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Abstract
We present a light-weight machine learning tool for NLP research. The package supports operations on both discrete and dense vectors,
facilitating implementation of linear models as well as neural models. It provides several basic layers which mainly aims for single-layer
linear and non-linear transformations. By using these layers, we can conveniently implement linear models and simple neural models.
Besides, this package also integrates several complex layers by composing those basic layers, such as RNN, Attention Pooling, LSTM
and gated RNN. Those complex layers can be used to implement deep neural models directly.
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1. Introduction
Deep learning methods have received increasing research
attention in natural language processing (NLP), with neu-
ral models being built for classification (Kalchbrenner et
al., 2014), sequence labeling (Collobert et al., 2011), pars-
ing (Socher et al., 2013; Dyer et al., 2015; Zhou et al.,
2015; Weiss et al., 2015), machine translation (Cho et al.,
2014), fine-grained sentiment analysis (Zhang et al., 2015)
and other tasks. This surge of the interest gives rise to a
demand of software libraries, which can facilitate research
by allowing fast prototyping and modeling for experimen-
tation.
For traditional methods such as conditional random field-
s (CRF) (Lafferty et al., 2001) and SVM (Vapnik, 1995),
there has been various software toolkits, implemented in
different programming languages, including Java, Python
and C++. These toolkits offer a large degree of variety
for building NLP models by using or adapting the ma-
chine learning algorithms. For deep learning, a number
of software tools have been developed, including theano
1 (Bergstra et al., 2010), caffe 2 (Jia et al., 2014), CNN3,
torch4 etc. These tools are based on different programming
languages and design concepts. On the other hand, most of
these libraries are not designed specifically for NLP tasks.
In addition, many existing libraries define a complex class
hierarchy, making it difficult for some users to use or adapt
the modules.
We present another deep learning toolkit in C++, designed
specifically for NLP applications. The main objective is
to make it extremely light-weight, so as to minimize the
effort in building a neural model. We take a layered ap-
proach, offering high-level models for classification and
sequence labeling, such as neural CRF (Do et al., 2010),
recurrent neural networks (RNN) (Graves, 2012) and long-
short-term memories (LSTM) (Hochreiter and Schmidhu-
ber, 1997), which are frequently used in NLP. On the oth-

1https://github.com/Theano/Theano
2http://caffe.berkeleyvision.org/
3https://github.com/clab/cnn
4http://torch.ch/

er hand, we minimize encapsulation, implementing neural
structures strictly abiding by their formal definitions, so as
to make it easy to work directly with neural layers and fa-
cilitate extensions to existing network structures.
Our design is centralized in the structure of a neural lay-
er, which performs the standard feed-forward function and
back-propagation. We provide a wide range of built-in neu-
ral activation functions, and common operations such as
concatenation, pooling, window function and embedding
lookup, which are needed by most NLP tasks. We sup-
port flexible objective functions and optimization methods,
such as max-margin, max likelihood criterions and Ada-
Grad (Duchi et al., 2011), and also verification functions
such as gradient check. One uniqueness of our toolkit is
the support of both dense continuous features and sparse
indicator features in neural layers, making it convenient al-
so to build traditional discrete models such as the percep-
tron, logistic regression and CRF, and to combine discrete
and continuous features (Ma et al., 2014; Durrett and Klein,
2015; Zhang and Zhang, 2015).
Taking word segmentation, POS-tagging and name entity
recognition (NER) as typical examples, we show how state-
of-the-art discrete, neural and hybrid models can be built
using our toolkit. For example, we show how a bidirec-
tional LSTM model can be built for POS tagging in only
23-lines (12 for inference and 11 for back-propagation) of
codes, which gives highly competitive accuracies on stan-
dard benchmarks.

2. Classes
2.1. Base Layers
Shown in Table 1, we provide several basic classes, which
are widely used in neural networks and discrete machine
learning algorithms, including atomic layers, pooling func-
tions, loss functions and others. All classes have three inter-
faces, one for obtaining forward outputs, one for computing
backward losses, and the last for update parameters.
Neural Layers The neural layers are single atomic layers
used in neural networks, which support one, two or three
input vectors. In Table 1, f can be any activation function,
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Atomic Layers
Dense

uni-layer: y = f(Wx+ b)

bi-layer: y = f(W1x1 +W2x2 + b)

tri-layer: y = f(W1x1 +W2x2 +W3x3 + b)

tensor-layer: y = f(x1Tx2 + b)

Discrete uni-layer: y = f(Wx)

Pooling y =
∑n
i=1 αi � xi


max: αi,j = 1,when i = arg maxs(xs,j), otherwise 0;

min: αi,j = 1,when i = arg mins(xs,j), otherwise 0;

average: αi,j = 1
n ;

sum: αi,j = 1.

