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Abstract

Although meaning is at the core of human cognition, statthefart distributional semantic models (DSMs) are oftgnastic to the
findings in the area of semantic cognition. In this work, wesant a novel type of DSMs motivated by the dual-processiggitive
perspective that is triggered by lexico—semantic activetin the short—term human memory. The proposed model igrstmperform
better than state-of-the-art models for computing seroagithilarity between words. The fusion of different typesB$Ms is also
investigated achieving results that are comparable oeb#tan the state-of-the-art. The used corpora along witt afgools, as well
as large repositories of vectorial word representatiomsnaade publicly available for four languages (English, Garritalian, and
Greek).
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1. Introduction to the extraction of contextual features. The bag-of-

Distributional semantic models (DSMs) aim to represem"‘(’;rdfS mode| isltgg4moslt wii;_zlelyhused approach c(je.g_., E?e
the meaning of lexical entities by encoding Iinguistic( refenstette, )). lacking however some desirable

features extracted from text corpora. Word-level repre_characteristics such as “order sensitivity” (Turney, 2012

sentations are the basis for more complex tasks such 6%,J::nlike unstructured models, the order of extracted fea-
phrase— and sentence—level representation and similari res is taken _|nto accoun_t n the framewo_rk of sFruc-
computation (Mitchell and Lapata, 2010; Agirre et al., [/'éd DSMs via the exploitation of syntactic relation-
2012). Related applications include paraphrase detectioﬂﬁ"dps (e.9., argument structures_ and rr;od|f|cat|ons)d(Pa(iljo
(Androutsopoulos and Malakasiotis, 2010),affectivetextaln Lapata, 2007). A comparison o gnstructure an
analysis (Malandrakis et al., 2013), etc. structured DSMs was conducted in (Agirre et al., 2009)

Adopting the standpoint of (Potamianos, 2014) we arfor the task of semantic similarity estimation between
gue that the aforementioned tasks shou’Id be driven b ords, where slightly higher performance was achieved

the fundamental properties of the human cognitive sys- y unstructured DSMs. The multiple senses of words

tem. Indeed, empirical evidence provided by cognitive.are typically not directly encoded in DSMs. For address-

sciences and psycholinguistics constitute a fertile wurc"Y th'.s 'SSl]fe’ exercr;plar models wetrzpt:opose(t:i V\:‘hetre the
of inspiration for DSM design. In this spirit, we propose meaning of a word was represented by a set ot stereo-

a novel type of word—level DSMs motivated by the dual_typ|cal corpus sentences instead of a single feature vec-

processing cognitive perspective (Kahneman, 2013) thatf)r (Erk and Pado, 2010). Recently, the computation of

is triggered by lexico—semantic activations in the short-contextual features was pose_d na Iearnlng-bas_ed fra_lme-
ork where the goal is to estimate the context in which

term human memory. The proposed model is shown t(%’\r'] ds of int ¢ tedt Benaio et al
perform better than state-of-the-art models for the prob- e words of interest are expected to occur (Bengio et al.,

lem of word similarity computation with respect to vari- 2803; Huangt et 3_"’ 2012& Mlk§|OV et T"IZ%%):E)' TE'S
ous datasets in four languages (English, German, ltaliarf@VaNCceMENt IS diSCUSSE in (Barani et al., : ), where
and Greek). The fusion of different types of DSMs is it is c_ompared W_lth trad_ltlo_nal DSMs fo_r varlous_tasks
also investigated exceeding the performance of individ-Of lexical semantics. A similar comparative study is also

ual models. We make publicly available the used corpor resented in (Huang et_al., 2012). .-
along with a set of tools, as well as large repositories o ord-level representations are the building blocks for

vectorial word representations for all four languages. phra_lse— and senten_ce-_level models._ Such mo_d_els are
motivated by the principle of semantic compositional-
ity (Pelletier, 1994), while they are meant to address
2. Related Work a number of properties that characterize the composi-
Word-level representations constitute the core aspect dfonal aspects of meaning, namely, “linguistic creativ-
DSMs typically constructed from co-occurrence statis-ity”, “order sensitivity”, “adaptive capacity”, and “in-
tics of word tuples. Word-level DSMs can be broadly formation scalability” (Turney, 2012). The work pre-

