
Odin’s Runes:
A Rule Language for Information Extraction

Marco A. Valenzuela-Escárcega, Gus Hahn-Powell, Mihai Surdeanu
University of Arizona

Tucson, AZ 85721, USA
{marcov, hahnpowell, msurdeanu}@email.arizona.edu

Abstract
Odin is an information extraction framework that applies cascades of finite state automata over both surface text and syntactic
dependency graphs. Support for syntactic patterns allow us to concisely define relations that are otherwise difficult to express in
languages such as Common Pattern Specification Language (CPSL), which are currently limited to shallow linguistic features. The
interaction of lexical and syntactic automata provides robustness and flexibility when writing extraction rules. This paper describes
Odin’s declarative language for writing these cascaded automata.

Keywords: rule-based, information extraction, cascade of finite state automata

1. Introduction
We recently released Odin (Open Domain INformer),
a novel rule-based information extraction (IE) frame-
work (Valenzuela-Escárcega et al., 2015b). At the core
of this framework is Odin’s Runes, our rule grammar lan-
guage. The core feature of this language is supporting dif-
ferent types of rules, e.g., operating over surface or syntac-
tic structures, which can interact in the same grammar.
At a high level, the design of this rule language follows the
simplicity principles promoted by other natural language
processing (NLP) toolkits, such as Stanford’s CoreNLP,
which aim to “avoid over-design”, “do one thing well”, and
have a user “up and running in ten minutes or less” (Man-
ning et al., 2014). In particular, we aimed for the following
desirable characteristics:

Simplicity: The language extends familiar concepts from
regular expressions and context free grammars.

Expressivity: The rules capture complex constructs when
necessary, such as: (a) nested structures, and (b) complex
regular expressions over syntactic patterns for event argu-
ments.

Robustness: To recover from unavoidable syntactic errors,
syntactic patterns can be used alongside token-based sur-
face patterns that incorporate shallow linguistic features.

Extensibility: The language is designed to be modular, i.e.,
new types of rules can be easily added to the language. We
currently support rules based on syntactic and surface struc-
tures, and we plan extensions over abstract meaning rep-
resentation (AMR) (Banarescu et al., 2012) and semantic
roles (Surdeanu et al., 2008). Importantly, all of these types
of rules can operate within the same grammar.

In this paper we summarize Odin’s Runes. However, given
space limitations, this description is likely to be incom-
plete. We recommend that interested readers examine the
full manual (Valenzuela-Escárcega et al., 2015a), which has
been made available as an arXiv document1.

1http://arxiv.org/abs/1509.07513v1

2. Related Work
Since the advent of FASTUS (Appelt et al., 1993), most
rule-based IE frameworks implement architectures rely-
ing on a cascade of finite state automata (FSA). This ap-
proach has proven capable of producing fast and robust
parsers for unstructured text (Abney, 1996). The success
of FSA cascades continues even today with systems such
as GATE (Cunningham et al., 2002).
FASTUS introduced the Common Pattern Specification
Language (CPSL) as a formalism for specifying cascaded
FSA grammars (Appelt and Onyshkevych, 1998). A gram-
mar in CPSL is specified by defining a cascade of finite
state transducers that work by matching regular expressions
over the lexical features of the input symbols.
Other languages that follow CPSL’s approach of matching
regular expressions over the lexical features of the input are
GATE’s Java Annotation Patterns Engine (JAPE) (Thakker
et al., 2009), Stanford’s TokensRegex (Chang and Man-
ning, 2014), and the Allen Institute for Artificial Intelli-
gence taggers2. Odin follows in this lineage; however,
unlike these approaches, Odin allows the mixing of both
surface- and syntax-based rules in the same grammar. Fur-
thermore, because Odin builds on top of simple and proven
syntactic dependency representations (De Marneffe and
Manning, 2008a), the learning curve for Odin’s Runes is
short.
SProUT’s XTDL (Piskorski et al., 2004) extends CPSL’s
approach using unification-based grammars to give the lan-
guage more expressivity. However, this introduces addi-
tional complexity in the language. In our opinion, this is
not always necessary in domain-specific scenarios, where
lexical information fully disambiguates the context. Fur-
thermore, similar to most previous work, XTDL does not
support syntactic patterns.
From the languages that support syntax, Stanford’s Tregex
matches patterns over constituency trees (Levy and An-
drew, 2006). For Odin’s Runes we chose to use
dependency-based syntax for two reasons: simplicity of
representation, and availability of linear-time parsers (Chen

2https://github.com/allenai/taggers

322

WTX inhibits the ubiquitination of NRF2.

