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Abstract
Although meaning is at the core of human cognition, state-of-the-art distributional semantic models (DSMs) are often agnostic to the
findings in the area of semantic cognition. In this work, we present a novel type of DSMs motivated by the dual–processing cognitive
perspective that is triggered by lexico–semantic activations in the short–term human memory. The proposed model is shown to perform
better than state-of-the-art models for computing semantic similarity between words. The fusion of different types ofDSMs is also
investigated achieving results that are comparable or better than the state-of-the-art. The used corpora along with a set of tools, as well
as large repositories of vectorial word representations are made publicly available for four languages (English, German, Italian, and
Greek).
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1. Introduction
Distributional semantic models (DSMs) aim to represent
the meaning of lexical entities by encoding linguistic
features extracted from text corpora. Word-level repre-
sentations are the basis for more complex tasks such as
phrase– and sentence–level representation and similarity
computation (Mitchell and Lapata, 2010; Agirre et al.,
2012). Related applications include paraphrase detection
(Androutsopoulos and Malakasiotis, 2010), affective text
analysis (Malandrakis et al., 2013), etc.
Adopting the standpoint of (Potamianos, 2014) we ar-
gue that the aforementioned tasks should be driven by
the fundamental properties of the human cognitive sys-
tem. Indeed, empirical evidence provided by cognitive
sciences and psycholinguistics constitute a fertile source
of inspiration for DSM design. In this spirit, we propose
a novel type of word–level DSMs motivated by the dual–
processing cognitive perspective (Kahneman, 2013) that
is triggered by lexico–semantic activations in the short–
term human memory. The proposed model is shown to
perform better than state-of-the-art models for the prob-
lem of word similarity computation with respect to vari-
ous datasets in four languages (English, German, Italian,
and Greek). The fusion of different types of DSMs is
also investigated exceeding the performance of individ-
ual models. We make publicly available the used corpora
along with a set of tools, as well as large repositories of
vectorial word representations for all four languages.

2. Related Work
Word-level representations constitute the core aspect of
DSMs typically constructed from co-occurrence statis-
tics of word tuples. Word-level DSMs can be broadly
categorized into unstructured and structured with respect

to the extraction of contextual features. The bag-of-
words model is the most widely used approach (e.g., see
(Grefenstette, 1994)), lacking however some desirable
characteristics such as “order sensitivity” (Turney, 2012).
Unlike unstructured models, the order of extracted fea-
tures is taken into account in the framework of struc-
tured DSMs via the exploitation of syntactic relation-
ships (e.g., argument structures and modifications) (Pado
and Lapata, 2007). A comparison of unstructured and
structured DSMs was conducted in (Agirre et al., 2009)
for the task of semantic similarity estimation between
words, where slightly higher performance was achieved
by unstructured DSMs. The multiple senses of words
are typically not directly encoded in DSMs. For address-
ing this issue, exemplar models were proposed where the
meaning of a word was represented by a set of stereo-
typical corpus sentences instead of a single feature vec-
tor (Erk and Padó, 2010). Recently, the computation of
contextual features was posed in a learning-based frame-
work where the goal is to estimate the context in which
the words of interest are expected to occur (Bengio et al.,
2003; Huang et al., 2012; Mikolov et al., 2013a). This
advancement is discussed in (Baroni et al., 2014), where
it is compared with traditional DSMs for various tasks
of lexical semantics. A similar comparative study is also
presented in (Huang et al., 2012).
Word-level representations are the building blocks for
phrase- and sentence-level models. Such models are
motivated by the principle of semantic compositional-
ity (Pelletier, 1994), while they are meant to address
a number of properties that characterize the composi-
tional aspects of meaning, namely, “linguistic creativ-
ity”, “order sensitivity”, “adaptive capacity”, and “in-
formation scalability” (Turney, 2012). The work pre-
sented in (Mitchell and Lapata, 2010) constitutes one
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of the earlier approaches in the area of compositional
DSMs, where a series of algebraic operations are ap-
plied over the word-level feature vectors for representing
the semantics of two-word phrases divided in three cat-
egories, namely, noun-noun (NN), adjective-noun (AN),
and verb-object (VO). In (Baroni and Zamparelli, 2010),
the compositional aspects of AN phrases were investi-
gated where the semantic transformation triggered by ad-
jectives was modeled via a function (implemented as ma-
trix) operating over the vectorial representation of nouns.
The phrase-level approach of (Baroni and Zamparelli,
2010) was generalized in (Socher et al., 2012) according
to which sentence-level representations are constructed
in a recursive bottom-up fashion. A comparison of the
major compositional approaches reported in the litera-
ture is presented in (Dinu et al., 2013). In (Turney, 2012),
the compositionality task is investigated in the space of
similarities instead of features. Specifically, two distinct
models are built, namely, domain and function spaces.
Despite the fact that meaning is at the core of human cog-
nition, incorporating findings from the area of semantic
cognition into the design of DSMs is not straightforward.
The relation between cognitive semantics and the infor-
mation encoded by DSMs is discussed in (Lenci, 2008).
Motivated by evidence related to the low-dimensional
geometry of thought (Gärdenfors, 2004) in (Athana-
sopoulou et al., 2014) word-level semantics are locally
represented via a series of manifolds, while global op-
erations (e.g., computation of word semantic similarity)
are decomposed into local (i.e., manifold-level) opera-
tions. In (Georgiladakis et al., 2015) a two-layer model
motivated by semantic priming (McNamara, 2005) and
the dual cognitive processing theory (Kahneman, 2013)
was adopted for representing the semantics of compo-
sitional phrases. Other related approaches include the
mapping of DSMs to feature-normed spaces (Făgărăşan
et al., 2015), the extension of word embeddings with
cognitively motivated lexico-semantic resources such as
WordNet (Rothe and Schütze, 2015).

