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Abstract

This paper describes the proposed system of
the Hitachi team for the Cross-Framework
Meaning Representation Parsing (MRP 2019)
shared task. In this shared task, the partici-
pating systems were asked to predict nodes,
edges and their attributes for five frame-
works, each with different order of “abstrac-
tion” from input tokens. We proposed a uni-
fied encoder-to-biaffine network for all five
frameworks, which effectively incorporates a
shared encoder to extract rich input features,
decoder networks to generate anchorless nodes
in UCCA and AMR, and biaffine networks to
predict edges. Our system was ranked fifth
with the macro-averaged MRP F1 score of
0.7604, and outperformed the baseline uni-
fied transition-based MRP. Furthermore, post-
evaluation experiments showed that we can
boost the performance of the proposed system
by incorporating multi-task learning, whereas
the baseline could not. These imply efficacy
of incorporating the biaffine network to the
shared architecture for MRP and that learn-
ing heterogeneous meaning representations at
once can boost the system performance.

1 Introduction

This paper describes the proposed system of
the Hitachi team for the CoNLL 2019 Cross-
Framework Meaning Representation Parsing
(MRP 2019) shared task. The goal of the task was
to design a system that predicts sentence-level
graph-based meaning representations in five
frameworks, each with its specific linguistic as-
sumptions. The task was formulated as prediction
of nodes, edges and their attributes from an input
sentence (see Oepen et al. (2019) for details).
The target frameworks were (1) DELPH-IN MRS
Bi-Lexical Dependencies (DM; Flickinger, 2000;

∗ Contributed equally.

Ivanova et al., 2012), (2) Prague Semantic De-
pendencies (PSD; Hajič et al., 2012; Miyao et al.,
2014), (3) Elementary Dependency Structures
(EDS; Oepen and Lønning, 2006), (4) Universal
Conceptual Cognitive Annotation framework
(UCCA; Abend and Rappoport, 2013; Hersh-
covich et al., 2017), and (5) Abstract Meaning
Representation (AMR; Banarescu et al., 2013).

In this work, we propose to unify graph predic-
tions in all frameworks with a single encoder-to-
biaffine network. This objective was derived from
our expectation that it would be advantageous if a
single neural network can deal with all the frame-
works, because it allows all frameworks to benefit
from architectural enhancements and it opens up
possibility to perform multi-task learning to boost
overall system performance. We argue that it is
non-trivial to formulate different kinds of graph
predictions as a single machine learning problem,
since each framework has different order of “ab-
straction” from input tokens. Moreover, such for-
mulation has hardly been explored, with few ex-
ceptions including unified transition-based MRP
(Hershcovich et al., 2018), to which we empir-
ically show the superiority of our system (Sec-
tion 9). We also present a multi-task variant of
such system, which did not make it to the task
deadline.

Our non-multi-task system obtained the fifth
position in the formal evaluation. We also eval-
uated the multi-task setup after the formal run,
showing multi-task learning can yield an improve-
ment in the performance. This result implies
learning heterogeneous meaning representations
at once can boost the system performance.

2 Overview of the Proposed System

The key challenge in unifying graph predictions
with a single encoder-to-biaffine network lays in
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Figure 1: The overview of the proposed unified encoder-to-biaffine network for cross-framework meaning repre-
sentation parsing.

complementation of nodes, because the biaffine
network can narrow down the node candidates
but cannot generate new ones. Our strategy is
that we start from input tokens, generate miss-
ing nodes (nodes that do not have anchors to the
input tokens) and finally predict edges with the
biaffine network (Figure 1). More concretely,
the shared encoder (Section 3.2) fuses together
rich input features for each token including fea-
tures extracted from pretrained language models,
which are then fed to bidirectional long short-term
memories (biLSTMs; Hochreiter and Schmidhu-
ber, 1997; Schuster and Paliwal, 1997) to obtain
task-independent contextualized token representa-
tions. The contextualized representations are fed
to biaffine networks (Dozat and Manning, 2018)
to predict graphs for each framework along with
the following framework-specific procedures:

DM and PSD Contextualized representations are
fed to biaffine network to predict edges and their
labels. They are also used to predict the node
property frame (Section 4).

EDS The predicted DM graphs are converted to
nodes and edges of EDS graphs. Contextualized
representations are used to predict node anchors
(Section 5).

UCCA Nodes in training data are serialized and
aligned with input tokens. Contextualized rep-
resentations are fed to a pointer network to gen-

erate non-terminal nodes, and to a biaffine net-
work to predict edges and labels (Section 6).

AMR Contextualized representations are fed to
pointer-generator network to generate nodes.
Hidden states of the network are fed to a biaffine
network to predict edges and their labels (Sec-
tion 7).
All models are trained end-to-end using mini-

batch stochastic gradient decent with backpropa-
gation (see Appendix A.1 for the details).

3 Shared Encoder

3.1 Feature Extraction

Following work by Dozat and Manning (2018) and
Zhang et al. (2019), we propose to incorporate
multiple types of token representations to provide
rich input features for each token. Specifically, the
proposed system combines surface, lemma, part-
of-speech (POS) tags, named entity label, GloVe
(Pennington et al., 2014) embedding, ELMo (Pe-
ters et al., 2018) embedding and BERT (Devlin
et al., 2019) embedding as input features . The fol-
lowing descriptions explain how we acquire each
input representations:
Surface and lemma We use the lower-cased

node labels and the lemma properties from
the companion data, respectively. Surfaces and
lemmas that appear less than four times are re-
placed by a special <UNK> token. We also map
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numerical expressions1 to a special <NUM> to-
ken.

POS tags We use Universal POS tags and English
specific POS tags from node properties upos
and xpos in the companion data, respectively.

Named entity label Named entity (NE) recogni-
tion is applied to the input text (see Section 7.1).

GloVe We use 300-dimensional GloVe (Penning-
ton et al., 2014) pretrained on Common Crawl2

which are kept fixed during the training. Sur-
faces that do not appear in the pretrained GloVe
are mapped to a special <UNK> token which is
set to a vector whose values are randomly drawn
from normal distribution with standard devia-
tion of 1/

√
dimension of a GloVe vector.

