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Abstract

This paper describes our SJTU-NICT’s system
for participating in the shared task on Cross-
Framework Meaning Representation Parsing
(MRP) at the 2019 Conference for Compu-
tational Language Learning (CoNLL). Our
system uses a graph-based approach to model
a variety of semantic graph parsing tasks. Our
main contributions in the submitted system
are summarized as follows: 1. Our model
is fully end-to-end and is capable of being
trained only on the given training set which
does not rely on any other extra training source
including the companion data provided by the
organizer; 2. We extend our graph pruning
algorithm to a variety of semantic graphs,
solving the problem of excessive semantic
graph search space; 3. We introduce multi-
task learning for multiple objectives within the
same framework. The evaluation results show
that our system achieved second place in the
overall F1 score and achieved the best F1 score
on the DM framework.

1 Introduction

In recent years, the semantic graph parsing has
received a lot of attention from researchers.
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However, due to the variety of semantic graph
flavors, the framework-specific “balkanization”
of semantic parsing is worth noting. The
2019 Conference on Computational Language
Learning (CoNLL) hosts a shared task on
Cross-Framework Meaning Representation Pars-
ing (MRP 2019) (Oepen et al., 2019). From
the perspective of the formal representation of
semantic graphs, MRP 2019 uses the directed
graphs to unify the five different semantic
representation frameworks: DELPH-IN MRS Bi-
Lexical Dependencies (DM), Prague Semantic
Dependencies (PSD), Elementary Dependency
Structures (EDS), Universal Conceptual Cognitive
Annotation (UCCA), and Abstract Meaning
Representation (AMR). Wherein, the directed
graph is represented by a 〈T ,N , E〉 triplet, N
represents a set of nodes that constitutes the
semantic graph, E ⊆ N × N represents a
set of edges that express a specific semantic
relationship (N , E contains a specific attribute
corresponding to the semantic framework), and
T represents nodes with a degree of zero in N ,
usually corresponding to the most central semantic
entity.

Though the semantic graph parsing task is
uniformly modeled into a directed graph gener-
ation task, according to the relationship between
nodes in the directed graph and the surface lexical
units in the sentence, the five semantic graph
frameworks can be divided into three different
categories according to the alignment degree
between graph nodes and lexical semantics: (1)
graph nodes and surface lexical units anchor
correspondence strictly (i.e., DM, PSD, EDS),
(2) partial graph nodes and surface lexical units
anchor correspondence strictly (i.e., UCCA), and
(3) graph nodes and surface lexical units have
no anchor correspondence (i.e., AMR). As there
is a case of anchoring multiple nodes in the
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corresponding graph of the directed graph of EDS,
our system further treats EDS as one type, and DM
and PSD as another type.

Based on the experiences of Jiang et al. (2019)
and Zhang et al. (2019a) and our previous
works on the Dependency Parsing (Li et al.,
2018a,b,d; Zhou and Zhao, 2019; Zhou et al.,
2019), Semantic Role Labeling (He et al., 2018b;
Cai et al., 2018; Li et al., 2018c, 2019b; He
et al., 2019), Universal Conceptual Cognitive
Annotation (Jiang et al., 2019), Abstract Mean
Representation (Zhang et al., 2019a), Machine
Translation (Xiao et al., 2019; Sun et al., 2019;
Chen et al., 2019), Language Modeling (Li et al.,
2019a; Zhang et al., 2019c,b) tasks, we create
three graph parsing models based on the semantic
graph flavors: (1) Strictly anchored (DM, PSD,
EDS): scores the surface lexical units as nodes
of the graph, and performs edge training based
on the expression of the candidate graph nodes,
(2) Non-strictly anchored (UCCA): treats it as a
special constituent tree parsing task and uses an
additional component to recover the remote edges,
and (3) Completely unanchored (i.e., AMR): uses
the Seq2seq model to generate the nodes and then
performs edge scoring on the generated graph
nodes. In order to maintain the end-to-end style of
our system, we use the multi-task learning method
to jointly train and predict the attributes of nodes
and edges together with themselves. We use the
pre-trained language model BERT as the encoder.
In the training phase, in order to prevent the nodes
from falling into local optimum and the edges
unable to get enough training, we use the random
sampling method on the golden graph nodes to
push as many correct nodes as possible to join the
edge training. According to the official results of
the evaluation, our system ranked second place in
the overall F1 metric among the 16 participating
systems. On the DM framework, our system
achieved the best results. Our system on other 4
frameworks (PSD, EDS, UCCA, and AMR) are all
ranked the third place.

