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Charles University in Prague
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Abstract
Continuous word representations appeared to be a useful feature in many natural language processing tasks. Using fixed-dimension
pre-trained word embeddings allows avoiding sparse bag-of-words representation and to train models with fewer parameters. In this
paper, we use fixed pre-trained word embeddings as additional features for a neural scoring function in the MST parser. With the
multi-layer architecture of the scoring function we can avoid handcrafting feature conjunctions. The continuous word representations on
the input also allow us to reduce the number of lexical features, make the parser more robust to out-of-vocabulary words, and reduce the
total number of parameters of the model. Although its accuracy stays below the state of the art, the model size is substantially smaller
than with the standard features set. Moreover, it performs well for languages where only a smaller treebank is available and the results
promise to be useful in cross-lingual parsing.
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1. Introduction
Syntactic parsing is one of the oldest problems studied by
Computational Linguistics. Recently, dependency parsing
gained big popularity with graph-based (McDonald et al.,
2005) and transition-based parsing (Nivre, 2006) being two
major paradigms.
In this paper, we work with MST parser – the most of-
ten used graph-based approach. We present several exper-
iments showing how pre-trained word embeddings could
be used instead of explicit categorial (one-hot) lexical fea-
tures. Training of the word embeddings is based on lan-
guage modeling, so it can be trained on plain text with
any further annotation. They can be computed on much
bigger data than the treebanks used for training the parser.
By having the lexical information in form of embeddings,
the model can learn how to deal with words that were not
seen in the training part of the treebank (out-of-vocabulary
words).
The simple neural scoring function that we propose can
be used to avoid handcrafting feature templates for feature
conjunctions. We use the Matrix-Tree theorem (Chaiken
and Kleitman, 1978) to sum all possible sentence parses to
be able to use a gradient learning procedure as proposed
by Koo et al. (2007). Using such a scoring function also
allows to control the number of parameters of the model.
In the next section, we summarize related work. Section 3.
describes the model we use for training. In Section 4. we
evaluate the model. Section 5. then concludes the work.

2. Related Work
In the MSTParser by McDonald et al. (2005), parsing
is modeled as finding the maximum spanning tree in a
weighted oriented complete graph with vertices represent-
ing words of the sentence. The purpose of the learning pro-
cedure is therefore to find a function that favors the edges
which are actual dependencies in the sentence. The advan-
tage of using such a model is that it can naturally produce
non-projective parses.

Bansal et al. (2014) tried to use word embeddings to im-
prove the MSTParser. First, they used the word embed-
dings dimensions as features for a linear model, which did
not bring any success. This can be explained by findings
of Szegedy et al. (2013) who claimed that in neural mod-
els, the information is encoded by properties of the whole
vector space induced by the neural network rather than the
individual dimensions.
What actually appeared to be a helpful feature for Bansal
et al. (2014) was word clustering based on the cosine dis-
tance of word embeddings and adding it to the feature vec-
tor the same way Brown cluster can be used (Koo et al.,
2008). Because the training procedure of the continuous-
bag-of-words embeddings they used (Mikolov et al., 2013)
could be seen as an implicit factorization of word co-
occurrence matrix (Levy and Goldberg, 2014), we can ex-
pect the resulting clustering to be very similar to Brown
clusters (Brown et al., 1992).
Chen and Manning (2014) used pre-trained word embed-
dings and Part-Of-Speech (POS) tag embeddings in a shift-
reduce parser and managed to achieve a state-of-the-art per-
formance on English without explicitly using lexical fea-
tures. This approach has been recently even improved by
Weiss et al. (2015) and Dyer et al. (2015).
Using the Matrix-Tree theorem for MST parsing is not
novel. Apart from the previously mentioned use (Koo et
al., 2007), it was independently introduced by McDonald
and Satta (2007) and Smith and Smith (2007).

3. Model
We use the MSTperl implementation (Rosa et al., 2012) of
the first-order MST parser, originally introduced by Mc-
Donald et al. (2005). Edges in a sentence graph are scored
using a neural scoring function which we describe in Sec-
tion 3.1.. Training such a function requires a differentiable
loss function. The loss function we use for training is dis-
cussed in Sections 3.2. (negative log-likelihood) and 3.3.
(Hinge loss). The function parameters are estimated us-
ing the stochastic gradient descent algorithm with the er-
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ror back-propagated to the scoring function (LeCun et al.,
1998).

3.1. Scoring Function
We score edges using a function implemented by a neural
network with one hidden layer with the ‘tanh’ activation
function. The output of the function is computed as a lin-
ear combination of the hidden layer outputs without non-
linearity. For an edge e and parametrization θ, we denote
the scoring function f(e|θ). There are four groups of fea-
tures used in our experiments:

• positional information – bucketed edge length, sen-
tence length, relative order in the sentence, indication
of being first and last in the sentence;

• POS tags of edge words and their linear neighbors;
• word embeddings of edge words and their linear

neighbors (fixed; not updateid during the training);
• lemmas of edge words and their neighbors if among

200 most frequent lemmas.

