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Abstract
In this paper, we present Farasa (meaning insight in Arabic), which is a fast and accurate Arabic segmenter. Segmentation involves
breaking Arabic words into their constituent clitics. Our approach is based on SVMrank using linear kernels. The features that we
utilized account for: likelihood of stems, prefixes, suffixes, and their combination; presence in lexicons containing valid stems and
named entities; and underlying stem templates. Farasa outperforms or equalizes state-of-the-art Arabic segmenters, namely QATARA
and MADAMIRA. Meanwhile, Farasa is nearly one order of magnitude faster than QATARA and two orders of magnitude faster than
MADAMIRA. The segmenter should be able to process one billion words in less than 5 hours. Farasa is written entirely in native Java,
with no external dependencies, and is open-source.
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1. Introduction
Segmenting Arabic words is one of the most important pro-
cessing steps for Arabic and is used as a building block for
many Arabic natural language processing (NLP) technolo-
gies such as search, part-of-speech tagging, parsing, and
machine translation. Word segmentation involves break-
ing words into their constituent clitics. For example, the
word “wktAbnA”1 ( A

	
JK. A

�
J»ð meaning: “and our book”) is

composed of three clitics “w+ktAb+nA”, namely the con-
junction article “w” as prefix, the stem “ktAb”, and pos-
sessive pronoun “nA” as suffix. Due to the importance of
the problem, many segmenters have appeared in the past 20
years. They ranged from rule-based morphological analyz-
ers (Beesley et al., 1989; Beesley, 1996; Buckwalter, 2002;
Khoja, 2001), to light stemmers (Aljlayl and Frieder, 2002;
Darwish and Oard, 2007), and statistical word segmenters
(Darwish, 2002; Habash et al., 2009; Diab, 2009; Darwish
et al., 2014). Statistical word segmenters are considered
state-of-the-art with reported segmentation accuracy above
98%.
In this paper we introduce a new segmenter, called Farasa
(meaning: insight in Arabic), that is at par or better than the
state-of-the-art and is very fast. It is an SVMrank-based
segmenter that uses a variety of features and lexicons to
rank different possible segmentations of a word. The fea-
tures that we utilized account for: likelihood of stems, pre-
fixes, suffixes, and their combination; presence in lexicons
containing valid stems and named entities; and underly-
ing stem templates. For Farasa, we make the fundamen-
tal simplifying assumption that word-context is not neces-
sary to find the correct segmentation of a word. Though
a word may have multiple valid segmentations, our re-
sults show that this assumption minimally impacts our re-
sults. We also report evaluation results on a new test set
that we developed to measure segmentation accuracy. We
also compare to other state-of-the-art segmenters, namely
MADAMIRA (Pasha et al., 2014) and QCRI Advanced
Tools For ARAbic (QATARA) (Darwish et al., 2014).

1Buckwalter encoding is used exclusively in the paper.

We also wanted to compare to the Stanford Arabic seg-
menter (Monroe et al., 2014), but its segmentation scheme
was different from the one we used in Farasa. Many of the
current results reported in the literature are done on sub-
sets of the Penn Arabic Treebank (ATB) (Maamouri et al.,
2005). Since the aforementioned tools are trained on the
ATB, testing on a subset of the ATB is problematic due to
its limited lexical diversity and the similarity between the
training and test sets. This generally leads to results that
are often artificially high. Our new dataset is composed of
recent WikiNews articles from the years 2013 and 2014.
The contributions of this paper are:

• the development a new Arabic word segmenter that is
more accurate and much faster than the current state-
of-the-art segmenters.

• the introduction of a new test set to evaluate word seg-
mentation. We plan to make this tool and data freely
available.

