permit to better predict the L2 speak-
ers’ prosodic competence, we subdivided the ComParE
set into three partitions: prosodic (oS PROS), voice qual-
ity (oS VQ), and spectral and cepstral features (oS SPEC).
The LLDs in each subset are described in (Weninger et al.,
2013).
Prosodic Features (PROS): The set of features extracted
(a total of 64) are based on duration, energy, pitch, and
pauses, and are designed to locally describe arbitrary units
of speech such as words or syllables (Batliner et al.,
2000). Here, we used the pseudo-syllables derived from
the phoneme recognizer. The sequence of these local fea-
tures was then converted into a fixed-length vector using 12
functionals (e.g., mean, standard deviation).
Rhythm Features (RHYT): Given the importance of tem-
poral features to the evaluation of L2 speakers’ proficiency
(cf. Section 1.), we considered a set of specific speech-
rhythm related features. Based on the segmentation of
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the PR (see above) into vocalic and consonantal inter-
vals, we computed Grabe’s raw pairwise variability index
(rPVI; (Grabe and Low, 2002)) on consonants and vow-
els plus its (rate-of-speech-) normalised version (nPVI).
Additionally, we computed variants of Grabe’s measures
using squared instead of absolute differences (root aver-
age squared local change). This led to 8 features reflect-
ing local variability in durations. Additionally, another
set of five features was added to reflect global variabil-
ity and proportions. These were calculated using Ramus’
V (percentage of vocalic intervals) and vocalic and con-
sonantal Deltas (global standard deviations of durations)
(Ramus, 2002), plus Dellwo’s variation coefficient Varco
(rate-of-speech-normalised standard deviation of durations)
(Dellwo, 2010). Rhythmic features have also been used
in previous speech scoring research (Chen and Zechner,
2011).
Duration Features (DUR): In order to include temporal
features specifically modelling speech tempo, we created
another set of features comprising articulation rate (the
number of syllables divided by the total length of the speech
segments) and the percentage of pauses (excluding initial
and final silences in each recording). These features were
computed using the segmentation of pauses, vowels, con-
sonants, and speaker noise derived from the PR.

4. Experiments and Results
In this section we describe the results of the acoustic mod-
elling of our database using the features described in Sec-
tion 3.. Additionally, we also present the results from vari-
ous combinations of the individual feature sets using early
and late fusion approaches. For early fusion, we just use
the superset of the individual feature sets. For late fusion,
a regressor is trained for each individual feature set, and
the outputs are combined with another regressor. In all our
experiments we employ Support Vector Regression (SVR)
(Smola and Schlkopf, 2004) with linear kernel and Sequen-
tial Minimal Optimization learning (SMO) (Platt, 1999).
In all experiments (implemented with sklearn (Pedregosa
et al., 2011) and LibSVM (Chang and Lin, 2011)), the
performance of the models was estimated using a 10-fold
speaker-independent cross-validation scheme (SICV), i. e.,
the train and test set of each fold was disjunct w. r. t. speak-
ers. The SVR complexity parameter C was optimised in
each fold using an inner 10-fold SICV on the training set
of that fold. In case of late fusion, the predictions obtained
with the help of that inner SICV were re-used for training
the final regressor. The SVR performance was estimated
using Spearman’s rank correlation coefficient between tar-
get and predicted values on all test instances (ρ). The de-
tails and results of our tests are shown in Tables 3 (indi-
vidual features sets) and 4 (fusion). The best results us-
ing individual features sets were obtained with the PROS
(ρ = .600), oS PROS (ρ = .542) and DUR (ρ = .526) fea-
ture sets. This confirms our initial expectations (see Section
1.) regarding the relevance of prosodic features (includ-
ing speech tempo) to the perception of naturalness of L2
speech. In relation to the fusion tests (see Table 4), we eval-
uated various combinations of the individual sets. Chiefly,
we found that (1) late fusion was globally better than early

fusion (av. ρ(early) = .562; av. ρ(late) = .586); (2)
the best performance was obtained with the late fusion of
all feature sets except oS SPEC; (3) the top performance
is only slightly higher (.017 increase in ρ) than the perfor-
mance of the best individual set PROS (ρ = .600).

Feature set # features ρ
oS PROS 483 0.542
oS SPEC 5500 0.514

oS VQ 390 0.513
DUR 2 0.526
PROS 3072 0.600
RHYT 13 0.411

Table 3: Regression experiments results for the EWE gold
standard using individual features sets.

Feature set ρ
early fusion late fusion

oS PROS+oS SPEC 0.508 0.544
oS PROS+oS VQ 0.551 0.552
oS PROS+DUR 0.547 0.571
oS PROS+PROS 0.600 0.602
oS PROS+RHYT 0.544 0.573
oS SPEC+oS VQ 0.519 0.543
oS SPEC+DUR 0.515 0.566
oS SPEC+PROS 0.576 0.603
oS SPEC+RHYT 0.513 0.546
oS PROS+DUR 0.526 0.569
oS VQ+PROS 0.607 0.606
oS VQ+RHYT 0.607 0.567
DUR+PROS 0.600 0.604
DUR+RHYT 0.554 0.565
PROS+RHYT 0.599 0.604

all 0.572 0.616
all-oS PROS 0.575 0.614
all-oS SPEC 0.608 0.617

all-oS VQ 0.573 0.612
all-DUR 0.572 0.608
all-PROS 0.522 0.599
all-RHYT 0.572 0.604

Table 4: Regression experiments results for the EWE gold
standard using different combinations of the individual fea-
ture sets (early and late fusion approaches).

5. Discussion and Conclusions
In this paper, we presented a new database with audio
recordings of non-native (L2) speakers of English, and
the perceptual evaluation experiment conducted with native
English speakers for assessing the prosody of each record-
ing. These annotations were used to compute the gold stan-
dard using different methods, and a series of regression ex-
periments to evaluate their impact on the performance of a
regression model predicting the degree of naturalness of L2
speech. To this end, we compared the relevance of differ-
ent feature groups modelling prosody in general (without
speech tempo), speech rate and pauses modelling speech
tempo (fluency), speech rhythm, voice quality, and a variety
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of spectral features. Overall, using a speaker-independent
schema, we have demonstrated that it is feasible to predict
the level of naturalness of L2 speech using acoustic fea-
tures alone. More specifically, we corroborated the find-
ings from (Hönig et al., 2010; Hönig et al., 2012a; Hönig
et al., 2012b) that specialised prosodic features (includ-
ing speech tempo) seem to be the relevant ones to assess
the naturalness of English produced by non-native speak-
ers. Naturally enough, the two features modelling speech
tempo (DUR) alone already yield a very good performance
because speech tempo models fluency, and fluency is highly
correlated with the degree of nativeness.
The question remains which other features and methods
could be employed in addition, and which might be the
‘empirical’ upper baseline for the performance. For the
upper baseline, we computed the averaged gold standard
per speaker, under the simplifying assumption that speaker
performance is constant within the same recording session.
The correlation with the EWE gold standard was ρ=0.823.
When we employ the default cross-validation procedures
of toolboxes such as WEKA or sklearn, we obtain (with
10 folds and late fusion of all six feature groups) ρ=0.715.
However, these procedures are not speaker-independent.
These two figures indicate the range of improvement that
we can end up with when employing (1) item specific in-
formation obtained via speech recognition and (2) speaker
modelling.
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