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Abstract

We describe the Saarland University submis-
sion to the shared task on Cross-Framework
Meaning Representation Parsing (MRP) at the
2019 Conference on Computational Natural
Language Learning (CoNLL).

1 Introduction

In this paper, we describe the semantic parser sub-
mitted by Saarland University to the MRP shared
task (Oepen et al., 2019)1. This task consists in
learning to accurately map English sentences to
graph-based meaning representations across five
different graphbanks.

There has been substantial previous work on
graph parsing for each of the graphbanks in MRP,
including DM and PSD (Peng et al., 2017; Dozat
and Manning, 2018), EDS (Buys and Blunsom,
2017; Chen et al., 2018), AMR (Flanigan et al.,
2014; Buys and Blunsom, 2017; Lyu and Titov;
Zhang et al., 2019), and UCCA (Hershcovich et al.,
2017, 2018; Jiang et al., 2019). One advantage
of our parser is that it works accurately across all
graphbanks at the same time.

Instead of learning to map directly from sen-
tences to graphs, our parser learns to map sentences
to AM dependency trees. Each AM dependency
tree consists of a graph for the lexical meaning of
each token in the sentence, along with a depen-
dency tree that specifies the words that fill each
semantic role of a given predicate. An AM depen-
dency tree can be deterministically evaluated to a
graph via the AM Algebra (Groschwitz et al., 2017).
Thus, the parser compositionally maps sentences to
graphs, with the AM dependency trees describing
the compositional structure of the meaning repre-
sentation. We will sketch the background on AM
dependency trees in Section 2.

1http://mrp.nlpl.eu

In earlier work, we showed how to accurately
predict AM dependency trees for AMR using a neu-
ral dependency parser and supertagger (Groschwitz
et al., 2018). We extended this parser from AMR
to the DM, PAS, PSD, and EDS graphbanks and
obtained state-of-the-art results across all of these
graphbanks (Lindemann et al., 2019); we will call
this system the ACL-19 parser throughout this pa-
per. Earlier semantic parsers were only available
for one or two families of closely related graph-
banks; our system was the first to parse accurately
across a range of different graphbanks. We took
this parser as the starting point of our MRP sub-
mission; we explain the minor tweaks that were
needed for the MRP flavors of DM, PSD, EDS, and
AMR in Section 3.

The one MRP graphbank which was not di-
rectly supported by the ACL-19 parser is UCCA
(Abend and Rappoport, 2013). We thus imple-
mented heuristics for converting UCCA annota-
tions into AM dependency graphs. Certain design
decisions in UCCA made this more difficult than
for the other graphbanks; we worked around some
of these in preprocessing. We describe the details
in Section 4.

We present detailed evaluation results in Sec-
tion 5. We also describe a few post-deadline im-
provements, which bring our parser up to an MRP
f-score of 71.6 on AMR and 70.1 on UCCA.

2 AM dependency parsing

We start by describing the ACL-19 parser (Linde-
mann et al., 2019). This parser is trained to map
sentences into AM dependency trees, which are
then deterministically evaluated to graphs in the
AM algebra.

2.1 AM Algebra
The Apply-Modify Algebra (AM algebra;
Groschwitz et al. (2017)) builds graphs from graph

{donatelli|jonasg|koller|mlinde|mariom|piaw}@coli.uni-saarland.de
m.fowlie@uu.nl
http://mrp.nlpl.eu


67

want-01

S

ARG0

O[S]

ARG1

(a) Gwant

eat-01

S

ARG0

(b) Geat

giraffe

(c) Ggiraffe

tall

M

mod

(d) Gtall

Figure 1: As-graphs (= supertags) for the words in the
sentence “the tall giraffe wants to eat.”

fragments called annotated s-graphs, or as-graphs.
Figures 1a–1d show as-graphs from which the
AMR in Fig. 3c for the sentence “the tall giraffe
wants to eat” can be built. An as-graph is a labeled,
directed graph, some of whose nodes have been
marked as sources. Every as-graph used in AM
dependency parsing has one special root source
node, indicated with a bold outline. We mark the
other sources with red labels (e.g. S and O); these
are nodes at which the root source node of another
as-graph will be inserted.

The AM algebra defines two operations for com-
bining as-graphs: Apply, which combines a head
with a semantic argument, and Modify, which com-
bines a head with a modifier. Fig. 2a shows a term
using these operations that evaluates to the AMR
in Fig. 3c.