Loss Function
Classifier

max entropy (MAXENT) : o, y → ∂o :

loss(o) = −y log softmax(o);

∂o =
dloss(o)

do

Structural Learning

CRF, max likelihood (CRFML) : on1 , y
n
1 → ∂on1 :

loss(on1 ) = − log p(yn1 |o
n
1 ), where p(.) can be computed

via the forward-backward algorithm (Sutton and Mccallum, 2007);

∂on1 =
dloss(on1 )

don1

CRF, max margin (CRFMM) : on1 , y
n
1 → ∂on1 :

loss(on1 ) = maxŷn1
(s(ŷn1 ) + δ(ŷn1 , y

n
1 ))− s(yn1 ), where ŷn1 is an

answer sequence with one label for each position;

∂on1 =
dloss(on1 )

don1

Others

LookupTable: E, specifying vector representations for one vocabulary.
Concatenation: y = x1 ⊕ x2 ⊕ · · · ⊕ xM
Dropout: y = m� x,wherem is a mask vector

Window function: xn1 → yn1 , where yi = xi−c ⊕ · · · ⊕ xi ⊕ · · · ⊕ xi+c

Table 1: Base classes.

RNN xn1 → yn1 : yj = f(Wxj + Uyj±1 + b)

GRNN
xn1 → yn1 ,where yn1 is computed by:

rj = σ(W1xj + U1yj±1 + b1)

ỹj = f(W2xj + U2(rj � yj±1) + b2)

zj = σ(W3xj + U3yj±1 + b3)

yj = (~1− zj)� yj±1 + zj � ỹj

LSTM
xn1 → yn1 ,where yn1 is computed by:

ij = σ(W1xj + U1yj±1 + V1cj±1 + b1)

fj = σ(W2xj + U2yj±1 + V2cj±1 + b2)

c̃j = f(W3xj + U3yj±1 + b3)

cj = ij � c̃j + fj � cj±1

oj = σ(W4xj + U4yj±1 + V4cj + b4)

yj = oj � f(cj)

Attention Model
xn1 , a

n
1 → y, where y is computed by:

hj = f(Wxj + Uaj + b)

αj = exp(hj)

z =
∑n
j=1 αj

y =
∑n
j=1

αj�xj
z

Table 2: Classes of neural network structures.

such as the simple id operation or non-linear functions in-
cluding tanh, sigmoid and exp. For discrete features, we
support only one vector input. A logistic regression classi-
fier can be built using one single discrete layer.
Pooling Pooling functions are widely used to obtain fixed-
dimensional output from sequential vectors of variable
lengths. Commonly-used pooling techniques include max,
min and averaged function. We implement sum pooling al-
so.
Loss Function We offer three different loss functions, one
for classification, based on the max-entropy principle and
two for structural sequence labeling problems, based on the
theory of CRF, with a max likelihood and a max margin
objective, respectively.
Others To facilitate model building, we provide some use-
ful classes such as lookup table, drop out, concatenation
and window feature extraction. These functions are al-
l shown in Table 1.

2.2. Network structures
Using basic classes, one can build advanced neural network
structures in the literature. In this package, we implement
four different neural networks, including a simple recurren-
t neural network (RNN), a gated recurrent neural network
(GRNN), a long-short term memory neural network (LST-
M) and an attention model. Their definitions are given in
Table 2.

3. Evaluation
We show how to apply the package to building neural net-
work models for Chinese word segmentation, POS tagging
and NER. All three tasks are formalized as sequence la-
beling problems. The general framework is shown in Fig-
ure 1, where we collect input vectors (tn1 ) at the bottom
for each word, and then add a windowlized layer to exploit
surrounding information, obtaining xn1 . Then, we apply t-
wo LSTM neural networks, one being computed from left
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· · ·
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· · ·
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xn1 =windowlized(tn1 ) 7 ∂tn1 =windowlized backward(∂xn1 ) 17


rhn1 =rlstm.forward(xn1 )

9

lhn1 =llstm.forward(xn1 )
8

∂x
n
1 +=rlstm.backward(∂rhn1 )

15

∂x
n
1 +=llstm.backward(∂lhn1 )

16



non-linear combination:
hn1 =nlcomb.forward(lhn1 , rh

n
1 )

10
non-linear combination:
(∂lhn1 , ∂rh

n
1 )=nlcomb.backward(∂hn1 )

14

output layer (linear unigram):
on1 =olayer.forward(hn1 )

11
output layer (linear unigram):
∂hn1 =olayer.backward(∂on1 )

13

input vectors tn1 losses of input vectors ∂tn1

loss layer: ∂on1 =crflayer.backward(on1 , y
n
1 ), where yn1 denotes gold answers. 12

Figure 1: Neural framework for word segmentation, POS tagging and named entity recognition.
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attention model:
vci=attention.forward(hmi1 , Ewi)

5
attention model:
(∂h

mi
1 , ∂Ewi)+=attention.backward(∂vci) 19

non-linear combination:
h
mi
1 =nlcomb.forward(xmi1 ) 4

non-linear combination:
∂x
mi
1 =nlcomb.backward(∂hmi1 ) 20

x
mi
1 =windowlized(Ecmi1 ) 3 ∂Ec

mi
1 =windowlized backward(∂xmi1 ) 21

Ec
mi
1 : characters embeddings of word wi 2 losses of character embeddings: ∂Ecmi1

22

vci

Figure 2: vector representation derived from character sequences.

to right lhn1 and the other being computed from right to left
rhn1 . These two kinds of features are combined using a non-
linear combination layer, giving hn1 . Finally, we compute
output vectors on1 , scoring different labels at each position.