3. Distributional Semantic Models
Here, two types of DSMs are described, which rely on
the distributional hypothesis of meaning (Harris, 1954).
Following the terminology coined in (Baroni et al., 2014)
we refer to them ascontext-counting DSMsandcontext-
predicting DSMs.
Context-counting DSMs (CDSMs). This type can be
regarded as the mainstream paradigm of DSMs. The core
idea is that the representation of word meaning is imple-
mented by considering the context in which the word oc-
curs. A context window of size2H+1 words is centered
on the word of interestwi and the contextual features that
fall within the window are extracted. A high-dimensional
space is built –also known as vector space model (VSM)–

where the value of each dimension is set according to the
co-occurrence counts of words and their contextual fea-
tures. The transformation of raw co-occurrence counts
was found to improve the properties (e.g., smoothness)
and performance of DSMs. Such transformations aim to
encode feature saliency, e.g., positive point–wise mutual
information (PPMI) (Bullinaria and Levy, 2007). High-
dimensional word–feature matrices constitute the main-
stream implementation of VSM. The dimensionality of
such representations can be reduced by applying tech-
niques such as Singular Value Decomposition (SVD).
A survey of CDSMs is provided in (Turney and Pantel,
2010).
Context-predicting DSMs (PDSMs). PDSMs have
been recently proposed. Their key difference compared
to CDSMs deal with the computation of contextual fea-
tures (Bengio et al., 2003; Huang et al., 2012; Mikolov et
al., 2013a). The basic operation in CDSMs, is the count-
ing of contextual features for a target wordwi given a
context. The key idea that underlies PDSMs is to formu-
late the distributional hypothesis of meaning in a proba-
bilistic framework and learn the model parameters. For
example, in (Mikolov et al., 2013a) this is investigated in
the framework of statistical language modeling where the
word–feature conditional probabilities are learnt (word
embeddings).
For both CDSMs and PDSMs the cosine of feature vec-
tors is the most widely–used metric for computing word
semantic similarity. In (Lin, 1998; Turney and Pantel,
2010), more metrics are discussed.

4. Activation-based DSMs (ADSMs)
In this section, cognitively motivated DSMs are pro-
posed, which are termedactivation-based DSMs. The
underlying hypothesis is that the representation of a tar-
get wordwi takes the form of a set of semantically re-
lated attributes (words) that are activated whenwi is pro-
cessed (Rogers and McClelland, 2004). This hypothe-
sis is justified by the psycholinguistic phenomenon of
semantic primingaccording to which the presence of a
word facilitates the cognitive processing of another word
(Collins and Loftus, 1975; McNamara, 2005). Given a
geometrical representation where the words of a vocab-
ulary V are arranged according to their respective pair-
wise semantic distances (i.e., a spaceG), the activated
attributes ofwi can be regarded as a sub-spaceGi (also
referred to asrelative activation area) that represents the
semantics ofwi. Such areas are expected to be of small
size (compared toV ) given the limited capacity1 of hu-
man short–term memory (Cowan, 2001). A number of
cognitive factors (e.g., semantic concreteness (Barber et