2 Tasks and Modeling

In this section, we will introduce this shared
task and our modeling approach. Our key idea
is to use a graph-based approach rather than a
transition-based one; therefore, all the modeling
and optimization methods we have on these
frameworks are graph-based. The CoNLL shared

task combines the following five frameworks for
graph-based meaning representation: DM, PSD,
EDS, UCCA, and AMR.

2.1 DM and PSD

The DM (Ivanova et al., 2012) and PSD
(Hajic et al., 2012; Miyao et al., 2014) are
two independently developed syntactic-semantic
annotations which project semantic forms onto bi-
lexical dependencies in a lossy manner.

In the representation of the DM and PSD
frameworks, the graph nodes and surface lexical
units are strictly anchored. There is an explicit,
one-to-many anchoring onto sub-strings of the
underlying sentence. These graphs are neither
fully connected nor rooted. The graphs of DM and
PSD have the following features:

• There is only a one-to-one correspondence1

between the graph node and the span in the
sentence.

• Graph nodes can have multiple in-edges or
out-edges.

• Graph nodes can be completely isolated, with
no in-edges or out-edges.

• There is at most one edge between any two
graph nodes.

According to the above properties, the task
is modeled as follows: Given a sentence S =
{w1, w2, ..., wn}, enumerate all the span in the
sentence spani,j = {wi, wi+1, ..., wj}, (i <=
j), which is used as a candidate graph node
and is fed into the node classifier classifiern2

to filter the truly graph nodes: nodek =
classifiern(spani,j), and then uses the edge
classifier classifiere to obtain the semantic rela-
tionship between the two graph nodes edgek1,k2 =
classifiere(nodek1 , nodek2).

2.2 EDS

EDS is a variable-free semantic dependency graph
representation proposed by Oepen and Lønning

1Due to one span in the sentence includes several surface
lexical units; therefore the one-to-many anchoring becomes
one-to-one correspondence.

2Here, we summarize the general terminology of using
only the classifier. In practice, it is possible that the
classifier contains several attribute classifiers, depending
on how many attributes of the node or edge need to be
predicted.
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(2006) which encode the English Resource Se-
mantics (ERS) (Flickinger et al., 2014). The EDS
conversion from under-specified logical forms of
the full ERS to variable-free graphs discards
partial semantic information which makes the
graph abstractly.

In the representation of the EDS framework,
the graph nodes are independent of surface lexical
units. For each graph node, there is an explicit,
many-to-many anchoring onto sub-strings of the
underlying sentence. The EDS graph has the
following features:

• There is a many-to-one correspondence
between the graph node and the span in the
sentence.

• Graph nodes do not correspond to individual
surface tokens in the sentence.

• Graph nodes can not be completely isolated
and have at least one in- or out-edge.

According to the above features, since there
is a many-to-one correspondence between the
graph nodes and the spans in the sentences, it
is impossible to use the modeling method of
DM and PSD simply. Therefore, we adopt a
pseudo node method to solve the problem. The
transformation is carried out: the pseudo node
has a one-to-one relationship with the span in the
sentence. The edge between nodes in the graph is
transformed into the edge of the pseudo node, and
two attributes are added for the edge: the source
node label and the target node label which are
used to indicate the node label in the original EDS
graph. In this way, the many-to-one relationship
is converted into a one-to-one relationship. After
conversion, we can model the problem using in
the same way as DM and PSD as described in
Subsection 2.1.

2.3 UCCA

UCCA is a multi-layer linguistic framework for
semantic annotation proposed by Abend and
Rappoport (2013). UCCA aims to recognize the
level of semantic granularity which abstracts away
from syntactic paraphrases in a typologically-
motivated, cross-linguistic fashion and does not
need to rely on language-specific resources.

In the representation of the UCCA framework,
some nodes have a one-to-one correspondence
with the span in the sentence, which is called

terminal nodes3. Other nodes do not have any
corresponding relationship with the span, which is
introduced as a notion of a semantic constituency
that transcends the pure dependency graphs to
represent the semantic granularity. The UCCA
graph has the following features:

• There is a one-to-one correspondence be-
tween the terminal nodes and the spans in the
sentence.