ELMo We use the pretrained “original” ELMo3.
Following Peters et al. (2018), we “mix” differ-
ent layers of ELMo for each token;

s̃j = softmax
j

(sj) =
exp(sj)∑
k exp(sk)

,

hELMo =
NELMo−1∑

j=0

s̃jh
ELMo
j ,

where hELMo
j (0 ≤ j < NELMo) is the hidden

state of the j-th layer of ELMo, hELMo
0 is the

features from character-level CNN of ELMo,
and sj are trainable parameters. hELMo

j are
fixed in the training by truncating backpropaga-
tion to hELMo

j .
BERT We use the pretrained BERT-Large, Un-

cased (Original)4. Since BERT takes subword
units as input, a BERT embedding for a token is
generated as the average of its subword BERT
embeddings as in Zhang et al. (2019).
The surface, lemma, POS tags and NE label of

a token are each embedded as a vector. The vec-
tors are randomly initialized and updated during
training. To allow prediction of the top nodes for
DM, PSD and UCCA, a special <ROOT> token

1Surfaces or lemmas that can successfully be converted to
numerics with float operation on Python 3.6

2http://nlp.stanford.edu/data/glove.
840B.300d.zip

3https://s3-us-west-2.amazonaws.com/
allennlp/models/elmo/2x4096_512_2048cnn_
2xhighway/elmo_2x4096_512_2048cnn_
2xhighway_weights.hdf5 and elmo_2x4096_
512_2048cnn_2xhighway_options.json.

4https://s3.amazonaws.com/
models.huggingface.co/bert/
bert-large-uncased-pytorch_model.bin,
which is converted from the whitelisted BERT model in
https://github.com/google-research/bert

is prepended to each input sequence. For GloVe,
ELMo and BERT, the <ROOT> is also embed-
ded in the similar manner as other tokens with
<ROOT> as the surface for the token. A multi-
layered perceptron (MLP) is applied to each of
GloVe, ELMo and BERT embeddings.

To prevent the model from overrelying only
on certain types of features, we randomly drop a
group of features, where the groups are (i) lemma,
(ii) POS tags and (iii) the rest. All features in the
same group are randomly dropped simultaneously
but independently from other groups.

All seven features are then concatenated to form
input token representation h0

i (where 0 ≤ i < Lin
is the index of the token).

3.2 Obtaining Contextualized Token
Representation

The input token representations h0
i are fed to the

multi-layered biLSTM with N layers to obtain the
contextualized token representations.

−→
h l
i =
−−−−→
LSTM(hl−1i ,

−→
h l
i−1,
−→c li−1),

←−
h l
i =
←−−−−
LSTM(hl−1i ,

←−
h l
i+1,
←−c li+1),

hli =
[−→
h l
i;
←−
h l
i

]
,

where hli and cli (0 < l ≤ N ) are the hidden states
and the cell states of the l-th layer LSTM for i-th
token.

4 DM and PSD-specific Procedures

4.1 Biaffine Classifier

DM and PSD are Flavor (0) frameworks whose
nodes have one-to-one correspondence to tokens.
We utilize biaffine networks to filter nodes, and to
predict edges, edge labels and node attributes. For
each framework fw ∈ {dm, psd}, probability that
there exists an edge (i, j) from the i-th node to the
j-th node yedge

fw,i,j is calculated for all pairs of nodes
(0 ≤ i, j < Lin).

h
edge from
fw,i = MLPedge from(hNi ),

h
edge to
fw,i = MLPedge to(hNi ),

y
edge
fw,i,j = σ

(
Biaffedge

fw

(
h

edge from
fw,i ,h

edge to
fw,j

))
,

(1)
where σ is an element-wise sigmoid function. Bi-
affine operation Biaffedge is defined as:

Biaffedge
fw (x,y) = x>U

edge
fw y+W

edge
fw [x;y]+b

edge
fw ,

http://nlp.stanford.edu/data/glove.840B.300d.zip
http://nlp.stanford.edu/data/glove.840B.300d.zip
https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x4096_512_2048cnn_2xhighway/elmo_2x4096_512_2048cnn_2xhighway_weights.hdf5
https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x4096_512_2048cnn_2xhighway/elmo_2x4096_512_2048cnn_2xhighway_weights.hdf5
https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x4096_512_2048cnn_2xhighway/elmo_2x4096_512_2048cnn_2xhighway_weights.hdf5
https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x4096_512_2048cnn_2xhighway/elmo_2x4096_512_2048cnn_2xhighway_weights.hdf5
elmo_2x4096_512_2048cnn_2xhighway_options.json
elmo_2x4096_512_2048cnn_2xhighway_options.json
https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-pytorch_model.bin
https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-pytorch_model.bin
https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-pytorch_model.bin
https://github.com/google-research/bert
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where U
edge
fw , Wedge

fw and bedge
fw are model param-

eters. Probability of an edge (i, j) being the c-
th edge label ylabel

fw,i,j,c is calculated for all pairs of
nodes.

hlabel from
fw,i = MLPlabel from(hNi ),

hlabel to
fw,i = MLPlabel to(hNi ),

tlabel
fw,i,j,c = Biafflabel

fw,c
(
hlabel from

fw,i ,hlabel to
fw,j

)
,

ylabel
fw,i,j,c = softmax

c

(
tlabel
fw,i,j,c

)
.

(2)

Another form of biaffine operation for the edge la-
bel prediction Biafflabel

fw,c is defined as:

Biafflabel
fw,c (x,y) = x>Ulabel

fw,cy +Wlabel
fw,cy,

where Ulabel
fw,c and Wlabel

fw,c are model parameters.
A candidate edge (i, j) whose edge probabil-

ity yedge
fw,i,j (0 < i, j) exceeds 0.5 is adopted as a

valid edge. Edge label with the highest probabil-
ity argmaxc yfw,i,j,c is selected for each valid edge
(i, j). A candidate top node j whose edge proba-
bility yedge

fw,0,j (0 < j) exceeds 0.5 is adopted as a
top node, allowing multiple tops. Non-top nodes
with no incoming or outgoing edge are discarded
and remaining nodes are adopted as the predicted
nodes.