categorized into unstructured and structured with respectented in (Mitchell and Lapata, 2010) constitutes one
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of the earlier approaches in the area of compositionahere the value of each dimension is set according to the
DSMs, where a series of algebraic operations are apeo-occurrence counts of words and their contextual fea-
plied over the word-level feature vectors for representingures. The transformation of raw co-occurrence counts
the semantics of two-word phrases divided in three catwas found to improve the properties (e.g., smoothness)
egories, namely, noun-noun (NN), adjective-noun (AN),and performance of DSMs. Such transformations aim to
and verb-object (VO). In (Baroni and Zamparelli, 2010), encode feature saliency, e.g., positive point—-wise mutual
the compositional aspects of AN phrases were investiinformation (PPMI) (Bullinaria and Levy, 2007). High-
gated where the semantic transformation triggered by addimensional word—feature matrices constitute the main-
jectives was modeled via a function (implemented as mastream implementation of VSM. The dimensionality of
trix) operating over the vectorial representation of nounssuch representations can be reduced by applying tech-
The phrase-level approach of (Baroni and Zamparelliniques such as Singular Value Decomposition (SVD).
2010) was generalized in (Socher et al., 2012) according survey of CDSMs is provided in (Turney and Pantel,
to which sentence-level representations are constructez10).

in a recursive bottom-up fashion. A comparison of theContext-predicting DSMs (PDSMs). PDSMs have
major compositional approaches reported in the literabeen recently proposed. Their key difference compared
ture is presented in (Dinu et al., 2013). In (Turney, 2012)to CDSMs deal with the computation of contextual fea-
the compositionality task is investigated in the space otures (Bengio et al., 2003; Huang et al., 2012; Mikolov et
similarities instead of features. Specifically, two distin al., 2013a). The basic operation in CDSMs, is the count-
models are built, namely, domain and function spaces. ing of contextual features for a target woud given a
Despite the fact that meaning is at the core of human cogeontext. The key idea that underlies PDSMs is to formu-
nition, incorporating findings from the area of semanticlate the distributional hypothesis of meaning in a proba-
cognition into the design of DSMs is not straightforward. bilistic framework and learn the model parameters. For
The relation between cognitive semantics and the inforexample, in (Mikolov et al., 2013a) this is investigated in
mation encoded by DSMs is discussed in (Lenci, 2008)the framework of statistical language modeling where the
Motivated by evidence related to the low-dimensionalword—feature conditional probabilities are learnt (word
geometry of thought (Gardenfors, 2004) in (Athana-embeddings).

sopoulou et al., 2014) word-level semantics are locallyFor both CDSMs and PDSMs the cosine of feature vec-
represented via a series of manifolds, while global op+ors is the most widely—used metric for computing word
erations (e.g., computation of word semantic similarity)semantic similarity. In (Lin, 1998; Turney and Pantel,
are decomposed into local (i.e., manifold-level) opera-2010), more metrics are discussed.

tions. In (Georgiladakis et al., 2015) a two-layer model

motivated by semantic priming (McNamara, 2005) and 4. Activation-based DSMs (ADSMs)

the dual cognitive processing theory (Kahneman, 2013), ;s section, cognitively motivated DSMs are pro-