• Graph nodes may have multiple parents,
among which one is annotated as the primary
parent and others as remote parents.

• The primary edges between nodes and
their primary parents form a tree structure,
whereas the remote edges between nodes and
their remote parents enable the reentrancy,
forming directed acyclic graphs (DAGs).

• The non-terminal nodes may exist discontin-
uous leaves; in which some terminal nodes
are not its descendants.

Based on the above features and inspired by
Nivre and Nilsson (2005), we transform the tree
composed of primary edges (and nodes) into a
constituent syntax tree structure, which is modeled
using the constituent syntax tree parsing schema.
Use an additional classifier for the remote edges
prediction and recovery.

2.4 AMR
Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) parsing is the task of
transducing natural language text into AMR,
which is a graph-based formalism used for
capturing sentence-level semantics. The AMR
framework backgrounds notions of composition-
ality and derivation, therefore, without explicit
correspondence between graph nodes and lexical
units.

In the representation of AMR framework,
the graph nodes are obtained by composition,
derivation, lexical decomposition, normalization
towards verb senses and so on. The features of the
AMR graphs built on these graph nodes is similar

3MRP-transformed UCCA graph differs from on the
terminal nodes from the original UCCA graph. In the original
UCCA graph representation, terminal nodes refer to words,
and in the MRP-transformed UCCA graph, terminal nodes
refer to the lowest layer of non-terminal nodes in the original
UCCA graph due to a node can contain multiple words in the
MRP-transformed UCCA graph.
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to the dependency syntax tree except for the
reentrancy. Therefore, if the node is determined,
modeling can be performed using the method of
dependency syntax parsing. However, we can’t
get the nodes of the graph directly from the
sentence due to the nature of the AMR framework.
Therefore, inspired by Zhang et al. (2019a),
we model the nodes determination as sequence
generation tasks using the Seq2seq model and then
parse the tree structure on the generated nodes.

3 Data and Preprocessing

3.1 Data

The CoNLL shared task provides a training
dataset of 5 subtasks, of which DM, PSD, and
EDS are from Wall Street Journal (WSJ) text
of Penn Treebank (Marcus et al., 1993) and
contain 35,656 sentences. The UCCA training
data comes from the English Web Treebank’s
reviews text (Bies et al., 2012) and the English
Wikipedia celebrity articles, with a total data
volume of 5,672 sentences. AMR annotation data
are drawn from a variety of texts, including online
discussion forums, newswires, folktales, novels,
and Wikipedia articles, which contain a total of
56,240 sentences.

3.2 Tokenization, Lemmatization, and
Anchor conversion

Since the sentence in the training dataset is the
original text and no tokenization is performed, and
the subsequent processing requires the word root
form, we use the Stanford NLP toolkit4 (Manning
et al., 2014) to tokenize and lemmatize the original
text. As the graph node anchor in the original data
is defined at the character level, we need to convert
the anchor to the word level. In this process, due
to the difference in tokenization criteria and the
existence of tokenizing errors, some graph nodes
will be converted into the same one in the process
of conversion to word-level anchor. Therefore,
we performed some post-processing modifications
on the tokenization results of the Stanford NLP
toolkit to ensure that the graph nodes after the
conversion to the word level anchor correspond to
the previous character level, without increasing or
decreasing the nodes.

4https://stanfordnlp.github.io/
CoreNLP/index.html.

accept
ev-w20f1 ACT PAT 
[propbank/accept-v.xml :: accept.01 :: 135] 

ACT()[accept.01 :: 0 :: :: 81]{} 
PAT()[accept.01 :: 1 :: :: 130]{} 

ev-w20f2 ACT PAT ?ORIG 
[propbank/accept-v.xml :: accept.01 :: 7] 

ACT()[accept.01 :: 0 :: :: 3]{} 
PAT()[accept.01 :: 1 :: :: 6]{} 
ORIG()[accept.01 :: 2 :: :: 3, accept.01 :: 1 :: :: 2]{} 

access
ev-w21f1 ACT PAT 
[propbank/access-v.xml :: access.01 :: 2] 

ACT()[access.01 :: 0 :: :: 1]{} 
PAT()[access.01 :: 1 :: :: 2]{} 

acclaim
ev-w22f1 ACT PAT 
[propbank/acclaim-v.xml :: acclaim.01 :: 1] 

ACT(sub)[]{} 
PAT(obj1, ving)[acclaim.01 :: 1 :: :: 1]{} 

ev-w22f2 ACT PAT ?CAUS 
ACT(sub)[]{} 
PAT(obj1)[]{} 
CAUS(for[objpp, ving])[]{}

Figure 1: Examples of the most frequent frame-to-
frameset mapping extracted from “rng pb links.txt”.

