
A Document Repository for Social Media and Speech Conversations

Adam Funk, Robert Gaizauskas, Benoit Favre
University of Sheffield, University of Sheffield, Aix Marseille Université

Sheffield (UK), Sheffield (UK), Marseille (France)
a.funk@sheffield.ac.uk, r.gaizauskas@sheffield.ac.uk, benoit.favre@lif.univ-mrs.fr

Abstract
We present a successfully implemented document repository REST service for flexible SCRUD (search, create, read, update, delete)
storage of social media and speech conversations, using a GATE/TIPSTER-like document object model and providing a query language
for document features. This software is currently being used in the SENSEI research project and will be published as open-source
software before the project ends. It is, to the best of our knowledge, the first freely available, general purpose data repository to support
large-scale multimodal (i.e., speech or text) conversation analytics.

Keywords: Document repository; social media; REST service

1. Introduction
Conversational interaction, including social media stream-
ing and spoken conversation, is a natural paradigm for in-
teractions with customers and other users. In the SENSEI
project we are going beyond keyword search and sentence-
based analysis of such conversations to provide automatic
descriptions and summaries of who said what and of opin-
ions held on relevant subjects. To this end, we need to store
structured data for millions of constituents of the conversa-
tions, including the original texts and associated metadata
as well as annotations generated in the course of syntactic,
semantic, and pragmatic analysis, summarization, cluster-
ing, etc. We have therefore designed a custom repository
for this purpose, which we will publish as open-source soft-
ware as part of the project’s dissemination and exploitation
activity. It is, to the best of our knowledge, the first freely
available, general purpose data repository to support large-
scale multimodal (i.e., speech or text) conversation analyt-
ics.
Our conversational repository offers SCRUD (search, cre-
ate, read, update, delete) functionality (Martin, 1983) over
richly annotated documents. It runs as a standard REST
service with JSON for data interchange. This offers a num-
ber of advantages for easy interaction, testing, and debug-
ging, and JSON avoids the verbosity and high-level parsing
hassles associated with XML (e.g., walking a DOM tree
or constructing one with SAX); it is also trivially easy to
process with Python’s standard library and fairly easy to
process in Java with the Jackson library (MongoLab, 2011;
Saloranta, 2013; Ecma International, 2013).

2. Document model
The main unit of data storage in the repository is a docu-
ment object similar to the GATE or TIPSTER model (Wilks
et al., 2000; Cunningham et al., 1997), which allows arbit-
rary data to be stored as stand-off annotations (grouped in
named sets), annotation features, and document-wide fea-
tures. The document is represented in the repository input
and output as a JSON object1 containing an unique integer

1The JSON object corresponds to other languages’ map, dic-
tionary, or associative array. (Ecma International, 2013)

id assigned by the repository, an optional name string,
a content string representing the plain text content of
the document (e.g., of a web page with the HTML tags
stripped), a features object, and an annotations ob-
ject.
The features map contains any data relating to the
whole document, such as the source URL, the external doc-
ument ID, the parent document ID, a link or pointer to an
audio file, etc.; the keys are strings and the values can have
any JSON type, including nested arrays and objects.
The annotations map’s keys are strings representing
annotation set names (e.g., “nlp” for tokenization and
POS-tagging), and its values are arrays of annotations; each
annotation is itself an object containing a string type,
start and end offsets (in characters with respect to the
document content), and a featuresmap similar to that of
the document. Annotations can overlap within the same set
and across sets, so the formal representation of this system
is an annotation graph (Bird and Liberman, 2001).
Audio documents are a special case and will contain links
(in document features) to binary data stored elsewhere, al-
though the document content can contain a transcription.
(Annotations’ start and end offsets can refer to characters
in the transcription or to milliseconds of audio.)
Meta-documents, such as summaries generated by off-line
processing, clustering output, etc., can be stored in the re-
pository as additional documents, using content, annota-
tions, and features as appropriate for each case. For ex-
ample, a multi-document summary or cluster could be
stored with the summary text itself in the meta-document’s
content and an array of document IDs in a document feature
to refer to the documents that have been summarized.
An example document is shown in the result value of
the output in Figure 1 below.

3. REST API
Every HTTP response body consists of a JSON wrapper
indicating an error or containing a result value, which is
a document object, an array of documents, or an array of
document IDs. Figures 1 illustrates an HTTP GET (which
in this example returns one complete document) the JSON
output, and the contained document data structure.