Figure 1: A sentence containing two events in the biomed-
ical domain: a ubiquitination, and a negative regulation.
Bold text denotes biochemical entities previously identified
by an NER system.

1 - name: ner
2 label: Protein
3 type: token
4 pattern: |
5 # Named Entity labels in the IOB style
6 [entity="B-Protein"][entity="I-Protein"]*
7

8 - name: ubiq-surf
9 label: [Ubiquitination, Event]

10 type: token
11 pattern: |
12 # a single-token trigger
13 (?<trigger>ubiquitination)
14 # the theme must be a Protein
15 of @theme:Protein
16 # the cause of might not be specified
17 (by @cause:Protein)?
18

19 - name: negreg-surf
20 label: [Negative_regulation, Event]
21 type: token
22 pattern: |
23 @cause:Protein
24 # any conjugation of the lemma "inhibit"
25 (?<trigger>[lemma=inhibit & tag=/ˆV/])
26 # an optional determiner
27 [tag=DT]?
28 # the theme of this event is another Event
29 @theme:Event

Example 1: Rules that capture the events shown in Figure 1.
All the rules use surface patterns.

and Manning, 2014). Semgrex is a language that modi-
fies Tregex to operate over dependency graphs (Chambers
et al., 2007)3. However, neither of these languages support
cascaded FSA.
In a departure from CPSL, IBM’s SystemT is a rule-based
IE system that uses the AQL language, which is inspired
from SQL (Li et al., 2011). AQL is a powerful language
that implements an IE algebra (Reiss et al., 2008). How-
ever, in our opinion, this loses some of the simplicity that
Odin’s Runes enjoys.

3. Walkthrough Example
In this section we show two Odin grammars in the biomed-
ical domain as a gentle introduction to the language. Both
grammars match over the sentence shown in Figure 1.
All Odin grammars are encoded using YAML, which is
a human-readable data serialization language (Ben-Kiki et
al., 2005). YAML’s readability and support for comments
were the main motivations for choosing it as the format for
Odin’s Runes.
Example 1 lists a grammar that consists of surface patterns
only. Example 2 shows a grammar that captures the same
events in the example sentence, but it is implemented with
syntactic rules.
The grammar in Example 1 work as follows:

3See also Semgrex’s online documentation: http://nlp.
stanford.edu/software/tregex.shtml

• The ner rule converts the IOB output of an ex-
ternal NER tool into Odin entity mentions labeled
Protein. In general, Odin mentions are data struc-
tures that store the output of a matched rule. For exam-
ple, in this instance, the mention created by this rule
captures the fact that the span of tokens from 1 to 2
(exclusive) and from 6 to 7 correspond to a named en-
tity labeled Protein. In most situations, mentions
are transparently created and managed by the Odin
runtime system.

• The ubiq-surf rule matches a ubiquitination event
using a surface pattern. First, the token “ubiquitina-
tion” is captured as the event trigger, followed by the
token “of” and a protein mention, which is captured
as the event theme. Optionally, it can be followed by
the token “by” and a protein mention that would be
captured as the event cause. Note that this rule defines
two labels for the resulting mention, which are used
to define an implicit taxonomy. For example, here
Ubiquitination is a kind of Event. Taxonomies
can also be explicitly defined, in which case the men-
tion label specifies the most specific node in the tax-
onomy where this mention is mapped. For brevity, we
omit examples with explicit taxonomies in this sec-
tion. See Section 4.4. for a discussion on explicit tax-
onomies.

• The negreg-surf rule matches a negative regula-
tion event using a similar pattern. First, a protein men-
tion is captured as the event theme, followed by a to-
ken with the following attributes:

1. the lemma is “inhibit’

2. the POS tag starts with “V” (a verb).

This token is captured as the event trigger. Then an
optional determiner is matched followed by an exist-
ing event mention, which is captured as the current
mention’s theme.