4.2 DM Frame Classifier
A DM node property frame consists of a frame
type and frame arguments; e.g. named:x-c in-
dicates the frame type is “named entity” with two
possible arguments x and c. The proposed system
utilizes the contextualized features to predict the
frame types and arguments separately.

Probability of the i-th node being c-th frame
type yframe type

dm,i,c is predicted by applying MLP to
the contextualized features:

t
frame type
dm,i,c = MLPframe type

c (hNi ),

y
frame type
dm,i,c = softmax

c

(
t
frame type
dm,i,c

)
.

The number of arguments for a frame is not fixed
and the first argument can be trivially inferred
from the frame type. Thus, we predict from the
second to the fifth arguments for each node. Prob-
ability of j-th argument being c-th frame type
y

frame arg
dm,i,j,c is also predicted by applying MLP to the

contextualized features:

t
frame arg
dm,i,j,c = MLPframe arg

j,c (hNi ),

y
frame arg
dm,i,j,c = softmax

c

(
t
frame arg, j
dm,i,j,c

)
.

4.3 Training Objective

DM and PSD are trained jointly in a multi-
task learning setting but independently from other
frameworks. The loss for the edge prediction
`

edge
fw is cross entropy between the predicted edge
y

edge
i,j and the corresponding ground truth label.

A top node j is treated as an edge (0, j) and is
trained along with the edge prediction. The loss
for the edge label prediction `label

fw is cross en-
tropy between the predicted edge label ylabel

i,j,c and
ground truth label. The loss for the frame pre-
diction `frame

dm is the sum of the frame type predic-
tion loss `frame type

dm and the frame arguments pre-
diction loss `frame arg

dm , both of which are cross en-
tropy loss between the prediction and the corre-
sponding ground truth label. Final multi-task loss
is defined as:

`sdp =λlabel (`label
dm + `label

psd + λframe`frame
dm

)
+
(
1− λlabel) (`edge

dm + `
edge
psd

)
.

(3)

4.4 Postprocessing

We reconstruct node property frame from the
predicted frame types and arguments using exter-
nal resources. For DM, we filter out pairs of pre-
dicted frame type and arguments that do not ap-
pear in ERG SEM-I5 or the training dataset (e.g. a
word “parse” has only two possible frames n:x
and v:e-i-p). Then, we select a frame with
the highest empirically scaled likelihood which is
calculated by scaling predicted joint probability
y

frame type
dm,i,c

∏
j y

frame arg
dm,i,j,c′ proportionally to the frame

frequency in the corpus.
For PSD, we use CzEngVallex6, which con-

tains frequency and the required arguments of
each frame, to reconstruct frames. We identify
the frame type of a token from its lemma and
POS tag. Then, candidate frames are filtered us-
ing the required arguments (extracted by stripping
-suffix from connected edges) and the most
frequent frame is chosen as the node frame.

Token lemma is used for the node label, ex-
cept for the special node labels in PSD (e.g.
#Bracket and #PersPron) that are looked-up
from a hand-crafted dictionary using the surface
and POS tag as a key.

5http://svn.delph-in.net/erg/tags/
1214/etc

6http://hdl.handle.net/11234/1-1512

http://svn.delph-in.net/erg/tags/1214/etc
http://svn.delph-in.net/erg/tags/1214/etc
http://hdl.handle.net/11234/1-1512
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Figure 2: Generation of abstract nodes and their edges
from I like chicken, pork and beef.

5 EDS-specific Procedure

DM graphs are constructed by lossy conversion
from EDS graphs, both of which are derived from
English Resource Semantics (ERS; Flickinger
et al., 2014). Making use of such relationship, we
developed heuristic inverse conversion from DM
to EDS graphs by carefully studying EDS-to-DM
conversion rules described in the ERG SEM-I cor-
pus. Specifically, our system generates EDS in
three steps; the system (i) convert all DM nodes
to EDS surface nodes7 with simple rules, (ii) gen-
erate abstract nodes, and (iii) predict anchors for
the abstract nodes.

We explain the generation of abstract nodes (ii)
in details using an example in Figure 2:
1. Some abstract nodes (e.g. and c) and their

node labels are generated with rules.
2. Presence of an abstract node on a node or

an edge is detected with rules (e.g. and c
implies presence of q node) or with bi-
nary logistic regression (e.g. udef q on
chicken n 1).

3. The system predicts labels of the nodes gener-
ated in 2 using multi-class logistic regression.

4. The system predicts labels of edges from/to the
generated nodes using multi-class logistic re-
gression.

POS tags, predicted DM frames and edge labels of
adjacent nodes are used as features for the logistic
regression.

We employ another neural network that uti-
lize the contextualized features from the encoder
to predict the anchors for the generated abstract
nodes (iii). For each abstract node (indexed i), let
Ti be a subset of token indices S ≡ {0, . . . , Lin −
1} each of which is selected as a DM node and
the corresponding EDS surface node has the ab-
stract node i as an ancestor. First, we create an

7For ease of explanation, we adopt a definition that “the
EDS surface nodes are the nodes that appear in DM and the
abstract nodes are those that do not” which results in slight
inconsistence with the original definition.
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Figure 3: Illustration of UCCA parsing with pointer
network and biaffine classifier.

input feature xeds
i,j (j ∈ S) which is set as the label

of node i if j ∈ Ti or <UNK> otherwise. Then,
we embed xeds

i,j to obtain trainable vector eeds
i,j and

feed them to a biLSTM to obtain a contextualized
representation heds

i,j . Finally, we predict a span in
input tokens [argmaxjy

eds from
i,j , argmaxjy

eds to
i,j ] for

the i-th abstract node,

yeds from
i,j = softmax

j

(
(heds

i,j )
> ·MLPeds from(hNj )

)
,

yeds to
i,j = softmax

j

(
(heds

i,j )
> ·MLPeds to(hNj )

)
.

The loss for the anchor prediction `eds is the
sum of cross entropy between the predicted span
(yeds from
i,j , yeds to

i,j ) and the corresponding ground
truth span.