was adopted for representing the semantics_of COMPYs55ed, which are termeattivation-based DSMsThe
sitional phrases. Other related approaches include thg,yerying hypothesis is that the representation of a tar-
mapping of DSMs to feature-normed spaces (Fagarasaiit ordu, takes the form of a set of semantically re-
et al., 2015), the extension of word embeddings withja¢eq attributes (words) that are activated whefis pro-
cognitively motivated Iexu_:_o-semantlc resources such a%essed (Rogers and McClelland, 2004). This hypothe-
WordNet (Rothe and Schutze, 2015). sis is justified by the psycholinguistic phenomenon of
N . . semantic primingaccording to which the presence of a
3. Distributional Semantic Models word facilitates the cognitive processing of another word
Here, two types of DSMs are described, which rely on(Collins and Loftus, 1975; McNamara, 2005). Given a
the distributional hypothesis of meaning (Harris, 1954).geometrical representation where the words of a vocab-
Following the terminology coined in (Baroni et al., 2014) ulary V' are arranged according to their respective pair-
we refer to them asontext-counting DSMandcontext-  wise semantic distances (i.e., a sp&gg the activated
predicting DSMs attributes ofw; can be regarded as a sub-spétgalso
Context-counting DSMs (CDSMs). This type can be referred to aselative activation arepthat represents the
regarded as the mainstream paradigm of DSMs. The corgemantics ofv;. Such areas are expected to be of small
idea is that the representation of word meaning is implesize (compared t®") given the limited capacityof hu-
mented by considering the context in which the word oc-man short—-term memory (Cowan, 2001). A number of
curs. A context window of siz2H +1 words is centered cognitive factors (e.g., semantic concreteness (Barber et
on the word of interesi; and the contextual features that
fall within the window are extracted. A high-dimensional  The capacity should not be regarded as fixed, e.g., it was
space is built —also known as vector space model (VSM)-empirically found to be task—depended (Cowan, 2001).
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al., 2013), visuospatial characteristics (Yao et al., 3P13 passed to a second layer with slower but more accurate
play a role to the size of activation areas that varies responses.

across words. )

In this work, we advance some of the design principles 5. Fusion of Models

of the aforementioned CDSMs and PDSMs by puttingTwo fusion schemes are proposed next: 1) an early fu-
into a computational framework the core implications of sion scheme where representations of target words are
activation areas. The notion of the maximum activationconcatenated into a single hybrid representation and 2) a
areaG"** of word w; is central to the proposed model. |ate fusion scheme where similarity scores estimated by
G~ is defined as the list of all words with whiely co-  different models are linearly combined.

occurs in our corpus. What we attempt to models here is-eature-level fusion (early). Given a wordw;, let v;

the largest possible list of words that can form “di-  be its semantic representation computed via mbdes-

rect” cognitive connections with. The activation a@a  suming that this representation can be encoded as a vec-
for word w; is defined as a fraction of the maximum ac- tor, and thatd/ models are available, the hybrid repre-

tivation areaG}*** for this word. sentation ofw;, denoted a$;, can be computed as:
The two main novel aspects of the proposed model — A

which are not directly encoded in CDSMs and PDSMs— Ui = Vi1 DUi2 D D UM, 1)
are:

where & stands for the vector—concatenate operator.
1. The injection of sparsity in word representations viaThen, similarity between two words;; andws,, can be
the exploitation of small activation areas, estimated by using their hybrid representatiénsand
o ) . _ 09 and applying standard similarity metrics, e.g., cosine
2. The conditioning of sparsity on the maximum acti- 4 yectors. Since the vectors in (1) come from different
vation ared;"**. The size of activations is notthe ,,qels normalization should take place before applying
same for all words. the @ operations. In this work, we propose the useZof
Each activation area is formulated as a vectorial reprenormalizatiod (Cohen, 1995):
sentation enabling the construction of VSM on top of

which well-established similarity metrics, e.g., cosine v;_’l = M, (2)
of vectors, can be applied. In particular, the words of Til
the entire vocabulary” are used for defining &/|-  wherepu;; ando; ; are the arithmetic mean and the stan-

dimensional vector for a target worg;. Only those di-  dard deviation of feature values of vector;, respec-
mensions that correspond to the words included:in tively.

are allowed to take non-zero values. An advantageousimilarity-level fusion (late). The similarity between
characteristic of this construction is the representation two words,w; andw,, denoted asS(wy,ws,), is esti-
fusion of ADSMs with existing DSMs (see next section), mated as follows:

since VSM constitutes the most common implementa- "

tion in DSMs. Overall, the proposed model is a two-tier 5 _ o

system meant for activation and similarity computation Slwwg) = Ao + Z Aj Sy, wz), 3
adopting the paradigm presented in (losif and Potami-
anos, 2015). In the first tier, the activation a®aof  whereS;(w:,w2) stands for the similarity between;
target wordw; is computed by identifying and filtering andw, computed via model, while )\; is are trainable
the most similar vocabulary words te; according to a  weights.