At runtime, these three rules are automatically organized
in a cascade, where the first rule finds the Protein men-
tions, which are then used to populate the event mention
extracted by the second rule. Lastly, the third rule is exe-
cuted, which uses the outputs of the first and second rules
to generate a nested event.
Unlike the grammar in Example 1 which relies solely on
surface patterns, the grammar in Example 2 uses mostly
syntax:

• The ner rule is identical to the one in Example 1, and
is necessary to capture the IOB output of the NER.

• The ubiq-syn rule matches a ubiquitination event,
which is anchored around a nominal predicate
(trigger), “ubiquitination”, and has two arguments:
a mandatory theme, which is syntactically attached
to the verbal trigger through the preposition “of”, and
an optional cause, attached to the trigger through the
preposition “by”. The resulting event mention is as-
signed the Ubiquitination and Event labels.

323

1 - name: ner
2 label: Protein
3 type: token
4 pattern: |
5 [entity="B-Protein"][entity="I-Protein"]*
6

7 - name: ubiq-syn
8 label: [Ubiquitination, Event]
9 pattern: |

10 trigger = ubiquitination
11 theme:Protein = prep_of
12 cause:Protein? = prep_by
13

14 - name: negreg-syn
15 label: Negative_regulation
16 pattern: |
17 trigger = [lemma=inhibit & tag=/ˆV/]
18 theme:Event = dobj
19 cause:Protein = nsubj

Example 2: Rules that capture the events shown in Figure 1.
The first rule uses a surface pattern, while the other two use
syntactic patterns.

Figure 2: A sentence that can’t be completely handled by
the grammar in Example 1 but can be handled by the gram-
mar in Example 2.

• The negreg-syn rule implements a negative regu-
lation driven by a verbal predicate. Note that one of
the arguments is an event produced by the ubiq-syn
rule. As discussed, the Odin runtime guarantees that
the latter rule completes before the former.4

Although both example grammars capture the same output
for the sentence shown in Figure 1, the syntax-based one
is considerably more general. For example, the syntax-
based grammar correctly finds two ubiquitination events
and two negative regulations in the sentence “CYLD in-
hibits the ubiquitination of both TRAF2 and TRAF6” be-
cause the dependency graph correctly connects “ubiquiti-
nation” to “TRAF2” and “TRAF6”, as seen in Figure 2.
On the other hand, the surface-based grammar misses the
ubiquitination event involving “TRAF6” (and the negative
regulation of this ubiquitination), because the last two to-
kens of the sentence are not explicitly handled by the rules.
However, syntax-based grammars assume that a syntactic
parser is available and produces robust output. This is not
always true, especially in domain-specific settings. In such
situations it is beneficial to mix syntax and surface rules, or
rely solely on the latter.

4. Details of the Rule Language
The previous example shows some of Odin’s capabilities,
but Odin’s Runes is considerably more powerful. In this
section, we detail what we consider to be the most relevant
language features. We begin with a description of the main

4Odin also supports explicit rule priorities, which are omitted
here for brevity.

features of Odin’s dependency patterns5.

4.1. Syntactic Dependency Patterns
To mitigate language sparsity, Odin provides the capability
to match patterns over a sentence’s dependency graph (de
Marneffe and Manning, 2008b). With these patterns, Odin
captures event or relation structures. Event structures are
composed of a predicate and its corresponding arguments,
and relation structures are only composed of arguments (no
predicate).
When we want to retrieve an event, the predicate, or trigger,
is defined using a surface pattern over sequences of tokens
and their associated attributes, such as a word’s lemma form
or its part-of-speech (POS) tag. Event arguments are iden-
tified by dependency paths anchored at the matched trigger.
These arguments have semantic constraints represented as
labels (e.g., Protein or Event in the negreg rule in
Example 2).
Syntactic patterns for relations between mentions are also
supported by first specifying a previously found mention
as an anchor; the rest of the arguments are identified by
dependency paths in the style of syntactic rules for events.
The anchor mention is specified by giving it a name other
than trigger and a desired label, e.g., anchor:Label.