The result of the Apply-O operation
APPO (Gwant, Geat) is shown in Fig. 3a, where
the root of the argument Geat is inserted into the
O-source of the head Gwant. The annotation “[S]”
at this O-source means that the O-argument must
still have an S-source, as is the case for Geat. When
two graphs that share a source name are combined,
the shared sources automatically merge, creating
a re-entrancy. In our example this occurs for the
S-source, creating a shared subject slot for Gwant
and Geat.

Fig. 3b shows the result of the Modify-M oper-
ation MODM

(
Ggiraffe, Gtall

)
. The M-source of the

modifier Gtall is merged with the root of the head
Ggiraffe, which has the effect of adding the modifier
to Ggiraffe; the operation leaves the root of Ggiraffe
where it was. Modify is defined only when it adds
no new sources to the head.

Finally, the APPS operation at the root of the
term combines the two graphs we built so far, plug-
ging the graph for “tall giraffe” into the S source
of the combined want-eat graph. This yields the
full graph in Fig. 3c. From a linguistic perspective,
a term over the AM algebra serves as a composi-
tional derivation (Montague, 1973) of the graph to
which it evaluates.

For this last operation, too, a restriction applies:
if a source has no annotation, like the S-source
in Fig. 3a, the graph inserted there must have no
remaining non-root sources (as is the case here).
Thus, both Apply and Modify have restrictions
on when they can be used. A term over the AM
algebra that satisfies all these restrictions is called
well-typed.

2.2 AM Dependency Parsing
Note that in a term over the AM algebra, such as
in Fig. 2a, the root source of the resulting graph
is always inherited from the left child; i.e. the
left child is always the head. For example, after
APPO (Gwant, Geat), the head is still Gwant. We can
track the heads through the term, as indicated by
the colors in the example term. This allows us to
read terms over the AM algebra as AM dependency
trees in the following manner. Each operation be-
tween two graphs is encoded as a dependency edge
from the head to the argument (or modifier respec-
tively), and the edge is labeled with the relevant
operation. By aligning the graph fragments to the
words in the sentence, we get a dependency tree
over the sentence. As a result, the term in Fig. 2a
can be unambiguously encoded as the dependency
tree in Fig. 2b (Groschwitz et al., 2018).

We can now perform AM dependency parsing
by training models for the following two tasks:
(i) a supertagger to predict the as-graphs for the
individual word tokens (such as Gwant) and (ii) a
dependency parser to predict the dependency tree.
Together, these two components predict an AM
dependency tree, which then evaluates to a graph
in the AM algebra as explained above.

Both of these tasks can be performed by neural
models with high accuracy. We train a BiLSTM
to predict a supertag for each token and use the
dependency parser of Kiperwasser and Goldberg
(2016) to predict dependency trees. To ensure that
we obtain well-typed AM dependency trees, we
use the fixed-tree decoder algorithm of Groschwitz
et al. (2018).

2.3 Decomposition
To train the neural supertagging and dependency
models, we need AM dependency trees for the train-
ing set. However, the available graphbanks contain
only sentences with their graph annotations. Thus
we have to decompose the graphs in each graph-
bank into the corresponding AM dependency trees.
We do this with handwritten heuristics, which we
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Figure 2: Compositional derivation of the example AMR graph in Fig. 3c.
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defined for AMR in Groschwitz et al. (2018) and
for DM, PAS, PSD, and EDS in Lindemann et al.
(2019). The decomposition heuristics perform the
following three steps:

1. align graph nodes to words (not necessary
for graphbanks with annotated alignments be-
tween tokens and nodes),

2. group edges with nodes, splitting the graph
into disjoint aligned fragments,

3. assign sources and type annotations to the ar-
gument/modification slots of each graph frag-
ment.

These steps define the supertags, and the depen-
dency edges follow from there. Empirically, given
an assignment of supertags to tokens, there is never
more than one dependency tree which evaluates to
the correct graph.

While the AM algebra was originally designed
for AMR, the ACL-19 parser extends it to DM,
PAS, PSD and EDS as well. In fact, as the AM
algebra adds a layer of abstraction on top of the
original graphs, using the same parser for all graph-
banks becomes easy. Conceptually, we only need a
different set of graph fragment supertags for each
graphbank.