1The capacity should not be regarded as fixed, e.g., it was
empirically found to be task–depended (Cowan, 2001).
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al., 2013), visuospatial characteristics (Yao et al., 2013))
play a role to the size of activation areas that varies2

across words.
In this work, we advance some of the design principles
of the aforementioned CDSMs and PDSMs by putting
into a computational framework the core implications of
activation areas. The notion of the maximum activation
areaGmax

i of wordwi is central to the proposed model.
Gmax

i is defined as the list of all words with whichwi co-
occurs in our corpus. What we attempt to models here is
the largest possible list of words thatwi can form “di-
rect” cognitive connections with. The activation areaGi

for wordwi is defined as a fraction of the maximum ac-
tivation areaGmax

i for this word.
The two main novel aspects of the proposed model –
which are not directly encoded in CDSMs and PDSMs–
are:

1. The injection of sparsity in word representations via
the exploitation of small activation areasGi,

2. The conditioning of sparsity on the maximum acti-
vation areaGmax

i . The size of activations is not the
same for all words.

Each activation area is formulated as a vectorial repre-
sentation enabling the construction of VSM on top of
which well-established similarity metrics, e.g., cosine
of vectors, can be applied. In particular, the words of
the entire vocabularyV are used for defining a|V |–
dimensional vector for a target wordwi. Only those di-
mensions that correspond to the words included inGi

are allowed to take non–zero values. An advantageous
characteristic of this construction is the representational
fusion of ADSMs with existing DSMs (see next section),
since VSM constitutes the most common implementa-
tion in DSMs. Overall, the proposed model is a two-tier
system meant for activation and similarity computation
adopting the paradigm presented in (Iosif and Potami-
anos, 2015). In the first tier, the activation areaGi of
target wordwi is computed by identifying and filtering
the most similar vocabulary words towi according to a
similarity metric. The second layer is used for the com-
putation of semantic similarity of word pairs based on
their respective activations.
The theoretical foundations of the two-tier architecture
originate from a generic cognitive model that was empir-
ically found to apply to numerous semantic and behav-
ioral tasks (Kahneman, 2013). Given a stimulous (e.g.,
a word or any other perceptual entity), the first layer
rapidly activates (at the expense of accuracy) a group of
similar/related entities. The refinement of relations that
exist between the stimulous and the activated entities is

2This issue is also considered in (Georgiladakis et al., 2015)
for the compositional representation of phrases.

passed to a second layer with slower but more accurate
responses.

5. Fusion of Models
Two fusion schemes are proposed next: 1) an early fu-
sion scheme where representations of target words are
concatenated into a single hybrid representation and 2) a
late fusion scheme where similarity scores estimated by
different models are linearly combined.
Feature-level fusion (early). Given a wordwi, let vi,l
be its semantic representation computed via modell. As-
suming that this representation can be encoded as a vec-
tor, and thatM models are available, the hybrid repre-
sentation ofwi, denoted aŝvi, can be computed as:

v̂i = vi,1 ⊕ vi,2 ⊕ · · · ⊕ vi,M , (1)

where ⊕ stands for the vector–concatenate operator.
Then, similarity between two words,w1 andw2, can be
estimated by using their hybrid representationsv̂1 and
v̂2 and applying standard similarity metrics, e.g., cosine
of vectors. Since the vectors in (1) come from different
models, normalization should take place before applying
the⊕ operations. In this work, we propose the use ofZ

normalization3 (Cohen, 1995):

v
′

i,l =
vi,l − µi,l

σi,l

, (2)

whereµi,l andσi,l are the arithmetic mean and the stan-
dard deviation of feature values of vectorvi,l, respec-
tively.
Similarity-level fusion (late). The similarity between
two words,w1 andw2, denoted aŝS(w1, w2), is esti-
mated as follows:

Ŝ(w1, w2) = λ0 +

M∑

j=1

λj Sj(w1, w2), (3)

whereSj(w1, w2) stands for the similarity betweenw1

andw2 computed via modelj, while λj is are trainable
weights.