4.1.1. Predicate-argument Syntactic Paths
The dependency path between a predicate and an argument
is composed of hops and optional filters. The hops are
edges in the syntactic dependency graph; the filters are to-
ken constraints on the nodes (tokens) in the graph. Hops
can be incoming or outgoing. An outgoing hop follows the
direction of the edge from HEAD→DEPENDENT; an incom-
ing hop goes against the direction of the edge, leading from
DEPENDENT→HEAD. For example, in Figure 2, the depen-
dency “inhibits”→ “ubiquitination” is outgoing (“inhibits”
is the head), but it is considered incoming when traversed
in the other direction: “ubiquitination”← “inhibits”.
An outgoing dependency is matched using the > opera-
tor followed by a string matcher, which operates on the
label of the corresponding dependency, e.g., >nsubj.
Because most patterns use outgoing hops, (i.e., HEAD
→DEPENDENT); the > operator is implicit and can there-
fore be omitted. An incoming relation (i.e. DEPENDENT
→HEAD) is matched using a required < operator followed
by a string matcher. >> is a wildcard operator that can be
used to match any outgoing dependency. << is a wildcard
operator that can be used to match any incoming depen-
dency.
In addition to directionality, dependency patterns support
alternation, grouping, and the common regular expression
quantifiers. For example, the pattern nsubj prep_of?
matches exactly one outgoing nsubj hop followed by an
optional outgoing prep of.

4.1.2. Named Arguments
The arguments in a dependency pattern are written using
the name:label = path syntax, where label is the

5Please refer to Appendix C for a detailed Backus-Naur Form
(BNF) grammar describing the dependency patterns syntax.

324

Mexico’s president was recently reelected.
China ’s president was recently reelected.

1 pattern: |
2 trigger = [lemma=reelect]
3 theme:Entity = nsubjpass (?! poss [lemma=China])

Example 3: This dependency pattern contains a negative
lookaround to avoid matching mentions referring to the
reelection of “China’s president” (assuming the domain of
interest focuses on the election of Mexican presidents).

label of an existing Odin mention. The path must lead to a
token contained in a mention with the specified label.
Odin captures argument arity in events through argument
quantifiers. Arguments can be made optional with the ?
operator. The + operator is used to indicate the creation of
a single event mention containing all matches for that argu-
ment. The * is similar to +, but also makes the argument
optional. If the exact number of arguments with the same
name is known, it can be specified using the exact repetition
quantifier {k}. The ubiq-syn rule in Example 2 shows
an optional cause argument.

4.1.3. Token Constraints
Token constraints can be used to restrict a dependency pat-
tern by adding lexical constraints at any point of the path.
They are described further in Section 4.2., and a BNF gram-
mar describing their syntax is available in Appendix A.

4.1.4. Lookarounds as Contextual Constraints
Dependency patterns support non-capturing lookaround ex-
pressions to constrain syntactic context. The lookaround
syntax is (?= pattern) for positive assertions and (?!
pattern) for negative assertions. Example 3 demon-
strates a use case for a negative lookaround.

4.2. Surface Patterns

The same fundamental features of dependency patterns are
also supported by surface patterns6, which operate indepen-
dently of syntax.
Tokens are described using one or more constraints on lex-
ical, morphological, or semantic attributes written in the
form [attribute=value]. Example 1 includes an op-
tional token preceding the event’s theme described in terms
of its POS tag (“DT”), rather than a disjunction of possible
words that might satisfy the pattern (e.g., “a”, “the”, etc.).
The value of these token attributes may be given as exact
strings or regular expressions (e.g. [lemma=/[eo]r$/]
for all lemmas ending in “er” or “or”). More complex con-
straints can be expressed using boolean expressions. For
example, line 17 of Example 2 shows a conjunction of con-
straints on the lemma and the POS tag of the same token.

6Please refer to Appendix B for a detailed BNF grammar de-
scribing the surface patterns syntax.

Odin’s patterns can be very precise.
This is precisely the point.

We managed to improve PRECISION.

1 [word=/(?i)ˆprecis/ & !tag=RB]

Example 4: A token pattern involving two constraints on a
single token. The token must begin with “precis” ((?i)
indicates that the match is case insensitive) and cannot be
an adverb.

4.2.1. Named Arguments
Surface patterns may be used to describe events or rela-
tions using named arguments that are created either on-the-
fly using the (?<argname> token sequence) syn-
tax shown in line 11 of Example 1, or in reference to an
existing mention by using the @argname:Label syntax
shown on line 12 in Example 1.