The technical root is assigned embedding of the end-of-
sentence token.

3.2. Cross-Entropy Loss
Assuming all possible parses of a sentence are independent
on each other, we can model their probability with a multi-
nomial distribution over the set of all possible parses – all
oriented trees rooted in the technical root of the sentence.
Probability of a tree T in a graph G can be expressed as
a soft-max function of a tree score defined as a sum of its
edge scores:

P (T |G, θ) =
exp

{∑
e∈T f(e|θ)

}
Z(G)

. (1)

Computing the partition function Z(G) requires summa-
tion over all spanning trees which is intractable in the ex-
plicit form. Similarly to Koo et al. (2007), we solve this
by using the Matrix-Tree theorem (Chaiken and Kleitman,
1978). We define the weighted Laplacian of the graph G
as:

Lij =

{
− exp{f(eij |θ)} i 6= j,∑

k 6=i exp{f(eik|θ)} i = j.
(2)

According to the Matrix-Tree theorem, we omit the row and
the column that correspond to the parse root. The determi-
nant of such a matrix is equal to the products of the edge
scores, summed over all correctly rooted spanning trees in
the graph. Because we use exponential of the edge scores in
the definition of the Laplacian, we add products of these ex-
ponential, which are actually exponentials of the edge score
sum as in Equation 1:

Z(G) = det(−L′) = (−1)ndet(L′)

=
∑
T ′

exp
∑
e∈T ′

f(e|θ) (3)

where L′ is the weighted Laplacian of the graph G modi-
fied by omitting the column and row that correspond to the
root of the spanning tree and n is the length of the sen-
tence. That negative modified Laplacian is used because

for a graph with even number of vertices, the determinant
of the modified Laplacian is the negative sum of the span-
ning tree scores.
We use the negative log likelihood of the correct parse tree
T ∗ as the loss function. For data set D = {(Gi, T

∗
i )}Ni=1,

the loss is:

L(D|θ) = −
∑

(G,T∗)∈D

logP (T ∗i |Gi, θ)

= −
∑

(G,T∗)∈D

∑
e∈T∗

f(e|θ)− logZ(G). (4)

Direct computation of the logarithm of a determinant is nu-
merically unstable, so we use the sum of logarithms of the
diagonal matrix of the QR matrix decomposition.
By differentiating the loss function with respect to θ we get:

−
∑

(G,T∗)∈D

(∑
e∈T∗

∂f(e|θ)
∂θ

− tr

[
L′−1 · ∂L

′

∂θ

])
. (5)

Matrix L′ is often close from being singular, so the compu-
tation of the gradient also suffers with numeric instability.
We therefore clip the values of adjacency matrix such that
the minimum values in the matrix are at most exp(20) times
smaller than the maximum.

3.3. Hinge Loss
One drawback of the previously described loss is the as-
sumption of all possible parses being independent on each
other because we can expect that spanning trees which
share many edges are more correlated than those which do
not share edges.
MST parsers are usually trained using variants of the Struc-
tured Perceptron algorithm (Collins, 2002). Using the
Hinge loss is thus analogous to doing the Perceptron up-
date in a linear model. Moreover, because we are able to
efficiently do the loss augmented inference with respect
to the Hamming loss, we can easily express the loss in
the maximum-margin form as in the case of the structured
SVM (Joachims et al., 2009).
Formally, we want the scoring function to separate the cor-
rect spanning tree T ∗ from each possible spanning tree T
by at least their Hamming distance (number of edges in
which the two trees differ):

Φ(T ∗|θ) ≥ ∆(T ∗, T ) + Φ(T |θ) (6)

where Φ(T |θ) =
∑

e∈T f(e|θ). If the conditions hold,
they must be satisfied also for the highest possible value of
the right side in the inequality (6); it thus suffices to check
whether:

Φ(T ∗|θ) ≥ max
T

(∆(T ∗, T ) + Φ(T |θ)) . (7)

If this is not satisfied, we do a weight update proportional
to the error. From that, we get the Hinge loss for a single
data point (G,T ∗) as:

max
(

0,max
T
{∆(T ∗, T ) + Φ(T |θ)} − Φ(T ∗|θ)

)
, (8)

which is differentiable almost everywhere and computation
of the gradient is straightforward.
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input vector input size # parameters Cross Entropy Hinge Loss
distance only 19 190 .297 ± .017 .133 ± .010
distance + POS 163 71k .697 ± .018 .620 ± .021
distance + vec. 619 191k .657 ± .020 .622 ± .020
distance + POS + vec. 763 477k .728 ± .020 .626 ± .019
distance + POS + 200 lemmas 1819 1.3M .700 ± .020 .618 ± .021
distance + POS + vec. + 200 lemmas 2419 2.3M .727 ± .021 .622 ± .020

baseline – left branching 0 .275 ± .013
MSTParser (McDonald et al., 2005) .844
MSTPerl (Rosa et al., 2012) 13.6M .809
MSTPerl, delexcalized (Rosa et al., 2012) 1.0M .709
state-of-the-art (Bohnet et al., 2013) .890

Table 1: The unlabeled attachment score for various configurations of the input vector on the Prague Dependency Treebank.
Note that state-of-the art result was achieved using a transition parser.