A demo of the segmenter is available online at:
http://qatsdemo.cloudapp.net/farasa/

2. Related Work
Due to the morphological complexity of the Arabic lan-
guage, morphological processing such as word segmen-
tation helps recover the units of meaning or their prox-
ies, such as stems (or perhaps roots). Most early Arabic
morphological analyzers generally used finite state trans-
ducers (Beesley et al., 1989; Beesley, 1996; Kiraz, 1998).
Their use is problematic for two reasons. First, they were
designed to produce as many analyses as possible without
indicating which analysis is most likely. This property of
the analyzers complicate subsequent NLP as many applica-
tions require the most likely solution. Second, the use of
finite state transducers inherently limits coverage, which is
the number of words that the analyzer can analyze, to the
cases programmed into the transducers. Other similar ap-
proaches attempt to find all possible prefix and suffix com-
binations in a word and then try to match the remaining
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stem to a list of possible stems (Khoja and Garside, 2001;
Maamouri et al., 2010). This approach has the same short-
comings as the finite state transducer approach. Another
approach to morphology is so-called light stemming. In
this approach, leading and trailing letters in a word are re-
moved if they match entries in lists of common prefixes and
suffixes respectively. The advantage of this approach is that
it requires no morphological processing and is hence very
efficient. However, incorrect prefixes and suffixes are rou-
tinely removed. This approach was used to develop Arabic
stemmers by Aljlayl et al. (Aljlayl and Frieder, 2002), Dar-
wish and Oard (Darwish and Oard, 2007), and Larkey et
al. (Larkey et al., 2002).
More recent analyzers can statistically perform deep word
stemming. For example, Darwish attempted to solve this
problem by developing a statistical morphological analyzer
for Arabic called Sebawai that attempts to rank possible
analyses to pick the most likely one (Darwish, 2002). Lee
et al. (Lee et al., 2003) developed IBM-LM, which adopted
a trigram language model (LM) trained on a portion of the
manually segmented LDC Arabic Treebank (Maamouri et
al., 2005), in an attempt to improve the coverage and lin-
guistic correctness over existing statistical analyzers such
as Sebawai (Darwish, 2002). IBM-LM’s analyzer com-
bined a trigram LM (to analyze a word within its context
in the sentence) with a prefix-suffix filter (to eliminate il-
legal prefix-suffix combinations, hence improving correct-
ness) and unsupervised stem acquisition (to improve cover-
age). Lee et al. report a 2.9% error rate in analysis com-
pared to 7.3% error reported by Darwish for Sebawai (Lee
et al., 2003; Darwish, 2002). Diab (Diab, 2009) created a
stemmer called AMIRA that used an SVM classifier to as-
certain the optimal segmentation for a word in context. The
classifier was trained on the Arabic Penn Treebank data.
Essentially, Diab treated the problem as a sequence label-
ing problem and reported a stemming error rate of about
1%. MADA (Habash et al., 2009) and MADAMIRA (Pasha
et al., 2014), the successor to both MADA and AMIRA,
are morphological taggers for MSA that are used widely
for processing Arabic in the context of machine transla-
tion (Sajjad et al., 2013). Our work in this paper uses sta-
tistical methods to perform word segmentation.
Though there has been some work on morphological anal-
ysis of Arabic dialects (Habash et al., 2013), particularly
Egyptian and Levantine. Most of the dialectal morpholog-
ical phenomena primarily affect verbs with little effect on
nouns. Work on dialects is beyond the scope of this paper.

3. Segmentation
3.1. Features:
In this section we introduce the features and lexicons
that we used for segmentation. For any given word
(out of context), all possible character-level segmen-
tations are found and ones leading to a sequence of
prefix1+...+prefixn+stem+suffix1+...+suffixm,
where: prefix1..n are valid prefixes; suffix1..m are
valid suffixes; and prefix and suffix sequences are legal, are
retained. Our valid prefixes are:
f, w, l, b, k, Al, s. (� , È@ , ¼ , H. , È ,ð ,

	
¬).

Our valid suffixes are: A, p, t, k, n, w, y, At, An,

wn, wA, yn, kmA, km, kn, h, hA, hmA, hm, hn, nA,
tmA, tm, and tn ( @ð ,

	
àð ,

	
à@ ,

�
H@ , ø



, ð ,

	
à , ¼ ,

�
H ,

�
è , @

	á
�
K , Õç

�
' , AÖ

�
ß , A

	
K , 	áë , Ñë , AÒë , Aë , è , 	á» , Õ» , AÒ» , 	áK
).

Using these prefixes and suffixes, we generated a list of
valid prefix and suffix sequences. For example, sequences
where a coordinating conjunction (w or f) precedes a
preposition (b, l, k), which in turn precedes a deter-
miner (Al), is legal, for example in the word fbAlktab
H. A

�
JºËAJ.