The decomposition heuristics for PSD and EDS
are illustrated in Fig. 4 (PSD) and Fig. 5 (EDS),
both for the same sentence “the tall giraffe wants to
eat” whose AMR analysis we discussed in Fig. 2b.
The examples show that structural differences in
the graphbanks can lead to different AM dependen-
cies: for example, the article “the” is part of the
EDS graph but not of the PSD and AMR graphs.
Overall, however, the AM dependency trees are
much more uniform than the underlying graphs.

In Step 2, we group argument edges with the
relevant head and modifying edges with the modi-
fier. This yields consistent supertags: for example,
“giraffe” can be assigned the same supertag regard-
less of whether and how many times it is modified.
Our heuristics form these groups based only on the
edge labels. For example, in AMR, DM and EDS,
we group all ‘ARGx’ labels with their source node.
In AMR, we group ‘mod’ edges with their target
node (the modifier), and do the same with ‘RSTR’
edges in PSD.

The source names are loosely inspired by (deep)
syntactic relations; for example, we use the source
name S for the endpoints of ‘ARG0’ edges in AMR,

‘ACT-arg’ edges in PSD, and ‘ARG1’ edges in
EDS, because these edge labels all correspond to
“deep subjects”. We also add variants of source
assignments to account for e.g. passive. The source
annotations are obtained by matching certain pat-
terns in the final graph. For example, the [S] an-
notation in Gwant in Figure 3 is added because of
the triangle structure in the final graph. Details of
these heuristics can be found in Lindemann et al.
(2019).

3 Changes to the ACL-19 parser

For the DM, PSD, EDS, and AMR parts of the
shared task, we used the ACL-19 parser with the
following minor modifications.

3.1 Decomposition heuristics
We did not change any edge attachment or source
naming heuristics, but focused on complying with
the rules of the shared task and accommodating
changes in the graphbanks.

EDS While the ACL-19 parser only dealt with
connected EDS graphs, the training corpus of the
shared task also contains disconnected graphs. We
handle this in the same manner as we handle dis-
connected graphs in DM and PSD: by introducing
an additional node that has a child in each of the
disconnected components. This child is chosen as
the node being anchored in the highest node in a
UD dependency analysis. Along with this node,
we introduce a corresponding additional artificial
token to the end of the sentence.

Because our decomposition heuristics require a
full alignment between tokens and nodes, but the
EDS annotations can anchor arbitrary subgraphs
in arbitrary substrings, we have to translate EDS
anchorings into node-token alignments. We refine
our method from the ACL-19 paper in two ways.
First, we align implicit conjunctions to punctua-
tion in their anchoring span, instead of their left-
most child. Second, we include a special treatment
of comparisons in subordinated clauses, where a
subord node is grouped with a comp node, even
though they are not immediately connected. This is
illustrated in Fig. 6. The ACL-19 heuristic would
have tried to group hard a for and subord into
one supertag, which makes it impossible to de-
compose the EDS graph into an AM dependency
tree, because this supertag would have to have
two root sources: hard a for for the modification
with comp too, and subord for the application to



70

_tell_v_1

friend_n_1

ARG1

pron

ARG2

subord

ARG3

udef_q

BV

pronoun_q

BV

pron

pronoun_q

BV

_push_v_1

ARG1

ARG1

_hard_a_for

ARG2

comp_too

ARG1

Friends   told   her   

  she   was  pushing   too   hard.
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tell v 1. The revised heuristic instead groups sub-
ord and comp too into one supertag, which then
contains a source node into which hard a for can
be inserted via Apply.

AMR The aligner we developed for the ACL-19
parser makes non-trivial use of WordNet in order
to link tokens to nodes with semantically related
labels. Since WordNet was not on the white list
of allowed resources, we had to replace it by Con-
ceptNet (Speer et al., 2017). We found that this
decreased the dev-set accuracy of our parser by
more than a point, possibly because ConceptNet
does not distinguish between word senses and thus
offers a much larger variety of “hypernyms” than
WordNet does.

3.2 Pre- and postprocessing

Unlike earlier versions of the graphbanks and their
evaluation metrics, the MRP shared task makes a
clear distinction between edges (which link two
nodes) and attributes (which attach an atomic value
to a node). For instance, information such as polar-
ity and the parts of a named entity are represented
as attributes in MRP-style AMR, and parsers are
penalized for confusing edges with attributes.