436



GET
http://localhost:8080/repository/document/26116970982406953003567732597

⇓
{"success":true,
"code":200,
"result":{"content":"The cat sat on the mat.",

"id":1415926,
"features":{"CRAWLER_externalID":"http://example.com/cat.html",

"USFD_GATE_language":"eng",
"CRAWLER_langDetected":"eng",
"XYZ_MISC_keywords":["cat", "mat"],
"CRAWLER_crawled_date":"2014-09-20T13:39:16+0100"},

"annotations":{"USFD_GATE_NLP":[{"type":"Sentence", "start":0, "end":23,
"features":{}, "id":100},

{"type":"Token", "start":0, "end":3, "id":101,
"features":{"category":"DT", "kind":"word",

"orth":"upperInitial"}},
{"type":"Token", "start":4, "end":7, "id":102,
"features":{"category":"NN", "kind":"word",

"orth":"lowercase"}},
{"type":"Token", "start":8, "end":11, "id":103,
"features":{"category":"VBD", "kind":"word",

"orth":"lowercase"}},
{"type":"Token", "start":12, "end":14, "id":104,
"features":{"category":"IN", "kind":"word",

"orth":"lowercase"}},
{"type":"Token", "start":15, "end":18, "id":105,
"features":{"category":"DT", "kind":"word",

"orth":"lowercase"}},
{"type":"Token", "start":19, "end":22, "id":106,
"features":{"category":"NN", "kind":"word",

"orth":"lowercase"}},
{"type":"Token", "start":22, "end":23, "id":107,
"features":{"category":".",

"kind":"punctuation"}}],
"USFD_GATE_Events":[{"type":"Event", "start":0, "end":23, "id":101,

"features":{"kind":"sitting",
"agent":"cat"}}]

}
}

}

Figure 1: Fetching a document by ID

{"success":true, "code":200, "result":{..document..}}

{"success":true, "code":200, "result":[{..doc0..}, {..doc1..}, ...]}

{"success":true, "code":200, "result":"document content"}

{"success":true, "code":200, "result":[10001, 13500, ...]}

{"success":false, "code":302, "result":"error message"}

Figure 2: Examples of output format containing one or more documents, one document’s content, a list of document IDs,
and an error message

437



Most operations consume application/json (other
than GETs, which consume nothing but have parameters
in their URLs); all operations produce HTTP responses in
application/json in the format shown in Figure 2.
Endpoints are provided for operations such as the follow-
ing.

• POST methods are provided for storing new docu-
ments from various formats (Websays XML, JSON
documents already in the repository format, and plain
text), including some simple ones for testing and de-
bugging.

• PUT methods are provided for adding features, an-
notation sets, and annotations to a specified document.
These methods create new document features and an-
notation sets as necessary; for example, a call to add
annotations to a named set that does not exist yet will
create that set on the document.

• GET methods are provided to return a complete doc-
ument, its features alone, or its content alone (as a
string), by specifying its document ID.

• A range of GET methods for simple and complex
queries on document features are provided, so that
document features can be used as flags so that a client
can set them as part of its output and then ask for more
documents that it has not already processed. The com-
plex queries allow the client to specify conjunctions
of features to test, disjunctions of possible feature val-
ues, features that must be present, missing, or missing
or false (in a sense similar to Python’s), the maximum
number of documents to return, and whether to return
an array of full documents or an array of document
IDs. (For large results, it is usually more efficient to
get a list of document IDs and then request them indi-
vidually for processing. This also allows the client to
request only the features or content of the documents,
as required.)

The query system uses feature-value pairs and
specification-feature pairs of the form <string>
=<string> joined with the & symbol. All the values
for one feature are joined with a logical or into a sub-
query, then all the subqueries are joined with a logical
and. The order of the pairs in the query is unimport-
ant. A pair can also consists of a specification name as
follows. Figure 3 shows two examples.

_MAX_=<integer> This sets the limit for the
number of documents to be returned. If it is zero
or omitted, there is no limit.

_PRESENT_=<fname> This specifies that the
named feature must be present for documents
to match, although the feature’s value can be
null, false, 0, or an empty string. This can
be used to find documents on which prerequisite
processing has been done.

_MISSING_=<fname> This specifies that the
named feature must be absent for documents to
match. This is intended mainly for detecting
documents on which a flag has not yet been set.

_FALSE_=<fname> This specifies that the named
feature must be missing, null, false, 0, or an
empty string. Note that FOO=false is more re-
strictive than _FALSE_=FOO. This is intended
for detecting documents on which a flag either
has not been set or has been set so as to indicate
that all required processing has not been carried
out yet.

The query methods in effect translate the REST URL
query language to the MongoDB database query lan-
guage. We have not provided queries on document an-
notations because the SENSEI project does not require
it, but they could be implemented similarly (although
a more complicated input syntax would need to be de-
veloped).

• DELETE methods are provided for deleting a whole
document by ID and for deleting specific things—
named features document, a named annotation sets, or
a specified annotation—from a document specified by
ID. (The method that deletes a whole document re-
turns a copy of it, which the client could use to “undo”
the deletion.)