	
¯ (gloss: “and in the book”) which is segmented

to (f+b+Al+ktAb H. A
�
J» + È@ + H. +

	
¬). Conversely, a

determiner is not allowed to precede any other prefix. We
used the following features:

• Leading Prefixes: conditional probability that a lead-
ing character sequence is a prefix.

• Trailing Suffixes: conditional probability that a trail-
ing character sequence is a suffix.

• LM Prob (Stem): unigram probability of stem based
on a language model that we trained from a cor-
pus containing over 12 years worth of articles of Al-
jazeera.net (from 2000 to 2011). The corpus is com-
posed of 114,758 articles containing 94 million words.
This feature helps the segmenter determine if a stem is
a valid word.

• LM Prob: unigram probability of stem with first suf-
fix. This would help capture cases where a particular
stem most likely appears with a specific suffix such as
“jdA” ( @Yg. meaning: “much”) where the proper seg-
mentation is “jd+A” and the word “jd” appears rarely.

• Prefix—Suffix: probability of prefix given suffix.

• Suffix—Prefix: probability of suffix given prefix.

• Stem Template: whether a valid stem template can be
obtained from the stem. Stem templates are patterns
that transform an Arabic root into a stem. For exam-
ple, apply the template CCAC on the root “ktb” “I.

�
J»”

produces the stem “ktAb” “H. A
�
J»” (meaning: book).

To find stem templates, we adopted QATARA’s stem-
template module (Darwish et al., 2014), and we mod-
ified it to improve its coverage and accuracy. Charac-
ter sequences leading to valid stem-templates are more
likely to be stems.

• Stem Lexicon: whether the stem appears in a lexi-
con of automatically generated stems. This can help
identify valid stems. This list is generated by placing
roots into stem templates to generate a stem, which is
retained if it appears in the aforementioned Aljazeera
corpus.

• Gazetteer Lexicon: whether the stem that has no
trailing suffixes appears in a gazetteer of person and
location names. The gazetteer was extracted from
Arabic Wikipedia in the manner described by (Dar-
wish et al., 2012). We retained just word unigrams.
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• Function Words: whether the stem is a function
word such as “ElY” “úÎ«” (on) and “mn” “ 	áÓ” (from).

• AraComLex: whether the stem appears in the
AraComLex2 Arabic lexicon, which contains 31,753
stems of which 24,976 are nouns and 6,777 are
verbs (Attia et al., 2011).

• Buckwalter Lexicon: whether the stem appears
in the Buckwalter lexicon as extracted from the
AraMorph package (Buckwalter, 2002).

• Length Difference: difference in length from the av-
erage stem length.

3.2. Learning:
We constructed feature vectors for each possible segmenta-
tion and marked correct segmentation for each word. We
then used SVMrank (Joachims, 2006) to learn the feature
weights that would hopefully rank correct segmentations
higher than incorrect ones. We used a linear kernel with
a trade-off factor between training errors and margin (C)
equal to 100, which is based on offline experiments done
on a dev set. During testing, all possible segmentations with
valid prefix-suffix combinations are generated, and the dif-
ferent segmentations are scored using the classifier. We had
two varieties of Farasa. In the first, FarasaBase, the classi-
fier is used to segment all words directly. It also uses a small
lookup list of concatenated stop-words where the letter “n”
“ 	

à” is dropped such as “EmA” “ AÔ«” (“En+mA” “ AÓ+ 	á«”),

and “mmA” “ AÜØ” (“mn+mA” “ AÓ + 	áÓ”). In the second,
FarasaLookup, previously seen segmentations during train-
ing are cached, and classification is applied on words that
were unseen during training. The cache includes words that
have only one segmentation during training, or words ap-
pearing 5 or more times with one segmentation appearing
more than 70% of times.

3.3. Training and Testing:
For training, we used parts 1 (version 4.1), 2 (version 3.1),
and 3 (version 2) of the the Penn Arabic Treebank (ATB).
As mentioned earlier, many of the current results reported
in the literature are done on subsets of the ATB. Testing
done on a subset of the ATB is problematic due to its
limited lexical diversity, leading to artificially high results.
We created a new test set composed of 70 WikiNews
articles (from 2013 and 2014) that cover a variety of
themes, namely: politics, economics, health, science and
technology, sports, arts, and culture. The articles are evenly
distributed among the different themes (10 per theme). The
articles contain 18,271 words.