3.3 Frame Label Projection in PSD
Framework

The node label in the PSD framework is a special
item id for Engvallex-to-PropBank mapping
dictionary. The node label contains the item id
of the item in the dictionary and the format id
of the item. Such as: [access: ev-w22f1 ACT
PAT] where 22 is the item id (word id) and 1
is the format id. Therefore, it is not convenient
to use the classifier directly for prediction on the
raw node label. Due to the word has a one-to-
many relationship with the item id, we cannot
obtain this item id by word directly. By observing
“rng pb links.txt”5 as shown in Figure 1, the item
id has a one-to-one correspondence with its usage
pattern string (like “ACT PAT”) in the case of
word determination, and the usage pattern has
duplicates among different words, the number is
much smaller than all item ids size; thus it is
more suitable as a learning goal. In the subsequent
recovery process, we can use lemma and the usage
pattern to restore to the item id.

3.4 Graph to Constituent Tree Conversion in
UCCA Framework

As described in subsection 2.3, the features, and
modeling approach, we need to preprocess the
UCCA graph in the training set, transforming
the graph into a constituent tree by removing
the remote edges and the edges that cause the

5https://ufal.mff.cuni.cz/pcedt2.0/
publications/eng_pb_links.txt

https://stanfordnlp.github.io/CoreNLP/index.html
https://stanfordnlp.github.io/CoreNLP/index.html
https://ufal.mff.cuni.cz/pcedt2.0/publications/eng_pb_links.txt
https://ufal.mff.cuni.cz/pcedt2.0/publications/eng_pb_links.txt
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discontinuous leaves. We have adopted the same
transformation method as Jiang et al. (2019). The
simple steps are as follows:

1) Remote edges removal. In the UCCA MRP
representation graph, we remove all edges with
the remote = True attribute. The label of the
primary edge corresponding to the remote edge
is added with a “remote” suffix to distinguish
the node with the remote relationship from the
ordinary node and subsequent recovery of the
remote edge.

2) Constituency continuity formation. Since
the current mainstream constituent parsing method
requires continuity of constituency, we need to
process the discontinuous nodes of the tree species
obtained in the previous step. For detailed
conversion steps, see Algorithm 1.

Algorithm 1 Constituency continuity formation
Input:

A tree with discontinuous leaves, Td;
Output:

A constituent tree, Tc;
1: set T (t) = Td
2: repeat
3: set n(t) is a non-descendant node with

discontinuous leaves;
4: find the discontinuous spans Sd in the range

of n(t);
5: for each span s ∈ Sd do
6: for each word w ∈ s do
7: find a maximum range parent node np

of word w whose range size is less
than s;

8: move node np to be the child of n(t),
and concatenate the original edge label
with “ancestor-d” where d represents
the original number of edges between
the ancestor of np and n(t);

9: remove all the children words of np
from s;

10: end for
11: end for
12: until T (t) is a constituent tree
13: set Tc = T (t)

3) Edge labels move down. Constituent syntax
parsing generally uses parenthetical notation to
represent the constituent syntax tree structure, so
in order to keep the model consistent, we also

move the edge label down to the child node. Since
the UCCA graphs need not be rooted trees, we
add a “ROOT” dummy node to ensure that the
transformed tree is a rooted tree.

3.5 Graph to Tree Conversion in AMR
Framework

AMR graph is rooted, directed, and most acyclic.
However, AMR is a graph instead of a tree due
to it allows re-entrant semantic relations. In order
to adopt the tree model for AMR parsing, we
need to convert the AMR graph to a tree in the
preprocessing step. Following the practice of
Zhang et al. (2019a), we duplicate the nodes that
have a re-entrant relation. In order to recover the
original graph, we assign an index to each node,
named reentrancy index. Duplicate nodes
will be assigned the same index.