4.2.2. Lookarounds as Contextual Constraints
Surface pattern may be honed with lookbehind and looka-
head expressions that impose constraints on the senten-
tial context of a match. These assertions may be either
positive (i.e., the contained pattern must exist) or nega-
tive (i.e., the contained pattern must not exist). Look-
behinds use the (?<= token sequence) syntax for
positive assertions and (?<! token sequence) for
negative assertions; positive lookaheads use (?= token
sequence), while negative lookaheads are specified us-
ing (?! token sequence). Notably, Odin supports
efficient unrestricted variable length lookbehinds, which is
uncommon for regular expression engines (Friedl, 2006).
An example of a negative lookbehind is shown in Exam-
ple 5.

1 (?<!China) []? (?<theme>/[pP]resident/)
2 was (?<trigger>[lemma=reelect])

Example 5: This surface pattern is analogous to the
dependency pattern in Example 3. Here a negative
lookbehind is used to avoid matching mentions referring
to the reelection of “China’s president”.

4.3. Multiple Rule Files
Including all the rules in a single file is feasible for small
IE systems, but systems targeting larger domains require
organizing rules in a way that promotes modularity and
rule reuse. Odin supports multi-file grammars, as well as
variables that can be used within and across grammar files.
When grammars are split in multiple files, Odin reads the
top-level file (the master grammar) and imports the other
grammars as needed. These imported grammars may them-
selves import other grammars. Each file can define default
values for the variables it uses, and these values can be over-
ridden at import time.
We refer the reader to the “Building a Grammar” section
of the manual for a more detailed explanation and further
examples of master grammars and template grammars.

325

1 - Entity:
2 - Gene
3 - Protein
4 - SmallMolecule
5 - Event:
6 - Conversion:
7 - Phosphorylation
8 - Ubiquitination
9 - Hydroxylation

10 - Sumoylation
11 - Acetylation
12 - Control:
13 - Catalysis
14 - Modulation

Example 6: A formalized taxonomy of biochemical entities
and interactions inspired by BioPAX (Demir et al., 2010).

4.4. Taxonomy
We have shown in Examples 1 and 2 that rules can as-
sign more than one label to an extracted mention. This
allowed us to define an ad-hoc taxonomy that states that
a Ubiquitination is also an Event.
The ability to define ad-hoc taxonomies is useful when de-
veloping small IE systems, but this can become cumber-
some for larger domains. To address this, Odin also sup-
ports a formal taxonomy where the label hierarchy is writ-
ten as a tree (or forest).
Taxonomies are encoded as lists of YAML dictionaries that
display the hierarchy of labels in a clear and readable way.
An example of a formal taxonomy is shown in Figure 6.
When an explicit taxonomy is available, a rule can use a
single label which will include all of its parent labels im-
plicitly. This enforces consistency in the labels of the re-
sulting mentions, and also catches typographical errors by
not allowing the use of labels missing from the taxonomy.
More details about the usage of a formal taxonomy are
available in the “Taxonomy” section of the manual.

5. Resources
The entire Odin framework is available as part of the Pro-
cessors NLP library.7 Processors is written in Scala, which
makes interaction with other languages running on the Java
Virtual Machine straightforward. To facilitate the quick
start of Odin-based projects, we have also made available
an example project that implements a simple system using
Odin both in Scala and in Java.8

We also provide a web interface for developing and de-
bugging Odin rules. The web UI allows one to inspect
each sentence’s token attributes and dependency graph us-
ing Brat visualizations (Stenetorp et al., 2012).9 A screen-
shot of this web interface is shown in Figure 3.

6. Acknowledgments
This work was funded by the DARPA Big Mechanism pro-
gram under ARO contract W911NF-14-1-0395.

7https://github.com/clulab/processors
8https://github.com/clulab/odin-examples
9http://agathon.sista.arizona.edu:

8080/odinweb/open

7. Bibliographical References
Abney, S. (1996). Partial parsing via finite-state cascades.

Natural Language Engineering, 2(04):337–344.
Appelt, D. E. and Onyshkevych, B. (1998). The common

pattern specification language. In Proc. of the TIPSTER
Workshop, pages 23–30.