similarity metric. The second layer is used for the com- ) )

putation of semantic similarity of word pairs based on 6. Experimental Settings

their respective activations. Corpora creation. For each language a web-harvested
The theoretical foundations of the two-tier architecturecorpus was created according to the following procedure.
originate from a generic cognitive model that was empir-Starting from a dictionary, a web search query was for-
ically found to apply to numerous semantic and behavimulated for each dictionary entry and sent to the Yahoo!
ioral tasks (Kahneman, 2013). Given a stimulous (e.g.search engine. For each query, up totbe0 top ranked

a word or any other perceptual entity), the first layerresults (document snippets) were retrieved. The overall
rapidly activates (at the expense of accuracy) a group oforpus was built by aggregating the retrieved snippets.
similar/related entities. The refinement of relations thatContext-counting DSMs (CDSMs). Several window
exist between the stimulous and the activated entities isizes = 1,...,5) were applied for extracting the

j=1

2This issue is also considered in (Georgiladakis et al., pP015  3Other normalization schemes, e.g., min—max, yielded sig-
for the compositional representation of phrases. nificantly lower performance.
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contextual features, which were weighted according t;mamely: English, German, ltalian, and Greek. The
PPMI. The dimensions of the word—feature matrix wereSpearman correlation coefficient against human ratings
reduced by applying SVD. Here, we report results forwas used as the evaluation metric. The correlation
300 dimensions for which the best results were obtainedscore$ obtained by ADSMs are presented in Figure 1(a)
Context-predicting DSMs (PDSMs). Thewor d2vec and (b) forH = 1 and H = 5, respectively, as a func-
tool was used (Mikolov et al., 2013a; Mikolov et al., tion of the size of relative activation areas. It is observed
2013c). We applied the CBOW approach as being mor¢hat, when a narrow window size is usdd £ 1) the best
computationally efficient (Mikolov et al., 2013b; Baroni performance is obtained for activation sizes greater than
et al., 2014) forH = 1,...,5. The dimensions of the 50%. For H =5 the highest correlation is achieved for
resulting the word—feature matrix was seBti). activation sizex = 3 — 10%, except for the case of the
Activation-based DSMs (ADSMs). First, for a target Greek dataset for which the best results are obtained for
word, w;, the size ofGI*** (denoted asV/™**) was es-  activation sizex = 20%. Overall, the highest correlation
timated as the number of the vocabulary words that coscores are achieved for the English datasets for all win-
occur withw; within sentence boundaries. Next, the dow sizes. The low-dimensional ADSMs (SVD-based)
area (i.e., relative activation area) was computed by sewere found to yield significantly lower performance than
lecting theaN/"®* most semantically simildrwords to ~ ADSMs across all datasets, languages, Andgalues.

w;, for «=1...100%. For the computation of the feature In Table 2, we present the performance for a number
vector ofw; in the second layer, we experimented with of relative activation sizes (foFf = 5) with respect to
several context window& = 1,...,5. For a givenH,  similarity and relatedness using the respective subsets of
only those words that were included@y were consid-  word pairs from the English dataset ws353 (Agirre et al.,
ered as valid features weighted according to the respe@009). The dominant relation for highly similar words
tive similarity scores (i.e., those used f@r). A low— is synomymy, e.g., “midday-noon”. Regarding related-
dimensional variation of ADSMs was also implementedness, various relations of associative nature may hold,
by applying SVD over the word—feature matrix retaining e.g., “news-report”. The highest correlation score is ob-
300 dimensions.