Because our parser uses as-graphs internally,
which have node and edge labels but no attributes,
we encode attributes into as-graphs. For most
graphbanks, we encode attribute information in the
node labels and unpack them again in postprocess-
ing. For AMR, we found a considerable amount
of noise in the distinction of edges and attributes

in the data. We therefore chose to read attributes
as edges and restore the distinction heuristically in
postprocessing (see appendix).

EDS Since EDS nodes can be anchored in en-
tire phrases but our parser only provides anchoring
for tokens to subgraphs, we applied our ACL-19
heuristics to restore such non-trivial anchorings.
Where this failed, we marked the node to be an-
chored in the entire sentence. The ACL-19 parser
deleted unanchored subgraphs for evaluation with
EDM (Dridan and Oepen, 2011).

AMR We fixed a postprocessing bug which oc-
casionally resulted in invalid labels in the graph,
originating from our procedure for handling rare
words.

4 UCCA

For the shared task, we extended the AM depen-
dency parser to UCCA. This was harder than ex-
pected. Unlike the other graphbanks, UCCA takes
a phrase-structure-like perspective on semantic
graphs, in which one terminal node can recursively
be the head of several non-terminal nodes (see
Fig. 7a). This introduces two challenges for our
decomposition heuristic.

First, semantic arguments and modifiers can at-
tach to nodes at any level of the “phrase structure”.
The graph in Fig. 7a predicates that “office” is an
(A)rgument of “success”; these nodes only come
together at the root of the UCCA graph. At the
same time, the (F)unction word “a” modifies “suc-
cess” at a lower level of the graph. The obvious
decomposition heuristic, which would put the “suc-
cess” leaf and all the nodes that dominate it into
the same supertag, would fail because both of these
nodes would have to be root sources, which is not
allowed.

Second, under such a decomposition heuristic,
the correct supertag for a given word depends on
the circumstances. The unmodified word “office”
should simply correspond to an as-graph with a
single node labeled “office”. However, in a sen-
tence where “office” is modified, the correct as-
graph consists of “office” with an extra parent node,
which is linked to the “office” leaf node with a
(C)enter edge (see Fig. 7a). Modifier edges can
then attach to this new parent node. This increases
lexical ambiguity for our parser, which now has
to predict the correct supertag for a word from a
larger class of possible supertags.
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Figure 7: Fragment of UCCA graph of the sentence A Few Good Men was released in 1992 and was a box office
success

We address these issues in preprocessing, which
we explain below. Edge attachment and source
naming heuristics are in the appendix.

4.1 C-edge contraction

We tackle the second problem by contracting C-
edges. Whenever we observe a C-edge in the train-
ing data, we delete the C-edge and replace its origin
node (a nonterminal node) with the node to which
the C-edge points (see Fig. 7b). As an exception,
we do not contract C-edges for the conjuncts of a
coordination, i.e. those C-edges that have a sister
C-edge. This decreases the number of nonterminals
in the UCCA graph, reduces lexical ambiguity, and
increases the proportion of UCCA training graphs
which we can decompose.

At test time, the parser predicts UCCA graphs
with contracted C-edges, as in Fig. 7b. We uncon-
tract these by creating an outgoing C-edge from
all non-leaf nodes that have node labels, changing
these nodes into nonterminal nodes. At uncontrac-
tion time, we keep the outgoing edges attached to
the nonterminal node.

4.2 Edge raising

C-edge contraction is insufficient to completely
solve the first problem. For instance, in Fig. 7b,
the as-graph for “success” still has two nodes at
which other graphs attach: the U and F edge attach
to the “success” node with Modify operations, and
the “was” node attaches to a non-terminal node
with Modify as well. As above, this means that
both “success” and this non-terminal node must be
root-sources, which is not allowed.

In order to ensure that only one root-source node
is required, we flatten the as-graph for “success” by
raising the edges out of the lower node to the upper
node, as illustrated in Fig. 7c. This means that all
modifiers attach to the same node, which becomes
the root-source. We train the semantic parser on
these flattened UCCA graphs, and then lower the

edges again in postprocessing.
Our objective when applying edge lowering on

the graph is to redistribute the edges we had pre-
viously raised as they were before pre-processing.
The initial idea was to make use of the edge labels
and only allow lowering an edge from an upper
to a lower node if they are connected by another
edge with a specific label; however, we found in-
stances where there were multiple outgoing edges
with the same label, which resulted in an ambiguity
regarding along which edge to lower. Thus, when
we raised an edge from the lower node to the upper
node, we also marked the edge that connects them
with “-r” (for “raised”), and then lowered along the
marked edge.