6 UCCA-specific Procedure

A UCCA graph consists of terminal nodes which
represent words, non-terminal nodes which repre-
sent internal structure, and labeled edges (e.g., par-
ticipant (A), center (C), linker (L), process (P) and
punctuation (U)) which represent connections be-
tween the nodes. Motivated by the recent advances
in constituency parsing, we predict spans of each
terminal nodes at once without using any compli-
cated mechanism as seen in transition-based (Her-
shcovich and Arviv, 2019) and greedy bottom-
up (Yu and Sagae, 2019) systems. Our proposed
UCCA parser (Figure 3) consists of (i) a pointer
network (Vinyals et al., 2015) which generates
non-terminal nodes from the contextualized token
representations of the encoder, (ii) an additional
biLSTM that encodes context of both the termi-
nal and generated non-terminal nodes, and (iii) a
biaffine network which predicts edges.
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6.1 Preprocessing
We treat the generation of non-terminal nodes as
a “pointing” problem. Specifically, the system has
to point the starting position of a span which has
terminal or non-terminal children. For example,
upper part of Figure 3 shows a graph with two non-
terminal nodes •. The right non-terminal node
has a span of gave everything up, and our system
points at the starting position of the span gave. By
taking such strategy, we can serialize the graph in
a consistent, straightforward manner; i.e. by in-
serting the non-terminal nodes to the left of the
corresponding span.

The system also has to predict an anchor of a
proper noun or a compound expression to merge
constituent tokens into a single node. For exam-
ple, no feathers in stock!!!! is tokenized as “(no),
(feathers), (in), (stock), (!), (!), (!), (!)” accord-
ing to the companion data, but the UCCA parser is
expected to output “(no), (feathers), (in), (stock),
(!!!!)”. To solve the problem, we formulate the
mergence of tokens as edge prediction; e.g. we
assume that there exist virtual edges CT from left-
most constituent token to each subsequent token
within a compound expression:

and CT is predicted by the system along with
the other edges. There still exists tokenization
discrepancy between the companion data and the
graphs from EWT and Wiki. The graphs with such
discrepancy are simply discarded from the training
data.

6.2 Generating Non-terminal Nodes with
Pointer Network

Our system generates non-terminal nodes by
pointing where to insert non-terminal nodes as de-
scribed in Section 6.1. To point a terminal node,
we employ a pointer network, which is a decoder
that uses attention mechanism to produce prob-
ability distribution over the input tokens. Given
hidden states of the encoder hNj , hidden states of
the decoder are initialized by the last states of the
shared encoder:

hucca dec
−1 =

[−→
hN−K:N
Lin

;
←−
hN−K:N

0

]
,

cucca dec
−1 =

[−→c N−K:N
Lin

;←−c N−K:N
0

]
,

where K is the stacking number of the biLSTMs
in the shared encoder. We then obtain the hidden

states of the decoder hucca dec
i as:

hucca dec
i = LSTMdec(x

ucca dec
i ,hucca dec

i−1 , cucca dec
i−1 ).

Attention distribution ãi,j over the input tokens is
calculated as:

ai,j = v> tanh
(
Wucca dec[hucca dec

i ;hNj ]
)
,

ãi,j = softmax
j

(ai,j),

where Wucca dec and v are parameters of the
pointer network. The successive input to the de-
coder xucca dec

i+1 is the encoder states of the pointed
token hNargmaxj ãi,j

. xucca dec
i is chosen from the gold

ãi,j when training.
The decoder terminates its generation when it

finally points the <ROOT>. We obtain new hid-
den states h

ucca ptr
i (0 ≤ i ≤ Lucca) by inserting

pointer representations h• before the pointed to-
ken. For example, John gave everything up (dis-
cussed above) will have hidden states(

hN<ROOT>,h
•,hNJohn,h

•,hNgave,h
N
everything,h

N
up
)
.

The pointer representation is defined as h• =
MLP•(r), where r is a randomly initialized con-
stant vector.

We note that the generated non-terminal nodes
h• lack positional information because all h• have
the same values. To remedy this problem, a posi-
tional encoding Vaswani et al. (2017) is concate-
nated to each of hucca ptr

i to obtain position-aware
h

ucca ptr’
i . Furthermore, we feed h

ucca ptr’
i to an ad-

ditional biLSTM and obtain hucca
i in order to fur-

ther encode the order information.

6.3 Edge Prediction with Biaffine Network
Now that we have contextualized representations
for all candidate terminal and non-terminal nodes,
the system can simply predict the edges and their
labels in the exact same way as Flavor (0) graphs
(Section 4.1). Following Equation (1) and Equa-
tion (2), we obtain probabilities if there exists an
edge (i, j), yedge

ucca,i,j , and its label being c, ylabel
ucca,i,j,c,

with the input being hucca
i instead of hNi . We treat

the remote edges8 independently but in the same
way as the primary edges to predict yremote

ucca,i,j .

The loss for the edge prediction `edge
ucca , the edge

label prediction `label
ucca , the remote edge prediction

8Edges for implicit relations and arguments. They were
annotated as unlabeled edges each with an attribute remote
in MRP.
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`remote
ucca and the pointer prediction `dec

ucca are defined
as cross entropy between the prediction y

edge
ucca,i,j ,

ylabel
ucca,i,j,c, y

remote
ucca,i,j and ãi,j with the corresponding

ground truth labels, respectively. Thus, we arrive
at the multi-task objective defined as:

`ucca =λ
edge
ucca`

edge
ucca + λlabel

ucca `
label
ucca

+ λremote
ucca `remote

ucca + λdec
ucca`

dec
ucca.

7 AMR-specific Procedures

Because AMR graphs do not have clear alignment
between input tokens and nodes, the nodes have to
be identified in prior to predicting edges. Follow-
ing Zhang et al. (2019), we incorporate a pointer-
generator network (i.e. a decoder with copy mech-
anisms) for the node generation and a biaffine
network for the edge prediction. There are two
key preconditions in using a pointer-generator net-
work; i.e. (i) node labels and input tokens share
fair amount of vocabulary to allow copying a node
from input tokens, and (ii) graphs are serialized in
a consistent, straightforward manner for it to be
easily predicted by sequence generation. To this
end, we apply preprocessing to raw AMR graphs,
train model to generate preprocessed graphs, and
reconstruct final AMR graphs with postprocess-
ing.