Figure 1 shows a sample from the WikiNews corpus
which has for each word its segmentation, POS tag, and
diacritization. Currently, We use this corpus for evaluating

2http://sourceforge.net/projects/
aracomlex/

System Tokenization Error Rate
MADAMIRA 1.24%
QATARA 1.77%
Farasabase 1.24%
Farasalookup 1.06%

Table 1: Comparing Farasa word segmentation results to
MADAMIRA and QATARA.

segmentation accuracy for different systems, and we plan
to expand its usage to cover more linguistic aspects. Gen-
erally speaking, segmentation of foreign named entities
is one of the main reasons of errors for all segmentation
systems as shown in the figure.

Table 1 compares the results of MADAMIRA, QATARA,
and both varieties of Farasa. As the results show, Farasa
yields lower segmentation errors than existing systems.
For MADAMIRA, we used a segmentation scheme that
matches ours exactly and considers the same prefixes and
suffixes. Table 2 shows some output examples from
FarasaLookup, MADAMIRA, and QATARA. From analyz-
ing the errors in FARASA, we found that most of the er-
rors were due to either: foreign named entities such as
lynks (meaning: Linux) and bAlysky (meaning: Palisky);
or to long words with more than four segmentations such as
wlmfAj>thmA (w+l+mfAj>+t+hmA meaning and to sur-
prise both of them). We think that adding larger gazetteers
of foreign names may help reduce the first kind of errors.
For the second type of errors, the classifier generates the
correct segmentation, but it receives often a slightly lower
score than the incorrect segmentation. Perhaps adding more
features can help correct such errors.

To test the speed, we used Farasa without any caching to
analyze 7.4 million words on a MacBook Pro with 2.5
GHz Intel Core i5 processor and 16 gigabytes of RAM.
The model loading time was 7 seconds and segmentation
time was exactly 129 seconds (a total of 2 minutes and
16 second). This is compared to more than 2.5 hours for
MADAMIRA and more than 18 minutes for QATARA. Ex-
trapolating from that, the segmenter can process 1 billion
words in less than 5 hours. The tokenizer is written entirely
in native Java code with no external dependencies.

4. Conclusion

In this paper we introduced Farasa, a new Arabic segmen-
tation package, which uses SVMrank to rank the possible
legal segmentations of an Arabic word. We also introduced
a new test set for the task based on news articles that cover
different themes. We show that our system is more accu-
rate than current state-of-the-art systems, while being much
faster. The tool is implemented entirely in Java without any
external dependencies. We plan to make both Farasa and
test set publicly available. For future work, we plan to im-
prove the underlying gazetteers and to improve our features
to reduce segmentation errors even further.
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Figure 1: Sample from WikiNews corpus with segmentation errors highlighted

Word FarasaLookup MADA QATARA
bmsbAr (PAJ.�Öß.) b+msbAr (PAJ.�Ó + H. ) bmsbAr (PAJ.�Öß.) b+msbAr (PAJ.�Ó + H. )
fysbwk (¼ñJ.��


	
¯) fysbwk (¼ñJ.��


	
¯) f+ysb+w+k (¼ + ð + I. ��
 +

	
¬) fysbwk (¼ñJ.��


	
¯)

kwrwnA ( A
	
KðPñ») kwrwnA ( A

	
KðPñ») kwr+w+nA ( A

	
K + ð + Pñ») kwrwnA ( A

	
KðPñ»)

mlSqAt ( �
HA

�
®�ÊÓ) mlSq+At ( �

H@ +
�

��ÊÓ) mlSqAt ( �
HA

�
®�ÊÓ) mlSq+At ( �

H@ +
�

��ÊÓ)
lynks (�º

	
JJ
Ë) l+ynks (�º

	
JK
 + È) l+ynks (�º

	
JK
 + È) lynks (�º

	
JJ
Ë)

wlmfAj>thmA wlmfAj>thmA w+l+mfAj+>th+mA w+lmfAj>+th+mA

( AÒî
�
E


Ag. A

	
®ÖÏð) ( AÒî

�
E


Ag. A

	
®ÖÏð) ( AÒ+î

�
E


A+k. A

	
®Ò+Ë+ð) ( AÒ+î

�
E+



Ag. A

	
®ÖÏ+ð)

Table 2: Examples that show some of the failings of the different systems. Correct segmentation is in bold.
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