4. Implementation and deployment
The repository software has been developed in Java to be
used as an Apache Tomcat web service. The document
model components are instances of Java classes, mapped to
and from JSON using the Jackson (Saloranta, 2013) library,
and the documents are stored in a MongoDB (MongoDB
Community, 2014; Pollack et al., 2014) server running on
a host specified in a configuration file (localhost by de-
fault). The REST service uses the Apache CXF and Spring
libraries (Johnson et al., 2014; Apache Software Founda-
tion, 2014; Balani and Hathi, 2009). We also provide a set
of command-line tools in Python for querying, uploading
text files, and deleting documents, features, and annotation
sets.
MongoDB is itself a “document-oriented database” with its
own extensive (and complicated) query language, but our
repository software enforces the structure of the document
object model and provides easy methods for adding data to
existing documents and querying the database by document
features.
Because the repository is intended to be hosted as a cent-
ral service, in a potential multi-party project, all partners’
components have to be able to contribute to it. The cent-
ral repository is run on a Tomcat server which is not ac-
cessible from the internet. For access control, ssh accounts
and keypairs have been created for each project member
using the repository. These accounts cannot run com-
mands but can only create ssh tunnels to the Tomcat port on
the prototype machine, so that the clients use URLs such
as http://localhost:8080/repository/ (port-
forwarded).
We are in the process of benchmarking the repository’s per-
formance (speed and memory) and improving its resilience
under heavy loads. The benchmarking evaluation will be

438



doc-feature-query/full?&_MISSING_=USFD_NER&_MAX_=5

Return up to 5 full documents whose feature maps do not contain a USFD_NER feature at all. For example,
these documents need processing by the client tool that will then set the USFD_NER flag.
doc-feature-query/ids?_FALSE_=USFD_Events&NLP_LEVEL=2&NLP_LEVEL=3

Return the IDs of all documents whose feature maps contain either "NLP_LEVEL":2 or "NLP_LEVEL":3
but either no USFD_Events feature or one that is null,false, 0, or an empty string.

Figure 3: Examples of complex document feature queries

published by May 2016 in a project deliverable 2 as well as
in the presentation of this paper.

5. Modules
We are developing the following modules that interact suc-
cessfully with the repository. Other modules in the project
will be adapted and wrapped for integration. These com-
ponents will not be included in the repository software dis-
tribution itself but the project’s academic partners intend to
release them all as open source software by the end of the
project.

5.1. Back-end modules
The main source of documents in the project is the out-
put of the Websays3 crawler, which produces large XML
documents, which one of our repository’s endpoints is spe-
cifically designed to process. Each XML document con-
sists of a large collection of “clippings”, e.g., a newspaper
article and the readers’ comments under it. Each clipping
is transformed into one repository document with various
document features, including links to the other clippings in
the same set.
The following modules add further information to the doc-
uments in the repository.
We adapted existing GATE (Cunningham et al., 2011) tools
from the ARCOMEM project (Maynard et al., 2014) into a
component for carrying out the following tasks for English:
standard NLP functions, named-entity recognition, event
detection, and sentiment detection. The GATE pipeline
is wrapped in a Java component which interacts smoothly
with the conversational repository; it polls the repository
for batches of unseen documents, processes them, and then
sends back annotation sets and document features. The
component is highly configurable so it can be used to run
other GATE pipelines over repository documents and add
to the repository any specified document features and an-
notations. (The configuration includes options for mapping
feature and annotation set names.)
A repository population module has been developed for the
MACAON semantic analysis tool chain (Nasr et al., 2011).
Thanks to Python bindings, it is possible to interface each

2Deliverable D5.3—see
http://www.sensei-conversation.eu/
deliverables/

3One of the SENSEI project partners, Websays provides ser-
vices that “focus on online reputation monitoring and social media
marketing”.
https://websays.com/about/

stage of the analysis with the repository and update docu-
ment annotations with those provided by MACAON. Mod-
els also had to be trained for Italian while they were already
available for French and English.
Integration is currently in progress to allow other tools rel-
evant to the project (including the BART coreferencing sys-
tem (Broscheit et al., 2010)) to process repository docu-
ments and add information back to them. Any NLP or re-
lated tools can be integrated with the repository by wrap-
ping them in REST clients.

5.2. Prototype user interface
Our social media prototype demonstrates a front-end ap-
plication of the repository. An article, its comments, and
our summarization outputs are presented to the user as a
split web page with the The Guardian’s article and com-
ments in the left pane and in the right pane SENSEI’s added
value, which allows the user to view clusters, cluster labels
as a summary, and comments grouped appropriately and in
thread context.
The page is dynamically generated on the web server
starting from a master document (an example of a meta-
document) for a particular summarization of an article’s set
of comments; the master document’s features include the
information used to put the rest of the page together, in par-
ticular identifiers for other documents retrieved to generate
the pie chart with its labels, the summary paragraphs, and
the groups of comments. This UI prototype is described
in more detail in our separate paper here on the task-based
evaluation (Barker et al., 2016).