7.1 Preprocessing

We modify the input tokens and the node labels to
account for the precondition (i). A node labeled
with .*-entity or a subgraph connected with
name edge is replaced with a node whose label
is an anonymized entity label such as PERSON.0
(Konstas et al., 2017). Then, for each entity node,
a corresponding span of tokens is identified by
rules similar to Flanigan et al. (2014); i.e. a span
of tokens with the longest common prefix between
the token surfaces and the node attribute (e.g. for
date-entitywhose attribute month is 11, we
search for “November” and “Nov” in the token
surfaces). Unlike Zhang et al. (2019) which has
replaced input token surfaces with anonymized en-
tity labels, we add them as an additional input
feature as described in Section 3.1 to avoid hurt-
ing the performance of other frameworks. At the
prediction, we first identify NE tags in input to-
kens with Illinois NER tagger (Ratinov and Roth,
2009). Then we map them to anonymized entity
labels with frequency-based mapping constructed
from the training dataset.

For non-entity nodes, we strip sense indices
(e.g. -01) from node labels (Lyu and Titov,
2018), which will then share fair amount of vo-
cabulary with the input token lemmas. Nodes with
labels that still do not appear as lemmas after pre-
processing are subject to normal generation from
decoder vocabulary.

Directly serializing an AMR graph, which is
a directed acyclic graph (DAG), may result in a
complex conversion, which do not fulfill the pre-
condition (ii). Therefore, we convert DAG to a
spanning tree by replicating nodes with reentran-
cies (i.e. nodes with more than one incoming
edge) for each incoming edge and serialize the
graph with simple pre-order traversal over the tree.

7.2 Extended Pointer-Generator Network
We employ an extended pointer-generator net-
work. It automatically switches between three
generation strategies; i.e. (1) source-side copy,
(2) decoder-side copy that copies nodes that have
been already generated, and (3) normal genera-
tion from decoder vocabulary. More formally, it
uses attention mechanism to calculate probabil-
ity distribution pi over input tokens, generated
nodes and node vocabulary. Given contextual-
ized token representation of the encoder Henc

l =
{hl0, . . . ,hlLin−1}, we obtain hidden states of the
decoder hamr

i and pi as:

hamr
i ,pi = Decoderamr(h

enc’
i ,hamr

i−1,pi−1, H
enc
N ),

henc’
i = Encoderamr(pi,h

amr
0 . . .hamr

i−1, H
enc
0 ),

henc’
0 ,hamr

−1 =

MLPamr

([−→
hN
Lin

;
←−
hN

0 ;−→c NLin
;←−c N0

])
.

Encoderamr treats a node as if it is a token, and uti-
lizes the encoder (Section 3) with shared model
parameters to obtain representation of (i − 1)-
th generated nodes henc’

i . Concretely, Encoderamr
combines lemma (corresponds to the node label),
POS tags (only when copied from a token) and
GloVe (from the node label) of a node, embeds
each of them to a feature vector using the encoder
and concatenates feature vectors to obtain henc’

i .

7.3 Edge Prediction with Biaffine Network
Now that we have representations hamr

i for all
nodes, the system can simply predict the edges and
their labels in the same way as Flavor (0) graphs
(Section 4.1). Following Equation (1) and Equa-
tion (2), we obtain probabilities that there exists an
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Table 1: MRP F1 scores for the formal run (shown as
“score/rank”)
Team Mean DM PSD EDS UCCA AMR
HIT-SCIR .8620/1 .9508/2 .9055/4 .9075/2 .8167/1 .7294/2
SJTU-NICT .8527/2 .9550/1 .9119/3 .8990/3 .7780/3 .7197/3
SUDA-Alibaba .8396/3 .9226/7 .8556/8 .9185/1 .7843/2 .7172/5
Saarland .8187/4 .9469/4 .9128/1 .8910/4 .6755/6 .6672/6
Hitachi (ours) .7604/5 .9102/8 .9121/2 .8374/6 .7036/5 .4386/8
ÚFAL MRPipe .7474/6 .8495/9 .7627/9 .6745/7 .7322/4 .7183/4
ShanghaiTech .6697/7 .9488/3 .8949/6 .8690/5 - .6359/7
Amazon .5132/8 .9326/6 .8998/5 - - .7338/1
JBNU .4652/9 .9401/5 .8788/7 - .5069/7 -
SJTU .4303/10 .4315/11 .4761/11 .5321/8 .3266/9 .3851/9
ÚFAL-Oslo .3442/11 .8051/10 .6092/10 .3064/9 - -
HKUST .2450/12 .3699/12 .3529/12 - .5021/8 -
Bocharov .0655/13 - - - - .3273/10
TUPA† single .5770 .5554 .5176 .8100 .2756 .4473
TUPA† multi .4534 .4270 .5265 .7395 .2365 .3375
† baseline (Hershcovich and Arviv, 2019)

edge (i, j), yedge
amr,i,j , and its label being c, ylabel

amr,i,j,c,
with the input being hamr

i instead of hNi . Note that
we do not predict the top nodes for AMR, because
the first generated node is always the top node in
our formalism.

The loss for the edge prediction `edge
amr , the edge

label prediction `label
amr , and the decoder predic-

tion `dec
amr are cross entropy between the prediction

y
edge
amr,i,j , y

label
amr,i,j,c and pi with the corresponding

ground truth labels, respectively. Thus, we arrive
at the multi-task loss for AMR defined as:

`amr =λ
biaf
amr
(
λlabel

amr `
label
amr + (1− λlabel

amr )`
edge
amr
)

+ λcov
amr`

cov
amr + (1− λbiaf

amr − λcov
amr)`

dec
amr,

where `cov
amr is coverage loss (Zhang et al., 2019).

For node prediction, we adopt beam search with
search width of five. For edge prediction, we apply
Chu-Liu-Edmonds algorithm to find the maximum
spanning tree. Postprocessing, which includes in-
verse transformation of the preprocessing, is ap-
plied to reconstruct final AMR graphs.