Appelt, D. E., Hobbs, J. R., Bear, J., Israel, D., and Tyson,
M. (1993). Fastus: A finite-state processor for informa-
tion extraction from real-world text. In Proceedings of
the International Conferences on Artificial Intelligence
(IJCAI).

Banarescu, L., Bonial, C., Cai, S., Georgescu, M., Grif-
fitt, K., Hermjakob, U., Knight, K., Koehn, P., Palmer,
M., and Schneider, N. (2012). Abstract meaning repre-
sentation (amr) 1.0 specification. In Parsing on Freebase
from Question-Answer Pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Language
Processing. Seattle: ACL, pages 1533–1544.

Ben-Kiki, O., Evans, C., and Ingerson, B. (2005). Yaml
ain’t markup language (yaml) version 1.1. yaml. org,
Tech. Rep.

Chambers, N., Cer, D., Grenager, T., Hall, D., Kiddon,
C., MacCartney, B., De Marneffe, M.-C., Ramage, D.,
Yeh, E., and Manning, C. D. (2007). Learning align-
ments and leveraging natural logic. In Proceedings of
the ACL-PASCAL Workshop on Textual Entailment and
Paraphrasing, pages 165–170. Association for Computa-
tional Linguistics.

Chang, A. X. and Manning, C. D. (2014). Token-
sRegex: Defining cascaded regular expressions over to-
kens. Technical Report CSTR 2014-02, Computer Sci-
ence, Stanford.

Chen, D. and Manning, C. D. (2014). A fast and accurate
dependency parser using neural networks. In EMNLP,
pages 740–750.

Cunningham, H., Maynard, D., Bontcheva, K., and Tablan,
V. (2002). A framework and graphical development en-
vironment for robust nlp tools and applications. In ACL,
pages 168–175.

De Marneffe, M.-C. and Manning, C. D. (2008a). The
stanford typed dependencies representation. In Coling
2008: Proceedings of the workshop on Cross-Framework
and Cross-Domain Parser Evaluation, pages 1–8. Asso-
ciation for Computational Linguistics.

de Marneffe, M.-C. and Manning, C. D. (2008b).
The Stanford typed dependencies representation. In
Proc. of COLING Workshop on Cross-framework and
Cross-domain Parser Evaluation.

Demir, E., Cary, M. P., Paley, S., Fukuda, K., Lemer, C.,
Vastrik, I., Wu, G., D’Eustachio, P., Schaefer, C., Lu-
ciano, J., et al. (2010). The biopax community stan-
dard for pathway data sharing. Nature biotechnology,
28(9):935–942.

Friedl, J. E., (2006). Mastering regular expressions, pages
133–134. O’Reilly Media, Inc.

Levy, R. and Andrew, G. (2006). Tregex and Tsurgeon:
tools for querying and manipulating tree data structures.
In Proc. of LREC.

Li, Y., Reiss, F. R., and Chiticariu, L. (2011). Sys-

326

Figure 3: A visualization of Odin’s output for the sentence in Figure 1 using the rules in Example 2.

temt: A declarative information extraction system.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies: Systems Demonstrations,
pages 109–114. Association for Computational Linguis-
tics.

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J.,
Bethard, S. J., and McClosky, D. (2014). The Stanford
CoreNLP natural language processing toolkit. In Proc.
of ACL.

Piskorski, J., Schäfer, U., and Xu, F. (2004). Shallow
processing with unification and typed feature structures–
foundations and applications.

Reiss, F., Raghavan, S., Krishnamurthy, R., Zhu, H., and
Vaithyanathan, S. (2008). An algebraic approach to
rule-based information extraction. In Data Engineering,
2008. ICDE 2008. IEEE 24th International Conference
on, pages 933–942. IEEE.

Stenetorp, P., Pyysalo, S., Topić, G., Ohta, T., Ananiadou,
S., and Tsujii, J. (2012). Brat: a web-based tool for nlp-
assisted text annotation. In Proc. of the Demonstrations
at EACL.

Surdeanu, M., Johansson, R., Meyers, A., Màrquez, L.,
and Nivre, J. (2008). The conll-2008 shared task
on joint parsing of syntactic and semantic dependen-
cies. In Proceedings of the Twelfth Conference on
Computational Natural Language Learning, pages 159–
177. Association for Computational Linguistics.