The )\ weights of (3) were computed using least squares Type Relative activation size
estimatiofi. For all the aforementioned DSMs (CDSMs, 1% | 3% | 10% | 20%
PDSMs, ADSMs), the cosine of feature vectors was used Similarity || 0.63| 0.77 | 0.74 | 0.68
for computing word similarity. Relatedness| 0.59 | 0.72| 0.70 | 0.62

7. Evaluation Datasets and Results Table 2: Performance wrt similarity vs. relatedness.

The task of noun semantic similarity computation was o _
used for evaluation purposes. We used the datasetgined for the case of similarity. For both relation types
the best scores are achieved for activation size 3%.

| Language| Dataset | # pairs| The performanceof early fusion (computed according
English ws353 353 to (1) and (2)) is shown in Table 3 along with the per-
(EN) (Finkelstein et al., 2002) formance of the three individual models (i.e., CDSMs,
English men1K 1000 PDSMs, and ADSMs). Context windoW = 5 was ap-
(EN) men3K 3000 plied for all fused models, while the0% of the activa-
(Bruni et al., 2014) tion size was utilized for ADSMs. In addition, the per-
German ws350ge 350 formance is reported in terms of average correlation con-
(GE) (Leviant and Reichart, 2015) sidering the correlation scores obtained for all datasets
ltalian Ws350it 350 (ws353, menlkK, men3K, ws350ge, ws350it, and gr200).
(IT) (Leviant and Reichart, 2015) We observe that the best results are achieved by the fu-
Greek gr200 200 sion scheme across all datasets and languages (on aver-
(GR) (Zervanou et al., 2014) age, 0.72 correlation). For the majority of datasets the

correlation obtained by the best individual model is im-
Table 1: Evaluation datasets.
5Results are shown only for men3K, since almost identical
presented in Table 1, which deal with four languagesperformance was observed for both men3K and meniK.
"Results forl < H < 5 are omitted as being the middle
“4In this work, we used PPMI, however, any similarity met- ground of H =1 andH =5.

ric, e.g., cosine, can be applied. 8For the results reported next, no distinction is made regrad
SVery similar results were obtained when applying other ing the relations (e.g., similarity vs. relatedness) ofekperi-
methods, e.g., ridge regression. mental word pairs.
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= EN: men3K = EN: men3K
0.3+ ===EN:ws353 H 0.3H===EN: ws353
= GE: ws350ge = GE: ws350ge
IT:ws350it IT:ws350it
0.2r GR:gr200 || 0.2 — cRr: gr200
10° . 10t 10 10° _ 10t 10
Relative activation size (%) Relative activation size (%)
(a) (b)

Figure 1: Performance of activation-based DSMs. Cormteds a function of th& of the activation areas for context
window sizes: (aH =1, (b) H =5. Results are shown for English (EN), German (GE), Italidr),(&nd Greek (GR).

Type of DSMs

Language| Dataset || Context-counting Context-predicting| Activation-based|| Early
(CDSMs) (PDSMs) (ADSMs) fusion

EN ws353 0.70 0.68 0.70 0.74

EN menlK 0.76 0.74 0.78 0.80

EN men3K 0.76 0.75 0.78 0.80
GE ws350ge 0.56 0.60 0.63 0.66

IT ws350it 0.55 0.50 0.60 0.62

GR gr200 0.58 0.53 0.72 0.72
| Average I 0.65 | 0.63 | 0.70 | 072 ]

Table 3: Correlation scores for feature-level fusion (@alCDSMs, PDSMs and ADSMsH = 5, a = 10%).

proved by 0.02-0.03 via fusion, with the exception of theboth train and test datasets. In this case, the highest im-
gr200 dataset where no improvement is shown over th@rovement is observed for the ws353 dataset (from 0.70
ADSM performance. Regarding the individual models,to 0.75). Overall, the achieved performance is compara-
the proposed ADSMs are shown to yield consistentlyble or better compared to the state-of-the-art results re-
higher performance compared to CDSMs and PDSMgorted in the literature0.75 for ws353 (Baroni et al.,
across all languages. Also, CDSMs perform slightly bet-2014),0.60 and0.57 for ws350ge and ws356i{Leviant

ter than PDSMs for all languages except German. and Reichart, 2015), artd55 for gr200 (Zervanou et al.,