8 Multi-task Variant

We developed multi-task variant after the formal
run. Multi-task variant is trained to minimize fol-
lowing multi-task loss,

`mt =λ
biaf
(
λlabel

(∑
fw

`label
fw + λframe`frame

dm

)
+
(
1− λlabel)∑

fw

`
edge
fw

)
+ λcov

amr`
cov
amr

+
∑

fw∈{ucca,amr}

λdec
fw `

dec
fw + λremote

ucca `remote
ucca .

(4)
All training data is simply merged and losses for
frameworks that are missing in an input data are

set to zero. For example, if an input sentence has
reference graphs for DM, PSD and AMR, losses
for UCCA (`label

ucca , `edge
ucca , `dec

ucca and `remote
ucca ) are set to

zero and sum of other losses are used to update the
model parameters. Then, the training data (sen-
tences) are shuffled at the start of each epoch and
are fed sequentially to update the model parame-
ters as in normal mini-batch training. No under-
/over-sampling was done to scale the losses of
frameworks, each with different number of refer-
ence graphs, but we instead applied early stopping
for each framework separately (see Appendix A
for the details). For EDS, we do not train EDS
anchor prediction jointly even in multi-task set-
ting but apply transfer learning; the encoder of the
EDS anchor prediction network is initialized from
trained multi-task model.

We also experimented with a fine-tuned multi-
task variant. For each target framework, we
take the multi-task variant as a pretrained model
(whose training data also includes the target
framework) and train the model on the target
framework independently to the other frameworks
(except for DM and PSD, which are always trained
together).

9 Experiments

9.1 Method

Experiments were carried out on the evaluation
split of the dataset. We applied hyperparameter
tuning and ensembling to our system, which are
detailed in Appendix A along with other training
details. BERT was excluded for the formal run
since it did not make it to the task deadline.

We experimented with enhanced models with
BERT after the formal run. For these models, we
adopted the best hyperparameters chosen by the
submitted model without re-running the hyperpa-
rameter tuning.

All models were implemented using Chainer
(Tokui et al., 2015; Akiba et al., 2017).

9.2 Results

The official results are shown in Table 1 and Ta-
ble 2. Our system obtained macro-averaged MRP
F1 score of 0.7604 and was ranked fifth amongst
all submissions. Our system outperformed con-
ventional unified architecture for MRP (TUPA
baselines; Hershcovich and Arviv, 2019) in all
frameworks but AMR. This indicates the efficacy
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Table 2: MRP and framework specific scores (shown as “score/rank”). Gray background indicates that it is the
score on LPPS subset.

MRP Framework
Framework Tops Labels Properties Anchors Edges Attributes All specific†

All 0.8929/3 0.6409/6 0.5186/9 0.7547/5 0.6958/5 0.0418/7 0.7604/5 -
0.9167/3 0.6238/6 0.3743/9 0.7602/6 0.7025/5 0.0340/7 0.7618/5 -

DM 0.9219/6 0.9107/6 0.8649/9 0.9909/4 0.9190/5 - 0.9102/9 0.9189/5
0.9505/5 0.8818/8 0.8367/10 0.9862/6 0.9245/5 - 0.8939/9 0.9272/4

PSD 0.9538/5 0.9494/3 0.9118/7 0.9896/5 0.7948/5 - 0.9121/2 0.8085/4
0.9515/5 0.9204/2 0.8366/8 0.9820/6 0.7846/4 - 0.8840/2 0.8075/4

EDS 0.7319/9 0.8225/7 0.5851/7 0.8694/6 0.8497/7 - 0.8374/7 0.7826/7
0.8515/7 0.7763/7 0.0670/9 0.8737/7 0.8427/7 - 0.8110/7 0.7571/7

UCCA 0.9965/2 - - 0.9238/6 0.5588/6 0.2092/7 0.7036/6 0.4277/6
0.9900/2 - - 0.9593/7 0.6050/6 0.1698/7 0.7498/6 0.5024/6

AMR 0.8604/3 0.5221/8 0.2314/9 - 0.3568/8 - 0.4386/8 0.4254/8
0.8400/4 0.5404/8 0.1311/9 - 0.3558/8 - 0.4701/8 0.4530/8

† DM/PSD: SDP labeled F1, EDS: EDM all F1, UCCA:UCCA labeled all F1, AMR: SMATCH F1

Table 3: MRP F1 scores for the variants of the proposed system (shown as “score/rank” where the rank is calculated
by assuming that it was the submitted model).

Variant Average DM PSD EDS UCCA AMR
SFL 0.7575/5 0.9071/9 0.9064/3 0.8339/7 0.7014/6 0.4386/8
SFL(ensemble)† 0.7604/5 0.9102/9 0.9121/2 0.8374/7 0.7036/6 0.4386/8
BERT+SFL(NT) 0.7450/6 0.9038/9 0.9069/3 0.8301/7 0.6945/6 0.3896/8
BERT+MTL(NT) 0.7144/6 0.8726/9 0.8791/7 0.7987/7 0.6422/6 0.3794/9
BERT+MTL+FT(NT) 0.7507/5 0.9045/9 0.9054/4 0.8304/7 0.7126/6 0.4008/8
SFL: single-framework learning, MTL: multi-task learning, FT: fine-tuning, ensemble: with ensembles,
NT: random seed is not tuned, † formal run

of using the biaffine network as a shared architec-
ture for MRP.

Our system obtained relatively better (second)
position in PSD. This was due to relatively good
performance on the node label prediction where
we carefully constructed postprocessing rule for
special nodes’ labels (Section 4.4) instead of just
using lemmas.

Our system obtained significantly worse result
in AMR (difference of 0.2952 MRP F1 score to
the best performing system), even though our sys-
tem incorporates the state-of-the-art AMR parser
(Zhang et al., 2019). One reason is that Zhang
et al. (2019) was obtaining a large score boost
from the Wikification task, which was not part of
the MRP 2019 shared task. Another reason could
be that we may have missed out important im-
plementation details for the pointer-generator net-
work, since the implementation of Zhang et al.
(2019) was not yet released at the time of our sys-
tem development.