6. Conclusion
We have presented a novel approach to storing, processing,
and using conversational data of various kinds, which has
been proven in use with a successful software deployment,
with which several working input and output models are
already interacting. We are currently adding asynchronous
response handling through Spring’s ThreadPoolTaskEx-
ecutor (Johnson et al., 2014, §33) to the REST service, but
otherwise the repository software is complete and we ex-
pect it to require no further essential work except for debug-
ging as necessary and handling any additional features that
might be needed in the project. Future work may include
developing a separate tool for ensuring that inserted docu-
ments are consistent with a specified JSON schema; adding
endpoints for full JSON path querying using the MongoDB
query language (this would also allow querying by annota-
tions); and providing a UI for browsing the repository.

439



7. Acknowledgements
This research is supported by the European Union’s Sev-
enth Framework Program project SENSEI (FP7-610916).
http://www.sensei-conversation.eu/

8. Bibliographical References
Apache Software Foundation, (2014). Apache CXF: an

Open-Source Services Framework.
Balani, N. and Hathi, R. (2009). Apache CXF Web Service

Development. From Technologies to Solutions. Packt
Publishing, December.

Barker, E., Funk, A., Paramita, M., Kurtic, E., Aker,
A., Foster, J., Hepple, M., and Gaizauskas, R. (2016).
What’s the issue here?: Task-based evaluation of reader
comment summarization systems. In Language Re-
sources and Evaluation Conference (LREC), Portorož,
Slovenia, May.

Bird, S. and Liberman, M. (2001). A formal framework for
linguistic annotation. Speech Communication, 33(1):23–
60.

Broscheit, S., Poesio, M., Ponzetto, S. P., Rodriguez, K. J.,
Romano, L., Uryupina, O., Versley, Y., and Zanoli, R.
(2010). BART: A multilingual anaphora resolution sys-
tem. In Proceedings of the 5th International Workshop
on Semantic Evaluation, ACL 2010, pages 104–107,
Uppsala, Sweden, July.

Cunningham, H., Humphreys, K., and Gaizauskas, R.
(1997). GATE—a TIPSTER-based general architecture
for text engineering. In Proceedings of the TIPSTER
Text Program (Phase III) 6 Month Workshop. Morgan
Kaufmann.

Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.,
Aswani, N., Roberts, I., Gorrell, G., Funk, A., Roberts,
A., Damljanovic, D., Heitz, T., Greenwood, M. A., Sag-
gion, H., Petrak, J., Li, Y., and Peters, W. (2011). Text
Processing with GATE (Version 6). University of Shef-
field.

Ecma International. (2013). The JSON data interchange
format. Technical Report ECMA-404, Ecma Interna-
tional, October.

Johnson, R., Hoeller, J., Donald, K., Sampaleanu, C.,
Harrop, R., Risberg, T., Arendsen, A., Davison, D., Ko-
pylenko, D., Pollack, M., Templier, T., Vervaet, E., Tung,
P., Hale, B., Colyer, A., Lewis, J., Leau, C., Fisher,
M., Brannen, S., Laddad, R., Poutsma, A., Beams, C.,
Abedrabbo, T., Clement, A., Syer, D., Gierke, O., Stoy-
anchev, R., Webb, P., Winch, R., Clozel, B., Nicoll, S.,
and Deleuze, S., (2014). Spring Framework Reference
Documentation.

Martin, J. (1983). Managing the Data-base Environment.
Prentice-Hall.

Maynard, D., Gossen, G., Fisichella, M., and Funk, A.
(2014). Should I care about your opinion? detection
of opinion interestingness and dynamics in social media.
Journal of Future Internet.

MongoDB Community, (2014). The MongoDB 2.6
Manual. MongoDB, Inc.

MongoLab. (2011). Why is JSON so popular? Developers

want out of the syntax business. Technical report, Mon-
goLab.

Nasr, A., Béchet, F., Rey, J. F., Favre, B., and Roux, J. L.
(2011). MACAON: an NLP tool suite for processing
word lattices. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Hu-
man Language Technologies: Systems Demonstrations.

Pollack, M., Risberg, T., Gierke, O., Leau, C., Brisbin, J.,
Darimont, T., and Strobl, C., (2014). Spring Data Mon-
goDB Reference Documentation. Pivotal Software.

Saloranta, T., (2013). Jackson JSON Processor Wiki.
FasterXML, LLC.

Wilks, Y., Gaizauskas, R., Humphreys, K., and Cunning-
ham, H. (2000). LaSIE jumps the GATE. Technical re-
port, University of Sheffield.

440