Thakker, D., Osman, T., and Lakin, P. (2009). Gate jape
grammar tutorial. Nottingham Trent University, UK,
Phil Lakin, UK, Version, 1.

Valenzuela-Escárcega, M. A., Hahn-Powell, G., and Sur-
deanu, M. (2015a). Description of the Odin Event Ex-
traction Framework and Rule Language. ArXiv e-prints,
September.

Valenzuela-Escárcega, M. A., Hahn-Powell, G., Hicks, T.,

and Surdeanu, M. (2015b). A domain-independent rule-
based framework for event extraction. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics: Software Demonstrations
(ACL).

327

Appendix A Token Constraint Grammar
The following grammar describes Odin’s token constraints.
A token constraint is a boolean expression over a token’s
lexical, morphological, or semantic attributes. The gram-
mar is written in Backus-Naur form (BNF), with terminals
enclosed in quotes, non-terminals enclosed in angle brack-
ets, and optional items enclosed in square brackets. The ∗
character is the Kleene star.

〈TokenConstraint〉 ::= ‘[’ [〈DisjunctiveConstraint〉] ‘]’

〈DisjunctiveConstraint〉 ::= 〈ConjunctiveConstraint〉
(‘|’ 〈ConjunctiveConstraint〉)*

〈ConjunctiveConstraint〉 ::= 〈NegatedConstraint〉
(‘&’ 〈NegatedConstraint〉)*

〈NegatedConstraint〉 ::= [‘!’] 〈AtomicConstraint〉

〈AtomicConstraint〉 ::= 〈FieldConstraint〉
| ‘(’ 〈DisjunctiveConstraint〉 ‘)’

〈FieldConstraint〉 ::= 〈FieldName〉 ‘=’ 〈StringMatcher〉

〈FieldName〉 ::= ‘word’
| ‘lemma’
| ‘tag’
| ‘entity’
| ‘chunk’
| ‘incoming’
| ‘outgoing’
| ‘mention’

〈StringMatcher〉 ::= 〈ExactStringMatcher〉
| 〈RegexStringMatcher〉

〈ExactStringMatcher〉 ::= 〈StringLiteral〉

〈StringLiteral〉 ::= 〈identifier〉
| 〈SingleQuoteString〉
| 〈DoubleQuoteString〉

〈RegexStringMatcher〉 ::= 〈RegexLiteral〉

Appendix B Token Pattern Grammar
In this section we describe the BNF grammar for Odin’s
Runes’ token patterns, i.e., the surface rules. Token
patterns support several advanced features like lazy and
greedy quantifiers, named captures of both mentions and
sequences of tokens with the ability to share names among
the captures, and zero-width assertions.

〈TokenPattern〉 ::= 〈DisjunctiveTokenPattern〉

〈DisjunctiveTokenPattern〉 ::=
〈ConcatenatedTokenPattern〉
(‘|’ 〈ConcatenatedTokenPattern〉)*

〈ConcatenatedTokenPattern〉 ::=
〈QuantifiedTokenPattern〉 〈QuantifiedTokenPattern〉*

〈QuantifiedTokenPattern〉 ::= 〈AtomicTokenPattern〉
| 〈RepeatedTokenPattern〉
| 〈RangeTokenPattern〉

〈AtomicTokenPattern〉 ::= 〈SingleTokenPattern〉
| 〈MentionTokenPattern〉
| 〈CaptureTokenPattern〉
| 〈AssertionTokenPattern〉
| ‘(’ 〈DisjunctiveTokenPattern〉 ‘)’

〈RepeatedTokenPattern〉 ::= 〈AtomicTokenPattern〉
(‘??’ | ‘*?’ | ‘+?’ | ‘?’ | ‘*’ | ‘+’)

〈RangeTokenPattern〉 ::= 〈AtomicTokenPattern〉
‘{’ 〈number〉 ‘,’ 〈number〉 ‘}’

| 〈AtomicTokenPattern〉 ‘{’ 〈number〉 ‘,’ ‘}’
| 〈AtomicTokenPattern〉 ‘{’ ‘,’ 〈number〉 ‘}’
| 〈AtomicTokenPattern〉 ‘{’ 〈number〉 ‘}’