3.6 Anonymization in AMR Framework

Anonymization is an important AMR preprocess-
ing method to reduce the data sparsity issue
(Werling et al., 2015; Peng et al., 2017; Guo
and Lu, 2018). Following the practice of Zhang
et al. (2019a), we first remove senses, wiki links,
and polarity attributes in the training dataset.
Secondly, we anonymize sub-graphs of named
entities which is labeled by one of AMR’s fine-
grained entity types that contain a name role, and
other entities which end with -entity6.

4 Models

To handle different flavors of representation,
our system has three types of models:
Anchoring-based Pruning Parsing
Model, Constituent Parsing Model,
Seq2seq-based Parsing Model.

4.1 Anchoring-based Pruning Parsing Model

The anchoring-based pruning parsing model is
suitable for frameworks where the graph nodes
are strictly one-to-one with the sentence span,
such as DM, PSD, and the transformed EDS
framework. The key idea of the anchoring-based
pruning parsing model is to obtain the candidate
graph nodes by enumerating the sentence span,
and then use a scorer to pruning the candidate
graph nodes and perform parsing on these graph
nodes.

6For details of preprocessing, please refer to (Zhang et al.,
2019a).
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Formally, for major structural parsing goals,
given a sentence S = {w1, w2, ..., wn}, where
n is the sequence length, we aim to predict a
set of labeled graph node-pair (sentence span-
pair) relations Y ⊆ N × N × L, where N =
{(wi, ..., wj)|1 ≤ i ≤ j ≤ n} contains all the
spans (graph nodes), and L is the space of the
edge labels (semantic roles), including a null label
ε indicating no edge between the node-pairs.

As our model deals with O(n2) possible
sentence spans (graph nodes), it needs to
consider O(n4|L|) possible relations, which is
computationally impractical. To overcome this
issue, motivated by our previous work (Li et al.,
2019b) and the work of (He et al., 2018a), we
limit the maximum width of the candidate spans
to fixed number W , which reduces the overall
number of relational factors need to be considered
by the model to O(n2|L|). In order to make the
training goal denser, we also introduce a unary
scorer φnode(·) and the candidate nodes are ranked
and pruned by their unary score in descending
order. The size of candidates reserved after the
pruning operation is limited to λn. Candidates
that are pruned do not participate in computing
the edge relation prediction, which can also further
reduce the computational complexity and memory
requirements. These parameters W and λ are
determined based on the statistics on the training
dataset of each framework.

Neural Architecture Our model builds the
candidate graph nodes representation based on
the BERT (Devlin et al., 2019) encoder outputs,
i.e., for each token wi, the contextualized vector
from BERT encoder is denoted as xi. The
candidate span (i, j) representation h consists
of two endpoint contextualized vectors (xi, xj)
where i and j are the start and end position of the
span in the sentence:

h = [xi;xj ]. (1)

The node unary scorer φnode(·) is implemented
with feed-forward networks based on the candi-
date graph nodes representation h:

φnode(·) = sigmoid(MLPnode(h)). (2)

The edge relation classifier φrel(·) is implemented
with biaffine attention mechanism. Following
Dozat and Manning (2017), we apply two seperate
MLPs to the source and target nodes respec-
tively, producing identity-specified representation:

rsrc = MLPsrc(h) and rtgt = MLPtgt(h).
We perform a biaffine operation to compute the
relation labeling score.

φrel(·) = rTsrcWrelrtgt+UT
relrsrc+VT

relrtgt+brel,
(3)

where Wrel, Urel, Vrel, and brel are the weight
matrix of the bi-linear term, the two weight
vectors of the linear terms, and the bias vector,
respectively.

Training Loss For the node scoring goal, we use
the binary cross-entropy loss between the target
and the output. For the edge classification, we
implement it with the standard cross-entropy loss.

Multi-Task Learning Each framework still has
some other goals to learn. The DM framework in-
cludes top node, node pos tag, and node
frame label. The PSD includes top node,
node pos tag, and node frame label.
The EDS includes edge source label and
edge target label. Overall, we use
multi-tasking learning strategy, shared hidden
representation, The top node uses the same
mechanism as node scoring, using binary cross-
entropy as loss implementation. The node pos
tag and node frame label use independent
feed-forward classifier, using cross-entropy as loss
implementation. The edge source label
and edge target label use a biaffine scorer
consistent with the edge label, using cross-entropy
loss as well. We accumulate the loss of all goals
together.