The performance obtained via the late fusion schem@om)'

(computed according to (3)) is presented in Table 4 along

with the performance of the three individual models (i.e., 8. Corpora, Tools, and Resources

CDSMs, PDSMs, and ADSMs). As in the case of earlyThe English, German, Italian, and Greek corpora are pro-
fusion, context windowH =5 was applied for all fused vided that consist of 116, 84, ,83, and 66 millions of web
models, while thel0% of the activation size was used document snippets, respectively. The first tool consti-
for ADSMs. For the case of English datasets (ws353 andutes an implementation of CDSMs characterized by fast
men1K), we used a subset of the largest dataset (men3Kprpus indexing, while the second tool implements the
for training purposes (i.e., learning theweights of (3))  proposed ADSMs. For each language, a pool of vectorial
by excluding the pairs of ws353 and menlK. For theword representations is made available, computed by the
case of German, Italian, and Greek datasets (ws350geforementioned DSMs (i.e., CDSMs, PDSMs, ADSMSs)
ws350it, and gr200, respectively) the entire men3K En-

glish dataset was used for training. We observe that the 9The relative difference in performance between the three
late fusion improves the performance only in the mono-ws353-based datasets may be attributed to factors retathe t
lingual train/test setting, i.e., when English is used intranslation of the English version to German and Italian.
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Train Test Type of DSMs

Lang | Dataset || Lang | Dataset || Context-counting Context-predicting Activation-based/| Late

(CDSMs) (PDSMs) (ADSMs) fusion
EN | menTrain|| EN ws353 0.70 0.68 0.70 0.75
EN | menTrain|| EN menlK 0.76 0.74 0.78 0.79
EN men3K GE | ws350ge 0.56 0.60 0.63 0.61
EN men3K IT ws350it 0.55 0.50 0.60 0.43
EN men3K GR gr200 0.58 0.53 0.72 0.62

Table 4: Correlation scores for similarity-level (late}ion: CDSMs, PDSMs and ADSM$H( = 5, a = 10%).

for H=1,3,5. For each combination, 100K vectors are Agirre, E., Cer, D., Diab, M., and Gonzalez-Agirre, A.

provided for a total of 1.2 millions of vectors. (2012). Semeval-2012 task 6: A pilot on semantic
textual similarity. InProc. of the Sixth International
9. Conclusions Workshop on Semantic Evaluation (SemEvajges

The proposed activation-based DSMs were found to per- 385-393. o

form better than the mainstream context-counting DSMs/Androutsopoulos, 1. and Malakasiotis, P. (2010). A sur-
as well as the recently proposed context-predicting V&Y of paraph_rgs_mg and.textual entailment methods.
DSMs. This was observed for all four languages and Journal of Artificial Intelligence Researgct88:135—
datasets. Small activation sizes (i.2.+ 10%) contain

adequate information for building semantic representaAthanasopoulou, G., losif, E., and Potamianos, A.
tions in the framework of activation-based DSMs. In ad- (2014). Low-dimensional manifold distributional se-
dition, it was shown that feature-level fusion performs mantic models. IrProc. of International Conference
better than late fusion at the level of similarity scores. ©On Computational Linguistics (COLING)

A key operation regarding the fusion of representationgarber, H. A., Otten, L. J., Kousta, S.-T., and Vigliocco,
is their Z normalization that was found to perform best G. (2013). Concreteness in word processing: ERP
for this task exceeding the performance of the individ- and behavioral effects in a lexical decision taBkain

ual models. Late fusion improves the performance only and Languagel25:47-53.

when both train and test datasets are in the same laBaroni, M. and Zamparelli, R. (2010). Nouns are vec-
guage. Last but not least, multilingual resources (corpora tors, adjectives are matrices: Representing adjective-
and word semantic representations) and tools are made noun constructions in semantic space. Rroc. of

publicly availablé®. EMNLP, pages 1183-1193.
Baroni, M., Dinu, G., and Kruszewski, G. (2014). Don't
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