Table 3 shows the performance of other vari-
ants of the proposed system. The single-
framework learning variant (SFL) without BERT
(SFL) performed better than SFL with BERT
(BERT+SFL(NT)), which suggests that impact of
hyperparameter tuning was larger than that of in-
corporating BERT. The multi-task learning variant
(MTL) with fine-tuning (BERT+MTL+FT(NT))
outperformed the SFL in the comparable condition
(BERT+SFL(NT)). This result implies learning

heterogeneous meaning representations at once
can boost the system performance.

10 Conclusions

In this paper, we described our proposed system
for the CoNLL 2019 Cross-Framework Meaning
Representation Parsing (MRP 2019) shared task.
Our system was the unified encoder-to-biaffine
network for all five frameworks. The system
was ranked fifth in the formal run of the task,
and outperformed the baseline unified transition-
based MRP. Furthermore, post-evaluation experi-
ments showed that we can boost the performance
of the proposed system by incorporating multi-
task learning. These imply efficacy of incorporat-
ing the biaffine network to the shared architecture
for MRP and that learning heterogeneous meaning
representations at once can boost the system per-
formance.

While our architecture successfully unified
graph predictions in the five frameworks, it is non-
trivial to extend the architecture to another frame-
work. It is because there could be a more suitable
node generation scheme for a different framework
and naively applying the pointer network for par-
tial nodes complementation (or extended pointer-
generator network for full nodes generation) may
result in a poor performance. Thus, it is our fu-
ture work to design a more universal method for
the node generation.



123

References
Omri Abend and Ari Rappoport. 2013. Universal con-

ceptual cognitive annotation (UCCA). In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics.

Takuya Akiba, Keisuke Fukuda, and Shuji Suzuki.
2017. ChainerMN: Scalable Distributed Deep
Learning Framework. In Proceedings of Workshop
on ML Systems in The 31st Annual Conference on
Neural Information Processing Systems.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies.

Timothy Dozat and Christopher D. Manning. 2018.
Simpler but More Accurate Semantic Dependency
Parsing. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics.

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell,
Chris Dyer, and Noah A. Smith. 2014. A discrim-
inative graph-based parser for the abstract meaning
representation. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Lin-
guistics.

Dan Flickinger. 2000. On building a more efficient
grammar by exploiting types. Natural Language
Engineering, 6(1):15–28.

Dan Flickinger, Emily M. Bender, and Stephan Oepen.
2014. Towards an encyclopedia of compositional
semantics: Documenting the interface of the English
resource grammar. In Proceedings of the Ninth In-
ternational Conference on Language Resources and
Evaluation.
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A Training Details

We split dataset into training dataset which was
used to update model parameters, validation
dataset (i) which was used for early stopping, and
validation dataset (ii) which was used for hyper-
parameter tuning and construction of ensembles.
For AMR and UCCA, we selected sentences that
appear in more than one framework to populate
the training dataset, and extracted 500 (300) and
1500 (700) data from the rest as validation dataset
(i) and (ii) for AMR (UCCA), respectively. For
DM, PSD and EDS, we selected data that appear
in AMR or UCCA to populate the training dataset,
and extracted 500 and 1500 data from the rest as
validation dataset (i) and (ii), respectively.

A.1 Model Training

All models are trained using mini-batch stochas-
tic gradient decent with backpropagation. We use
Adam optimizer (Kingma and Ba, 2014) with gra-
dient clipping.

For the non-multi-task variant, early stopping is
applied for each framework with SDP labeled de-
pendency F1 score (Oepen et al., 2014) (for DM,
PSD and UCCA) or validation loss (for EDS and
AMR) as the objective. Note that early stopping
is applied separately to each framework for the
joint training of DM and PSD. Concretely, for
the joint training of DM and PSD, we train the
model with respect to the joint loss `sdp in Equa-
tion (3) but we use a model at a training epoch
whose DM-specific (or PSD-specific) SDP labeled
dependency F1 score is highest for DM (or PSD)
prediction.

For the multi-task variants, we employ a slightly
different strategy for early stopping. For the multi-
task variant without fine-tuning, we apply early
stopping separately to each framework with re-
spect to the framework-specific validation loss.
For example, we train the multi-task model with
respect to `mtl in Equation (4) but we use a model
at a training epoch whose PSD-specific valida-
tion loss λlabel`label

psd +
(
1− λlabel

)
`

edge
psd is lowest

for PSD prediction. For each framework in the
fine-tuned multi-task variant, we adopt the multi-
task pretrained model at a training epoch whose
framework-specific validation loss is lowest and
fine-tune on the model in the same manner as the
non-multi-task variant. Note that, for DM and
PSD, which are fine-tuned together even in the
fine-tuned multi-task variant, we adopt the multi-

task pretrained model at a training epoch whose
multi-task validation loss `mtl is lowest.

Dropout (Srivastava et al., 2014) is applied to
(a) the input to each layer of the shared encoder,
(b) the input to the biaffine networks, and (c) the
input to each layer of the UCCA and AMR de-
coders.

A.2 Hyperparameter Tuning
We random searched subset of hyperparameters
for DM, PSD, UCCA and AMR. See Table 4 for
hyperparameter search space and the list of hyper-
parameters chosen by the best performing model
in each framework. We tried 20 hyperparameter
sets for DM/PSD, 50 for UCCA, and 25 for AMR.

We did not tune the hyperparameters of the
multi-task variants. We adopted the best hyper-
parameters chosen in the non-multi-task variants
(Table 4) and hand-tuned the hyperparameters by
examining learning curves over few runs. For the
fine-tuning, we adopted the best hyperparameters
chosen in the non-multi-task variants (Table 4).
See Table 5 for the list of hyperparameters used
in the multi-task variants.

A.3 Ensembling
We formed ensembles from the models trained
in the hyperparameter tuning. Models are added
to the ensemble in descending order of MRP F1
score on validation dataset (II) until MRP F1 score
of the ensemble no longer improves.