6. Experimental Settings
Corpora creation. For each language a web-harvested
corpus was created according to the following procedure.
Starting from a dictionary, a web search query was for-
mulated for each dictionary entry and sent to the Yahoo!
search engine. For each query, up to the1000 top ranked
results (document snippets) were retrieved. The overall
corpus was built by aggregating the retrieved snippets.
Context-counting DSMs (CDSMs). Several window
sizes (H = 1, . . . , 5) were applied for extracting the

3Other normalization schemes, e.g., min–max, yielded sig-
nificantly lower performance.
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contextual features, which were weighted according to
PPMI. The dimensions of the word–feature matrix were
reduced by applying SVD. Here, we report results for
300 dimensions for which the best results were obtained.
Context-predicting DSMs (PDSMs). Theword2vec
tool was used (Mikolov et al., 2013a; Mikolov et al.,
2013c). We applied the CBOW approach as being more
computationally efficient (Mikolov et al., 2013b; Baroni
et al., 2014) forH = 1,. . . ,5. The dimensions of the
resulting the word–feature matrix was set to300.
Activation-based DSMs (ADSMs). First, for a target
word,wi, the size ofGmax

i (denoted asNmax

i ) was es-
timated as the number of the vocabulary words that co-
occur withwi within sentence boundaries. Next, theGi

area (i.e., relative activation area) was computed by se-
lecting theαNmax

i most semantically similar4 words to
wi, for α=1...100%. For the computation of the feature
vector ofwi in the second layer, we experimented with
several context windowsH = 1, . . . , 5. For a givenH ,
only those words that were included inGi were consid-
ered as valid features weighted according to the respec-
tive similarity scores (i.e., those used forGi). A low–
dimensional variation of ADSMs was also implemented
by applying SVD over the word–feature matrix retaining
300 dimensions.
Theλ weights of (3) were computed using least squares
estimation5. For all the aforementioned DSMs (CDSMs,
PDSMs, ADSMs), the cosine of feature vectors was used
for computing word similarity.

7. Evaluation Datasets and Results
The task of noun semantic similarity computation was
used for evaluation purposes. We used the datasets

Language Dataset # pairs

English ws353 353
(EN) (Finkelstein et al., 2002)

English men1K 1000
(EN) men3K 3000

(Bruni et al., 2014)
German ws350ge 350

(GE) (Leviant and Reichart, 2015)
Italian ws350it 350
(IT) (Leviant and Reichart, 2015)

Greek gr200 200
(GR) (Zervanou et al., 2014)

Table 1: Evaluation datasets.

presented in Table 1, which deal with four languages,

4In this work, we used PPMI, however, any similarity met-
ric, e.g., cosine, can be applied.

5Very similar results were obtained when applying other
methods, e.g., ridge regression.

namely: English, German, Italian, and Greek. The
Spearman correlation coefficient against human ratings
was used as the evaluation metric. The correlation
scores6 obtained by ADSMs are presented in Figure 1(a)
and (b) forH = 1 andH = 5, respectively,7 as a func-
tion of the size of relative activation areas. It is observed
that, when a narrow window size is used (H=1) the best
performance is obtained for activation sizes greater than
50%. ForH = 5 the highest correlation is achieved for
activation sizeα = 3 − 10%, except for the case of the
Greek dataset for which the best results are obtained for
activation sizeα = 20%. Overall, the highest correlation
scores are achieved for the English datasets for all win-
dow sizes. The low-dimensional ADSMs (SVD-based)
were found to yield significantly lower performance than
ADSMs across all datasets, languages, andH values.
In Table 2, we present the performance for a number
of relative activation sizes (forH = 5) with respect to
similarity and relatedness using the respective subsets of
word pairs from the English dataset ws353 (Agirre et al.,
2009). The dominant relation for highly similar words
is synomymy, e.g., “midday-noon”. Regarding related-
ness, various relations of associative nature may hold,
e.g., “news-report”. The highest correlation score is ob-

Type Relative activation size
1% 3% 10% 20%

Similarity 0.63 0.77 0.74 0.68
Relatedness 0.59 0.72 0.70 0.62

Table 2: Performance wrt similarity vs. relatedness.

tained for the case of similarity. For both relation types
the best scores are achieved for activation sizeα = 3%.
The performance8 of early fusion (computed according
to (1) and (2)) is shown in Table 3 along with the per-
formance of the three individual models (i.e., CDSMs,
PDSMs, and ADSMs). Context windowH =5 was ap-
plied for all fused models, while the10% of the activa-
tion size was utilized for ADSMs. In addition, the per-
formance is reported in terms of average correlation con-
sidering the correlation scores obtained for all datasets
(ws353, men1K, men3K, ws350ge, ws350it, and gr200).
We observe that the best results are achieved by the fu-
sion scheme across all datasets and languages (on aver-
age, 0.72 correlation). For the majority of datasets the
correlation obtained by the best individual model is im-

6Results are shown only for men3K, since almost identical
performance was observed for both men3K and men1K.

7Results for1 < H < 5 are omitted as being the middle
ground ofH=1 andH=5.