The loss-augmented inference can be done efficiently by
increasing the weight by one for all edges which are not
part of the correct solution. In practice, computing the
loss-augmented inference is much slower than computing
the complex loss function and derivative in the case of the
cross-entropy loss.

4. Experiments
4.1. Experimental settings
We used the Czech-language Prague Dependency Treebank
(Böhmová et al., 2003) for initial experiments with various
feature sets. The training part consists of 68,562 sentences,
the test part of 9,270 sentences. We split the test data into
50 parts and report the mean and standard deviation of the
unlabeled attachment score (UAS). We experimented with
different settings of the feature groups to investigate the role
of particular features.
For the multilingual experiments, we used the harmonized
multilingual treebank collection HamleDT (Zeman et al.,
2014) containing treebanks for 30 languages out of which
we selected four with various sizes. We use the Prague-
style annotations for the dependencies with the Universal
POS tagset (Petrov et al., 2012).
The word embeddings were trained using the continuous
bag-of-words model (Mikolov et al., 2013) on corpora cre-
ated from Wikipedia for all the languages. All numerical
tokens were replaced with zero and tokens appearing less
than 10 times were replaced with a special symbol. We
used a context window of size 4 and embeddings of dimen-
sion 100.
For the scoring function, we use a neural network with a
single hidden layer of the size equal to the half of the in-
put vector dimension. We also experimented with different
numbers of hidden layers and different sizes. While vary-
ing these parameters in a reasonable range, the results were
unaffected, although the training time increases noticeably
while increasing the number of parameters of the model.

4.2. Results
The results for various inputs are tabulated in Table 1. The
big difference between the scores while using only the posi-
tional features and the concatenation of positional features
with word embeddings shows that the embeddings indeed
carry a lot of information about the words. On the other

Language # sent. MSTPerl NMSTLex Delex
Czech 25k .809 .709 .727
English 40k .847 .765 .769
Estonian 1k .851 .810 .850
German 38k .846 .775 .768
Hungarian 6k .776 .725 .734
Spanish 16k .854 .797 .786

Table 2: The unlabeled attachment score for selected treen-
banks from HamleDT (Zeman et al., 2014) comparing lex-
icalized and delexicalized MSTPerl parser (Rosa, 2015)
with our neural scoring function with positions, embed-
dings and POS tags on input.

hand, significantly better result are achieved by using the
POS tags. Another improvement is brought by combin-
ing both the word vectors and the POS tags. Adding the
lexical features in one-hot representation does not further
improve the performance. This confirms that the word em-
beddings are more informative than categorial representa-
tion of words of similar dimension. In delexicalized pars-
ing, we achieved the same UAS score as MST Parser with
linear scoring function using a model with much fewer pa-
rameters.
When comparing the loss functions, we can see that the
cross-entropy loss performs consistently ten percent bet-
ter. Probably, the property of having information about the
whole set of possible solutions in one continuous variable
outweighs the non-realistic assumption of the mutual inde-
pendence of parse trees. According to the results of Koo et
al. (2007), we can expect that using a different optimiza-
tion algorithm, such as exponentiated gradient (Bartlett et
al., 2004), may lead to better result, although it assumes the
independence as in the case of the cross-entropy loss.
The evaluation of experiments with other languages is tabu-
lated in Table 2. It shows that the word embeddings trained
on bigger data than the treebank are more useful for lan-
guages for which only a small treebank is available.

5. Conclusions
We introduced a MST parser with a neural scoring func-
tion using pre-trained word embeddings as its inputs. We
successfully employed word embeddings as a feature for
the parser which improved the performance of the delex-
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icalized parser. This improvement was higher than while
using categorial representation of 200 most frequent lem-
mas. This result appears to be consistent among various
languages.
Our original intuition was that word embeddings should be
able to fully replace (and probably even improve upon) cat-
egorial lexical features. The fact that it did not appear to be
true could suggest that a different vector representation of
words could have been used – either more informative pre-
trained embedding (Turian et al., 2010; Pennington et al.,
2014) or to learn the embeddings during the parser train-
ing or using character-based embeddings being able capture
morphological features of out-of-vocabulary words (Ling et
al., 2015).
Despite not outperforming the lexicalized parser with hand-
crafted features, it works with the substantially smaller
model (not counting the table with embeddings).
The models whose only source of lexical information are
the word embeddings could be used for cross-lingual pars-
ing. The results give a hope that word embeddings could be
used to introduce additional lexical information. Automatic
word alignment can be used to train a translation function
for word embeddings and these translated embeddings then
used as lexical information on the input or we can use di-
rectly cross-lingual word embeddings (Klementiev et al.,
2012).
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