For DM and PSD, we simply averaged edge pre-
dictions yedge

fw,i,j and label predictions ylabel
fw,i,j,c, re-

spectively. On the other hand, the simple average
ensembling cannot be applied to UCCA, because
number of nodes maybe distinct to each model
due to the non-terminal node generation. Hence,
we propose to use a two-step voting ensemble for
UCCA; for each input sentence, (1) the most pop-
ular pointer sequence is chosen, and (2) edge and
label predictions from the models that outputted
the chosen sequence are averaged in the same way
as DM and PSD.

For EDS, we do not explicitly use ensemble
learning, but utilize DM graphs from ensembled
DM models to reconstruct EDS graphs. For AMR,
we do not use ensembles.
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Table 4: List of hyperparameters. Multiple values in-
dicates that the hyperparameter was tuned within that
values. Subscript d (DM), p (PSD), u (UCCA) and a
(AMR) denotes the hyperparameter chosen by the best
performing model on validation dataset. U(a, b) is a
uniform distribution in [a, b].
Hyperparameter Value or search space
Common

Word embedding dimension 100
Lemma embedding dimension 100
POS embedding dimension 100
NE embedding dimension 100
GloVe MLP hidden size 125
ELMo MLP hidden size 512
Word drop probability 0.1dpua, 0.2, 0.4
POS drop probability 0.1du, 0.2a, 0.4p
Lemma drop probability 0.1p, 0.2da, 0.4u
# of layers in encoder 2pu, 3da
Encoder LSTM hidden size 256, 512dpua
Encoder dropout rate 0.1a, 0.25d, 0.5pu
Biaffine input dropout 0.2pua, 0.45d
Edge prediction dropout 0.25dpua, 0.4
Learning rate 10U(−3.32,−2.92)

→ 0.000858d, 0.000675p,
0.00117u, 0.00059a

Adam (β1, β2)† (0.9, 0.999)dp, (0, 0.95)ua
DM/PSD

Edge MLP hidden size 600
Edge label MLP hidden size 600
Frame prediction MLP hidden size 600
Frame prediction dropout 0.2, 0.55dp
Edge label prediction dropout 0.33d, 0.5p
Loss coefficient λlabel

fw U(0.02, 0.03)
→ 0.0210d, 0.0242p

Loss coefficient λframe
fw 0.5

# of epochs 50
Batch size 64

UCCA
Edge MLP hidden size 400, 500u, 600
Edge label MLP hidden size 400u, 500, 600
Edge label prediction dropout 0.25u, 0.33
Decoder dropout 0.5
Loss coefficient λedge

ucca 0.3
Loss coefficient λlabel

ucca 0.3
Loss coefficient λremote

ucca 0.2
Loss coefficient λdec

ucca 0.2
# of epochs 40
Batch size 100

AMR
Edge MLP hidden size 600
Edge label MLP hidden size 600
Edge label prediction dropout 0.33a, 0.5
Decoder type‡ deep smalla, shallow wide
Decoder dropout 0.25, 0.33a, 0.5
Loss coefficient λlabel

amr U(0.1, 0.5)→ 0.395a
Loss coefficient λcov

amr U(0.2, 0.4)→ 0.339a
Loss coefficient λgen

amr U(0.2, 0.4)→ 0.271a
# of epochs 50
Batch size 64

† Commonly used setting and the setting used in Dozat and Manning (2018).
‡“deep small” is three-layered LSTM with hidden size of 512 and “shallow wide” is two-
layered LSTM with hidden size of 1024.

Table 5: Hyperparameters for the multi-task variants
Hyperparameter Value
Model architecture

Word embedding dimension 100
Lemma embedding dimension 100
POS embedding dimension 100
NE embedding dimension 100
GloVe MLP hidden size 125
ELMo MLP hidden size 512
# of layers in encoder 3
Encoder LSTM hidden size 512
Edge MLP hidden size 600
Edge label MLP hidden size 600
Frame prediction MLP hidden size 600
AMR decoder type† deep small

Training conditions
Multi-task (pre)training
Word drop probability 0.2
POS drop probability 0.2
Lemma drop probability 0.2
Encoder dropout rate 0.5
Biaffine input dropout 0.45
Edge prediction dropout 0.25
Edge label prediction dropout 0.33
Learning rate 0.00006
Adam (β1, β2)† (0.9, 0.999)
Loss coefficient λbiaf 1.0
Loss coefficient λlabel 0.15
Loss coefficient λframe 0.5
Loss coefficient λremote

ucca 0.5
Loss coefficient λdec

ucca 0.08
Loss coefficient λdec

amr 1.2
Loss coefficient λcov

amr 1.0
# of epochs 60
Batch size 128

DM/PSD fine-tuning
Word drop probability 0.1
POS drop probability 0.2
Lemma drop probability 0.2
Encoder dropout rate 0.25
Biaffine input dropout 0.45
Edge prediction dropout 0.25
Learning rate 0.001‡

Adam (β1, β2)† (0, 0.95)‡
Frame prediction dropout 0.55
Edge label prediction dropout 0.33
Loss coefficient λlabel

fw 0.025
Loss coefficient λframe

fw 0.5
# of epochs 50
Batch size 64

UCCA fine-tuning
Word drop probability 0.1
POS drop probability 0.1
Lemma drop probability 0.4
Encoder dropout rate 0.5
Biaffine input dropout 0.2
Edge prediction dropout 0.25
Learning rate 0.00117
Adam (β1, β2)† (0, 0.95)
Edge label prediction dropout 0.25
Decoder dropout 0.5
Loss coefficient λedge

ucca 0.3
Loss coefficient λlabel

ucca 0.3
Loss coefficient λremote

ucca 0.2
Loss coefficient λdec

ucca 0.2
# of epochs 40
Batch size 100

AMR fine-tuning
Word drop probability 0.1
POS drop probability 0.2
Lemma drop probability 0.2
Encoder dropout rate 0.1
Biaffine input dropout 0.2
Edge prediction dropout 0.25
Learning rate 0.00059
Adam (β1, β2)† (0, 0.95)
Edge label prediction dropout 0.33
Decoder dropout 0.33
Loss coefficient λlabel

amr 0.395
Loss coefficient λcov

amr 0.339
Loss coefficient λgen

amr 0.271
# of epochs 50
Batch size 64

† See Table 4.
‡ These are bugs. They should have been different values according to Table 4.


