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Abstract
Chinese sentences are written as sequences of characters, which are elementary units of syntax and semantics. Characters are highly
polysemous in forming words. We present a position-sensitive skip-gram model to learn multi-prototype Chinese character embeddings,
and explore the usefulness of such character embeddings to Chinese NLP tasks. Evaluation on character similarity shows that
multi-prototype embeddings are significantly better than a single-prototype baseline. In addition, used as features in the Chinese NER
task, the embeddings result in a 1.74% F-score improvement over a state-of-the-art baseline.
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1. Introduction
Learned from large-scale unlabeled data, embeddings of-
fer distributed vector representations of words and phras-
es (Bengio et al., 2003; Mikolov et al., 2013). They have
been applied as inputs to neural networks (Collobert and
Weston, 2008; Socher et al., 2011; Kalchbrenner et al.,
2014), and also used as additional features to improve lin-
ear models (Turian et al., 2010; Bansal et al., 2014; Guo et
al., 2014b) for NLP tasks. The advantages of embeddings
are two-fold. First, they are useful for reducing sparseness
compared with discrete words and n-grams. Second, they
contain automatically induced features.
Written as continuous sequences of characters, Chinese
sentences do not have explicit word delimitation. As a re-
sult, similar to other Chinese NLP tasks, it is possible to
create word embeddings based on automatically segmented
Chinese sentences (Zhang et al., 2014b). Although seg-
mentation errors can affect the quality, it has been shown
that such word embeddings can improve Chinese NLP tasks
such as parsing (Wu et al., 2013).
On the other hand, character information can also be used
for NLP (Zhang et al., 2014a). Zhang et al. (2013) show
that parsing can be improved by taking characters as inputs,
jointly performing segmentation and syntax parsing. They
show that character features can significantly improve the
accuracies. Character features are also central to other Chi-
nese NLP tasks such as character-based segmentation (X-
ue, 2003) and named entity recognition (NER (Chen et al.,
2006)).
It is an interesting research question whether character em-
beddings can be useful for Chinese NLP. However, rela-
tively little work has been reported on embedding Chinese
characters, and limited effect has been observed (Sun et al.,
2014). One possible reason is that the number of characters
is much smaller compared to the number of words (104 vs
106), and the effect of character embedding on reducing s-
parsity can be limited. Also due to this reason, it has been
shown that unsupervised clustering of characters does not
improve in-domain segmentation (Liang, 2005).
Another possible reason, however, is that previous work did
not take into account the polysemy of characters. One u-

niqueness of charactes, as compared with words, is that
their use is highly flexible, and each character can have
multiple meanings in different words. For example, the
character “�” can take at least 4 senses, including color
in “�Ú (yellow)”, surname in “�¼ (Huang)”, failure in
“ù¯��
 (The thing failed)” and pornography in “×
� (anti-pornography)”. As a result, it is difficult to ful-
ly capture the character meaning by using a fixed embed-
ding for each character. We address this issue by proposing
a method for multi-prototype character embedding, which
predicts the character sense together with its embedding
given an input sentence.
Experiments show that multi-prototype embeddings can
give better results than a single-prototype baseline on both
character similarity evaluations and Chinese NER. For the
NER task, character embeddings improves the accuracy of
a state-of-the-art CRF model significantly.

2. Multi-prototype Character Embedding
Most Chinese characters have multiple senses, but take on-
ly one sense in a given context. The task of multi-prototype
character embedding is to find a continuous vector repre-
sentation for each Chinese character sense. We develop a
multi-prototype word model by adapting an existing mod-
el for word embedding in the literature, making significant
changes for the character embedding task.
There has been a line of work in training multi-prototype
word embeddings (Huang et al., 2012; Guo et al., 2014a;
Frey and Dueck, 2007; Tian et al., 2014; Chen et al., 2014).
We adapt the Multi-Sense Skip-gram (MSSG) model (Nee-
lakantan et al., 2014), which is based on the Skip-gram
model (Mikolov et al., 2013). The Skip-gram model works
by predicting a word vector using its context. To accom-
modate for multiple word senses, the MSSG model works
by predicting the sense of the current word given its con-
text, and then updating the current word sense vector and
context vector.
In particular, each word w is associated with two types
of vector representations, one being the output embedding
v(w), and the other being the context v(w). Given a spe-
cial context, the sense of a word is predicted as the center

855



top K 1 5 10 20 50
one 33.1 26.3 23.7 21.0 17.7
fix 27.4 22.5 20.6 18.6 15.9
cilin 33.3 28.0 25.3 22.8 19.9
one pos 36.0 30.2 27.1 24.0 20.1
fix pos 34.7 29.5 26.7 24.0 20.2
cilin pos 39.6 33.3 30.2 27.5 23.7

Table 1: Character similarity accuracy results.