However, we encountered examples where edge
lowering was still ambiguous. We found this to
occur when edges were raised from multiple lower
nodes to the same upper node, resulting in multiple
outgoing edges of that upper node bearing the -r
mark. Consequently, we had no way of determining
which raised edge belonged to which lower node.
To remedy this problem, we added a subindex on
each of the raised edges indicating the edge over
which we had raised the node (see Figure 7c for
the subindices). This means for post-processing
only lower a given edge to a node through another
edge if the label of the former edge matched the
subindex of the latter edge. For example, in Fig. 7c,
we can only lower the edges with the labels U p and
F p through another edge with the label P, which
in this case implies that we can only lower these
edges to the node “success”. This procedure results
in unambiguous lowering in most cases.

The edge raising and lowering procedure was
not part of the submitted system. However, it is
part of the improved system.

4.3 H-edge removal

An H-edge represents a scene evoked by a Process
or State. These edges are normally outgoing edges



72

of the top node in UCCA. If an H-edge appears in a
given graph, it is either unique or accompanied by
other H-edges representing multiple parallel scenes
and an L-edge to link these scenes, i.e. from the
top node there is a single outgoing H-edge in the
former case and multiple outgoing H-edges as well
as one or more L-edges in the latter. In order to
simplify our decomposition heuristics, we remove
the H-edge in former case and add it again in post-
processing, and only include heuristics for the latter
case, rather than distinguish between the two cases.

4.4 Remote edges

We found that removing remote edges drastically
helps decomposability. Since this gives us more
training data, we decided to remove them and
thereby improved decomposability from 34% to
47% in the submitted system.

4.5 Node-token alignments

The UCCA annotation aligns the leaf nodes of the
UCCA graph with the tokens in the string; our
parser requires an alignment of all nodes with their
corresponding tokens. We project the aligned to-
kens upwards from the leaf nodes using a simple set
of head percolation rules (see appendix for details).

4.6 Tops

We mark nodes with no incoming edges as top
nodes. In an improved version, when more than
one top is found, rather than include all of them,
we select an arbitrary one.

5 Evaluation

5.1 Experimental setup

We trained one single-task model per graphbank
and made use of a concatenation of BERT (Devlin
et al., 2019) and Elmo (Peters et al., 2018) embed-
dings, without any finetuning. We tweaked some
hyperparameters of the neural network compared
to the ACL-19 parser (see appendix for details).

For DM, PSD and EDS, we use the usual
train/dev split. We take a random sample of 3% of
all graphs as development data for AMR and 20%
for UCCA since there is much less training data.

During parsing, we use the fixed-tree decoder
described in Groschwitz et al. (2018) with the six
highest-scoring supertags per token. Because the
search for a well-typed AM dependency tree is
NP-complete, we set a timeout for each graphbank;
when the parsing time for a single sentence exceeds

a certain limit, we back off to a smaller number of
supertags per token and restart parsing. We used
a timeout of 30 minutes for DM, PSD and EDS, a
timeout of 5 minutes for UCCA and 15 minutes for
AMR. We ensured that every sentence was parsed
using at least the highest scoring supertag.

In the ACL-19 parser, we used named entity
tags as additional input to the neural network for
all graphbanks. Here, we only do so for AMR,
whose graphs contain very detailed named entity
information. We use the Illinois Named Entity
Tagger (Ratinov and Roth, 2009). We make use
of the tokenization, POS tags and lemmas pro-
vided in the MRP companion data. Our code is
publicly available at https://github.com/
coli-saar/am-parser.

5.2 Results

Table 1 (“submitted”) shows the official results of
our parser in the shared task. Our parser achieved
the highest accuracy on PSD and did very well on
DM and EDS. It did much worse on AMR than we
expected based on earlier results (Lindemann et al.,
2019).