8For the results reported next, no distinction is made regrad-
ing the relations (e.g., similarity vs. relatedness) of theexperi-
mental word pairs.
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Figure 1: Performance of activation-based DSMs. Correlation as a function of the% of the activation areas for context
window sizes: (a)H=1, (b)H=5. Results are shown for English (EN), German (GE), Italian (IT), and Greek (GR).

Type of DSMs
Language Dataset Context-counting Context-predicting Activation-based Early

(CDSMs) (PDSMs) (ADSMs) fusion

EN ws353 0.70 0.68 0.70 0.74
EN men1K 0.76 0.74 0.78 0.80
EN men3K 0.76 0.75 0.78 0.80
GE ws350ge 0.56 0.60 0.63 0.66
IT ws350it 0.55 0.50 0.60 0.62
GR gr200 0.58 0.53 0.72 0.72

Average 0.65 0.63 0.70 0.72

Table 3: Correlation scores for feature-level fusion (early): CDSMs, PDSMs and ADSMs (H = 5, α = 10%).

proved by 0.02-0.03 via fusion, with the exception of the
gr200 dataset where no improvement is shown over the
ADSM performance. Regarding the individual models,
the proposed ADSMs are shown to yield consistently
higher performance compared to CDSMs and PDSMs
across all languages. Also, CDSMs perform slightly bet-
ter than PDSMs for all languages except German.

The performance obtained via the late fusion scheme
(computed according to (3)) is presented in Table 4 along
with the performance of the three individual models (i.e.,
CDSMs, PDSMs, and ADSMs). As in the case of early
fusion, context windowH =5 was applied for all fused
models, while the10% of the activation size was used
for ADSMs. For the case of English datasets (ws353 and
men1K), we used a subset of the largest dataset (men3K)
for training purposes (i.e., learning theλ weights of (3))
by excluding the pairs of ws353 and men1K. For the
case of German, Italian, and Greek datasets (ws350ge,
ws350it, and gr200, respectively) the entire men3K En-
glish dataset was used for training. We observe that the
late fusion improves the performance only in the mono-
lingual train/test setting, i.e., when English is used in

both train and test datasets. In this case, the highest im-
provement is observed for the ws353 dataset (from 0.70
to 0.75). Overall, the achieved performance is compara-
ble or better compared to the state-of-the-art results re-
ported in the literature:0.75 for ws353 (Baroni et al.,
2014),0.60 and0.57 for ws350ge and ws350it9 (Leviant
and Reichart, 2015), and0.55 for gr200 (Zervanou et al.,
2014).

8. Corpora, Tools, and Resources
The English, German, Italian, and Greek corpora are pro-
vided that consist of 116, 84, ,83, and 66 millions of web
document snippets, respectively. The first tool consti-
tutes an implementation of CDSMs characterized by fast
corpus indexing, while the second tool implements the
proposed ADSMs. For each language, a pool of vectorial
word representations is made available, computed by the
aforementioned DSMs (i.e., CDSMs, PDSMs, ADSMs)

9The relative difference in performance between the three
ws353-based datasets may be attributed to factors related to the
translation of the English version to German and Italian.
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Train Test Type of DSMs
Lang Dataset Lang Dataset Context-counting Context-predicting Activation-based Late

(CDSMs) (PDSMs) (ADSMs) fusion

EN menTrain EN ws353 0.70 0.68 0.70 0.75
EN menTrain EN men1K 0.76 0.74 0.78 0.79

EN men3K GE ws350ge 0.56 0.60 0.63 0.61
EN men3K IT ws350it 0.55 0.50 0.60 0.43
EN men3K GR gr200 0.58 0.53 0.72 0.62

Table 4: Correlation scores for similarity-level (late) fusion: CDSMs, PDSMs and ADSMs (H = 5, α = 10%).

for H =1, 3, 5. For each combination, 100K vectors are
provided for a total of 1.2 millions of vectors.

9. Conclusions
The proposed activation-based DSMs were found to per-
form better than the mainstream context-counting DSMs,
as well as the recently proposed context-predicting
DSMs. This was observed for all four languages and
datasets. Small activation sizes (i.e.,3 − 10%) contain
adequate information for building semantic representa-
tions in the framework of activation-based DSMs. In ad-
dition, it was shown that feature-level fusion performs
better than late fusion at the level of similarity scores.
A key operation regarding the fusion of representations
is theirZ normalization that was found to perform best
for this task exceeding the performance of the individ-
ual models. Late fusion improves the performance only
when both train and test datasets are in the same lan-
guage. Last but not least, multilingual resources (corpora
and word semantic representations) and tools are made
publicly available10.
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