of cluster that is closet to its average context vector. The
MSSG model uses a clustering algothrim to group word
sense, which similar to the k-means algorithm, and the clus-
ter center is the average of the vector representation of all
contexts which belong to that cluster.
We make three significant changes to MSSG for the char-
acter embedding task. First, we predict the sense of the
current character given the context directly by using a neu-
ral model (Eq.2), rather than by finding the cluster center
which is closed to average context vector. This method is
empirically more accurate for our task. Second, characters
are highly order-sensitive in forming words, we add posi-
tion into the context by combining a character c with its
position in obtaining v̄c, so each character in each position
(relative to the current character position) has a embedding.
This results in a position-sensitive variation of the Skip-
gram model. In addition, the number of senses per char-
acter is induced from a lexicon rather than automatically.
We call the Position-sensitive MSSG (PMSG).
As shown in Figure 1, given an input sentence, each char-
acter c is assigned to its context vector v(c); which is then
used to predict both the character senses and output vec-
tors via a neural network. Denoting the current character
as c0, its previous characters as c−1 and c−2, respectively,
and its next characters as c1 and c2, respectively, the model
first computes a context vector vcontext(c0) for the current
character using

vcontext(c0) =
1

2 ∗ r
∑

t∈[−r,0)∪(0,r]

v̄(ct) (1)

Here r = 2 is the window size. vcontext(c0) is used to
predict the sense-specific vector v(c0, i) by

s0 = arg max
i=1∈[1,k(c0)]

1

e−v(c0,i)T vcontext(c0)
(2)

In the equation, k(c0) represents the number of senses (i.e.
prototypes) of c0 and v(c0, i) represents the embedding of
the ith sense of c0, and s0 represents the sense index of cur-
rent character c0. Both the output and the context vectors
are trained by predicting the context vectors using the Skip-
gram model. AdaGrad (Duchi et al., 2011) is used with an
initial learning rate of 0.025.

3. Experiments
We use 46 million online news sentences1, and additional-
ly the 7 million news sentences from Chinese Gigawords
as the training data. All the characters occuring less than

1Downloaded from http://pullword.com/
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Figure 1: Multi-prototype Skip-gram model.

打 /v/Kb  这以后 (Since this)
 虎打 /v/Hi   武松 (Tiger beat Wusong)

 那年，畹町打 /v/Fa 出了对外开放的口号。
(Wan Ting put forward open-up announcement)

Figure 2: Example test data.

1,000 times are removed, resulting in 5,182 characters for
embedding. We set window = 5 2, and dimensionality =
200 when training the MSSG and PMSG models, and eval-
uate the embeddings on two tasks, by directly measuring
character similarity, and application to Chinese NER.

3.1. Chinese Character similarity
We first evaluate the embeddings using a similarity mea-
sure, namely Precision@K (Qiu et al., 2011; Jin et al.,
2012), which measures the precision of the K nearest neigh-
bour by the cosine similarity. Because there are no pub-
licly available datasets for evaluating polysemous charac-
ters, we construct a dataset based on the lexicon TongYi-
CiLin (cilin)3, which contains 4,738 commonly used Chi-
nese characters, and a semantically labeled Chinese corpus
that consists of 10,000 sentences. There are 12 coarse-
grand character categories, 97 classes, and 1200 fine-grand
subclass in the cilin semantic hierarchy. We use the 97
classes as character senses, and the average sense number
per character is 1.85.
We evaluate each character in its context in the labeled cor-
pus in cilin, which covers 85 character classes. In addition,
we add all the common surnames4 to the surname class of
cilin, and label all the surnames in the 10,000 sentences5.
We randomly select a sentence for each sense of each char-
acter, obtaining 2,236 sentences, which contain 85 out of
97 classes and 1,553 out of 4,738 characters. The average
sense number per character is 2.755. An example of the
character “�” in our dataset is shown in Figure 2.
Table 1 shows the results when K is set to 1, 5, 10, 20, 50,
respectively. one represents the single-prototype baseline,

2here, window is the parameter r of Eq.2
3Available at http://www.datatang.com/data/42306/
4Available at http://xing.911cha.com
5The original cilin surname class contains only 178 surnames,

we extend it to 478.

856



system Characters top-5 similar characters

cilin pos

�: sense 1 ù(red)ç(black)£(orange)Ú(colour)7(blue)
�: sense 2 x(white;rivername)»(red)T(shore)^(bowl)�(river name)
�: sense 3 x(white)~(palladium)À(goods)À(hedge)±(circumference)
�: sense 4 
(surname)4(surname)�(surname)±(surname)¤(surname)
�: sense 1 ª(stem)s(flower)d(seed)è(vegetables)Þ(bud)
�: sense 2 
(surname)�(surname)Û(surname)ö(surname)4(surname)

one pos
� ñ(surname)
(surname)x(white)Å(surname)±(surname)
� 7(willow)ñ(surname)v(surname)
(poplar)Ú(chrysanthemum)

Table 2: 5 nearest characters of “�” and “�” by the one pos and cilin pos systems.