During training, we run standard back-propagation. We
choose CRF max-margin loss to compute the output losses
∂on1 . Then step by step, we compute the losses of hn1 , lhn1 ,
rhn1 , xn1 and tn1 , aggregating losses for each parameter at
each layer. Finally, we use Adagrad to update parameters
for all layers.

Between segmentation, POS tagging and NER, the differ-
ences lie mainly in the input vectors tn1 . For Chinese word
segmentation, we use the concatenation of character uni-
gram embeddings Eci and bigram embeddings Eci−1ci at
each position as the input vector ti. The character unigram
and bigram embeddings are pretrained separately. For POS
tagging, ti consists of embedding Ewi of the word wi and
its vector representation vci derived from its character se-
quence cmi1 (mi is the length of word wi). vci is constructed
according to neural network structures shown in Figure 2.
For NER, ti consists of three parts, including Ewi, vci and
the word’s POS tag embedding Epi. The deep neural POS
tagging model consists of only 23 lines of code, as marked
by red superscripts in Table 3, Figure 2 and Figure 1.

Besides the neural models above, we also implement dis-
crete models for the three tasks. The discrete features are
extracted according to Liu et al. (2014), Toutanova et al.
(2003) and Che et al. (2013) for word segmentation, POS
tagging and NER, respectively. We simply apply the s-
parse atomic layer and exploit the same CRF max-margin
for training model parameters. Finally, we make combina-
tions of the discrete and neural models by aggregating their
output vectors.
Results.
We conduct experiments on several datasets. For Chinese
word segmentation, we exploit PKU, MSR and CTB60
datasets, where the training and testing corpus of PKU and
MSR can be downloaded from BakeOff2005 website5. For
POS tagging, we perform experiments on both English and
Chinese datasets. For English, we follow Toutanova et al.
(2003), using WSJ sections of 0-18 as the training dataset,
section 19-21 as the development corpus and section 22-24
as the testing dataset. For Chinese, we use the same data set
as Li et al. (2015). For NER, we follow Che et al. (2013) to

5http://www.sighan.org/bakeoff2005/. We split 10% of the
training corpus as the development corpus. The training, develop-
ment and testing sections corpus of CTB60 is the same as (Zhang
et al., 2014).
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Operation Word Segmentation POS Tagging NER

Forward

Eci = uniCharE.lookup(ci) Ewi = wordE.lookup(wi) 1 Ewi = wordE.lookup(wi)
Ecici−1 = biCharE.lookup(cici−1) vci = vector(cmi1 ) Epi = wordE.lookup(pi)
ti = concat(Eci, Ecici−1) ti = concat(Ewi, vci) 6 vci = vector(cmi1 )

ti = concat(Ewi, Epi, vci)

Backward

(∂Eci, ∂Ecici−1) = unconcat(∂ti) (∂Ewi, ∂vci) = unconcat(∂ti) 18 (∂Ewi, ∂pi, ∂vci) = unconcat(∂ti)
uniCharE.backloss(ci, ∂Eci) ∂c

mi
1 = vector backward(∂vci) ∂c

mi
1 = vector backward(∂vci)

biCharE.backloss(cici−1, ∂Ecici−1) wordE.backloss(wi, ∂Ewi) 23 posE.backloss(pi, ∂Epi)
wordE.backloss(wi, ∂Ewi)

Table 3: The obtaining of word representation.

Model
Chinese Word Segmentation POS Tagging NER

PKU MSR CTB60 English Chinese English Chinese
P R F P R F P R F Acc Acc P R F P R F

Discrete 95.42 94.56 94.99 96.94 96.61 96.78 95.43 95.16 95.29 97.23 93.97 80.14 79.29 79.71 72.67 73.92 73.29
Neural 94.29 94.56 94.42 96.79 97.54 97.17 94.48 95.01 94.75 97.28 94.02 77.25 80.19 78.69 65.59 71.84 68.57
Hybrid 95.74 95.12 95.42 97.01 97.39 97.20 95.68 95.64 95.66 97.47 95.07 81.90 83.26 82.57 72.98 80.15 76.40
State-of-the-art N/A N/A 94.50 N/A N/A 97.20 N/A N/A 95.05 97.24 94.10 82.95 76.67 79.68 76.90 63.32 69.45

Table 4: Main results.

split Ontonotes 4.0 to get the English and Chinese datasets.
Our experimental results are shown in Table 4. As can
be seen for the table, our neural models give competitive
results compared the state-of-the-art results on each task,
which are Zhang and Clark (2007) for Chinese word seg-
mentation, Toutanova et al. (2003) for English POS tag-
ging, Li et al. (2015) for Chinese POS tagging and Che et
al. (2013) for English and Chinese NER.

4. Code
Our code and examples in this paper is available under GPL
at https://github.com/SUTDNLP/, including repositories of
LibN3L, NNSegmentation, NNPOSTagging and NNName-
dEntity.
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