Table 2 shows a more detailed evaluation of
the system on the development sets. First, we ob-
serve that not all graphs in the development sets
can be decomposed by the heuristics described
above. This is especially striking for EDS (which
frequently requires graphs with multiple sources,
see the discussion in Lindemann et al. (2019)) and
UCCA, where the edge contraction and raising
heuristics were still insufficient to decompose all
graphs. The distinction between decomposable and
non-decomposable graphs also has a clear effect
on development f-score: the f-scores on the decom-
posable subset of each devset are noticeably higher
than on the full devset.

Second, we report the accuracy of the two com-
ponent parts of our parser: dependency parsing
(reported as UAS and LAS) and supertagging (re-
ported as 1-best and 6-best supertagging accu-
racy). It is noticeable that the errors in some graph-
banks (e.g. PSD) are dominated by the supertagger,
whereas others are hard for the dependency parser
(e.g. UCCA). For most graphbanks, low supertag-
ging accuracy goes together with a large supertag
set, and low dependency accuracy with a large set
of edge labels. For UCCA, accuracy is low across
the board, which may be because the decomposable
part of the UCCA training set is so small (47%).

https://github.com/coli-saar/am-parser
https://github.com/coli-saar/am-parser
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DM PSD EDS UCCA AMR Average

Submitted 94.7 91.3 89.1 67.6 66.7 81.9
Improved 94.7 91.3 89.1 70.1 71.0 83.2
Improved + WordNet/Stanford 94.7 91.3 89.1 70.1 71.6 83.4

Table 1: Results of a single run on official test set (MRP cross-framework f-score).

DM PSD EDS UCCA AMR Average

F-score, complete 96.6 92.7 91.1 65.6 72.0 83.6
F-score, decomposable 96.9 92.8 92.0 74.6 73.5 86.0
Decomposability 93.2 97.2 82.0 48.6 91.3 82.5
UAS 95.4 95.7 94.6 74.7 75.2 87.1
LAS 94.6 91.8 93.4 68.1 69.2 83.4
Supertagging Accuracy (1-best) 96.6 88.6 93.9 74.5 75.2 85.8
Supertagging Accuracy (6-best) 99.8 98.8 99.2 94.2 94.2 97.2

Number supertags 424 1566 2739 298 4705 1946.4
Number edge labels 32 42 34 22 48 35.6

Table 2: Detailed dev set results of the submitted system. All rows except the first and third are based on the
decomposable subsets. The last section contains statistics about the decomposed training set.

5.3 Improvements

After the shared task submission deadline, we im-
plemented some further improvements.

AMR We fixed a bug in the post-processing of
named entities, which improved the MRP f-score
by 0.5 points on the dev set and by 4.3 points on
the test set (“improved” in table 1).

We also analyzed the impact of switching out
WordNet and the Stanford NER tagger for their
whitelisted replacements, ConceptNet and the Illi-
nois NER tagger. As Table 3 shows, the use of the
whitelisted resources decreased the AMR devset
accuracy by almost 1.5 points. This illustrates the
impact of these low-level resources on the evalu-
ation results. Interestingly, this translates only to
an improvement of 0.6 points on the test set (“Im-
proved + WordNet/Stanford” in table 1).

We leave an investigation why the magnitude of
these improvements differs so much between dev
set and test set for future work.

UCCA In contrast to the submitted version, we
employed edge raising and lowering and used the
improved version of the top handling (see 4.6).
We also fixed a bug in the node-token alignments.
Overall, this resulted in 85% of the training set
being decomposable as opposed to 47% in the sub-
mitted system. The results are reported in row two

Lexical database
WordNet ConceptNet

NER tool
Stanford 73.9 72.7
Illinois 73.7 72.5

Table 3: Comparison of MRP f-scores on our AMR de-
velopment set for different NE recognizers and lexical
databases, includes bugfix.

of table 1.

6 Conclusion

In this paper, we have described the Saarland Uni-
versity submission to the MRP shared task. Our
system is mostly based on our compositional neural
graph parser, which had already worked very well
across all MRP graphbanks except for UCCA.

We found that extending the parser to UCCA
was a challenge due to the radically different graph
structures that UCCA uses. We aim to improve the
accuracy of our parser on UCCA in future work.

One challenge our system faces is that nontrivial
quantities of training data cannot be decomposed
by the heuristics we used. It therefore wastes a
lot of training data, especially for UCCA. In fu-
ture work, we will look into better decomposition
heuristics, and also into variants of the AM algebra
which support multiple root-sources per as-graph.
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