Character Ci : i ∈ [−2, 2], CiCi+1 : i ∈ [−2, 1]
Sense Si : i ∈ [−2, 2], SiSi+1 : i ∈ [−2, 1]
Embedding Ei : i ∈ [−2, 2], EiEi+1 : i ∈ [−2, 1]

Table 3: Features templates used in the CRF model.

Figure 3: NER performance on development data, where C
is the size of clusters.

fix represents the MSSG model trained with a fixed num-
ber of senses s for each character, which is set to 56. And
cilin represents the MSSG model trained with the sense
number from cilin for each character. The X pos rows
show results of the PMSG models under the setting X
(X ∈ {one, fix, cilin}). It can be seen from the table
that the PMSG models perform significantly better than the
MSSG models, showing the importance of position infor-
mation on character embedding.
If the number of senses is fixed to 5 for each character, the
performance can be similar to the single-prototype base-
line. This is because different characters have very different
numbers of senses. While the most frequent character (i.e.
“Z“) has over 10 senses, a large number of low frequen-
cy characters have only one sense. By setting the number
of senses according to the cilin corpus, the multi-prototype
embeddings give the best results. However, there is not a
universal standard on the number of senses for each char-
acter, due to variation in semantic granularity.
Table 2 gives the nearest characters for “�” and “�” by
one pos and cilin pos. While cilin pos can distinguish d-
ifferent senses of the characters “�” and “�”, one pos
mixes different senses together. cilin pos gives relatively
more correct synonyms according to each sense. On the
other hand, there is also noise. For example, for the char-
acter “�”, the second sense contains a mixture of river
names and colors, while the third contains colors, metals
and trading-related use of the character.

6We experiment with s=2-10 for the number of sense, and only
report the best baseline (s=5) due to space limitations.

F-Score
Chen 86.20
one C=600 86.96
one pos C=1000 87.33
cilin+4 pos C=600 87.94

Table 4: NER performance on test data. where C is the size
of clusters.

3.2. Application on Chinese NER
We apply the embeddings as features for Chinese NER.
The experiments are conducted on the MSRA NER data in
Sighan bakeoff 2006 (Ng and Kwong, 2006), which con-
tains 46,364 training sentences and 4,365 test sentences.
Following Chen et al. (2006), we use the first 37,000 sen-
tences of the MSRA training data for training and the last
9,364 sentences for development.
We take the character-based CRF model of Chen et al.
(2006) as our baseline, which is the best CRF model in the
closed test. Chen et al. (2006) show that character-based
CRF is better than word-based CRF. We use their feature
set as the base set, also apply sense and embedding cluster
features as shown in Table 3. Ci is the ith character in the
sentence, Si is the ith character sense, Ei is the ith em-
bedding. The subscript 0 denotes the current position, −1
denotes the previous position and 1 denotes the next posi-
tion. We use as embedding features character embedding
clusters by the K-means algorithm.
As a first development test, we study how the number of
senses and size of clusters affect NER performance. The
dimensionality of embeddings is set to 200, and all the em-
beddings are trained using the PMSG model. The one pos
system utilizes the baseline and embedding cluster feature
templates in Table 3. The other systems use the baseline,
sense and character embedding cluster feature templates.
cilin, one pos, fix pos and cilin pos have the same mean-
ings as Table 1. To test the influence of sense counts,
cilin+N represents the number of senses per character cilin
plus N if it is greater than 1.
The results are shown in Figure 3, from which we obtain
the best parameters for each system. In the figure, the sense
count has a significant influence on the development accu-
racies, and multi-prototype embeddings are generally better
than single-prototype embeddings.
Table 4 shows the test results. The character embeddings
improve the F-score over the baseline by a large improve-
ment in recall, and a slight drop in precision. The multi-
prototype embeddings outperform the single-prototype em-
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beddings by 0.98% F-score (significance at p < 0.01). Er-
ror analysis shows that the improvement are achieved by
significantly better recall. This directly benefits from char-
acter similarity using embeddings. For example, the recall
on person names are largely higher when multi-prototype
embeddings are used.

4. Conclusion
We studied embeddings of Chinese characters, compar-
ing a novel multi-prototype embedding method with a
single-prototype embeddings baseline on direct similari-
ty measures and an application to Chinese NER. Experi-
ments show that multi-prototype embeddings can induce
significantly better character synsets compared to single-
prototype, while position information of context characters
and the number of senses for each character are crucial to
the training of embeddings. Positive results are obtained on
both similarity and NER, showing that character embed-
ding can be useful to Chinese NLP.
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