〈SingleTokenPattern〉 ::= 〈StringMatcher〉
| 〈TokenConstraint〉

〈MentionTokenPattern〉 ::=
‘@’ [〈StringLiteral〉 ‘:’] 〈ExactStringMatcher〉

〈CaptureTokenPattern〉 ::=
‘(?<’ 〈identifier〉 ‘>’ 〈DisjunctiveTokenPattern〉 ‘)’

〈AssertionTokenPattern〉 ::=
〈SentenceStartTokenAssertion〉

| 〈SentenceEndTokenAssertion〉
| 〈LookaheadTokenAssertion〉
| 〈LookbehindTokenAssertion〉

〈SentenceStartTokenAssertion〉 ::= ‘ˆ’

〈SentenceEndTokenAssertion〉 ::= ‘$’

〈LookaheadTokenAssertion〉 ::=
(‘(?=’ | ‘(?!’) 〈DisjunctiveTokenPattern〉 ‘)’

〈LookbehindTokenAssertion〉 ::=
(‘(?<=’ | ‘(?<!’) 〈DisjunctiveTokenPattern〉 ‘)’

Appendix C Dependency Pattern Grammar
This BNF grammar describes the syntax for Odin’s Runes’
dependency patterns. These patterns are applied over a de-
pendency graph. Notable features include the usual regex
quantifiers (although there is no lazy/greedy distinction),
lookaround assertions (again, no distinction between looka-
head and lookbehind), and they can pack/unpack arguments
using argument quantifiers as explained in Section 4.1.2.
Token constraints are also supported as a way of adding
lexical constraints at any step of the path.

〈DependencyPattern〉 ::=
〈TriggerPatternDependencyPattern〉

| 〈TriggerMentionDependencyPattern〉

〈TriggerPatternDependencyPattern〉 ::=
‘trigger’ ‘=’ 〈TokenPattern〉 〈ArgPattern〉+

〈TriggerMentionDependencyPattern〉 ::=
〈identifier〉 ‘:’ 〈identifier〉 〈ArgPattern〉+

〈ArgPattern〉 ::=
〈identifier〉 ‘:’ 〈identifier〉
[‘*’ | ‘+’ | ‘?’ | ‘{’ 〈number〉 ‘}’] ‘=’
〈DisjunctiveDependencyPattern〉

328

〈DisjunctiveDependencyPattern〉 ::=
〈ConcatenatedDependencyPattern〉
(‘|’ 〈ConcatenatedDependencyPattern〉)*

〈ConcatenatedDependencyPattern〉 ::=
〈StepDependencyPattern〉 〈StepDependencyPattern〉*

〈StepDependencyPattern〉 ::= 〈FilterDependencyPattern〉
| 〈TraversalDependencyPattern〉

〈FilterDependencyPattern〉 ::= 〈TokenConstraint〉

〈TraversalDependencyPattern〉 ::=
〈AtomicDependencyPattern〉

| 〈RangeDependencyPattern〉
| 〈QuantifiedDependencyPattern〉

〈QuantifiedDependencyPattern〉 ::=
〈AtomicDependencyPattern〉 (‘?’ | ‘*’ | ‘+’)

〈RangeDependencyPattern〉 ::=
〈AtomicDependencyPattern〉
‘{’ 〈number〉 ‘,’ 〈number〉 ‘}’

| 〈AtomicDependencyPattern〉 ‘{’ ‘,’ 〈number〉 ‘}’
| 〈AtomicDependencyPattern〉 ‘{’ 〈number〉 ‘,’ ‘}’
| 〈AtomicDependencyPattern〉 ‘{’ 〈number〉 ‘}’

〈LookaroundDependencyPattern〉 ::=
(‘(?=’ | ‘(?!’) 〈DisjunctiveDependencyPattern〉 ‘)’

〈AtomicDependencyPattern〉 ::=
〈OutgoingDependencyPattern〉

| 〈IncomingDependencyPattern〉
| 〈LookaroundDependencyPattern〉
| ‘(’ 〈DisjunctiveDependencyPattern〉 ‘)’

〈OutgoingDependencyPattern〉 ::= ‘>>’
| [‘>’] 〈StringMatcher〉

〈IncomingDependencyPattern〉 ::= ‘<<’
| ‘<’ 〈StringMatcher〉

329