4.2 Constituent Parsing Model

For the UCCA framework, we directly adopt
the minimal span-based parser of Stern et al.
(2017) on the converted constituent trees. A
constituency tree can be regarded as a collection
of labeled spans over a sentence. There are two
components in the constituent parsing model: one
is to assign the scores directly to span existence
which determines the tree structure, and the other
one assigns scores to span labels which provides
the labeled outputs.

Neural Architecture In this model, we also
build the candidate span representation h based
on the BERT encoder outputs due to a span’s
correct label and its quality as a constituent
depend heavily on the context in which it appears.
Different from the previous span representation, in
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this model, the representation h of span (i, j) is the
concatenation of the two endpoint contextualized
vectors differences:

h = xj − xi. (4)

The span splitting unary scorer φsplit(·) and the
span label scorer φlabel(·) are both implemented
as feed-forward networks which take as input
the span representation and output either a single
span score or a vector of labeling scores. For
the tree inference, we adopt the greedy top-
down searching strategy introduced in Stern et al.
(2017).

In order to recover the full UCCA graph, the
model needs to learn the remote edge target. The
remote edge target is similar to the previous edge
target, which is to predict the relationship between
the node pairs, so we also use the relational
classifier φrel(·). As the same in the previous
model, there is also a null label ε indicating no
edge between the node-pairs.

4.3 Seq2seq-based Parsing Model
The AMR framework backgrounds notions of
compositionality and derivation and, accordingly,
declines to make explicit how elements of the
graph correspond to the surface utterance. Al-
though most AMR parsing research presupposes
a preprocessing step that aligns graph nodes
with (possibly discontinuous) sets of tokens in
the underlying input, these correspondences need
extra annotation and training. This does not match
our requirements for the model to be end-to-
end. Therefore, we consider the AMR tree with
indexed nodes as the prediction target (proposed
by Zhang et al. (2019a)). The approach of AMR
parsing is formulized as a two-stage process:
node prediction (concept identification) and edge
prediction (relation identification).

Formally, given a sentence S =
{w1, w2, ..., wn}, the model sequentially decodes
a list of nodes N = {u1, u2, ..., um} and their
reentrancy indicesD = {d1, d2, .., dm}. Then, the
model is required to search for the highest scoring
parsing tree similar to dependency parsing.

Neural Architecture For node prediction, we
adopt the widely-used Seq2seq model Seq2seq(·)
with pointer-generator network (Vinyals et al.,
2015). The pointer-network has the advantage
of copying words from the source text while
still retaining the ability to produce novel words

DM & PSD & EDS
node space dim 128

max seq len 100
DM & PSD

max span width (W ) 5
pruning reserve ratio∗ (λ) 1.0

EDS
max span width (W ) 8

pruning reserve ratio∗ (λ) 1.2
UCCA

split space dim (W ) 128
AMR

decoder type RNN
decoder hidden dim 512
decoder num layers 3

Deep biaffine classfier
edge space dim 512

edge label space dim 128
Optimizer

optimizer type Adam
learning rate 5e−5

max grad norm 1.0

Table 1: Hyper-parameter settings for our final
submission. ∗pruning reserve ratio (λ) is for the
sentence length n, not the number of candidate nodes.

through the generator. The node representation
h is obtained as the decoder hidden state of the
Seq2seq model:

h = Seq2seq(·). (5)

For the edge prediction, we also adopt the biaffine
attention mechanism to score all possible head-
dependent pairs like dependency parsing. The
relation classifier φrel(·) is the same as the
previous:

φarc(·) = hTheadWarchdep + UT
archhead

+ VT
archdep + barc,

(6)

where Warc, Uarc, Varc, and barc are the weight
matrix of the bi-linear term, the two weight
vectors of the linear terms, and the bias vector,
respectively.

5 Experiments

5.1 Setup

We first describe the final setup used
for our final submission. We use the



52

P R F1 RANK
tops 0.92 0.91 0.915 1

labels 0.73 0.70 0.712 2
properties 0.70 0.67 0.687 2
anchors 0.78 0.77 0.776 1

edges 0.80 0.75 0.777 2
attributes 0.13 0.07 0.094 2

all 0.87 0.83 0.853 2

Table 2: The official evaluation scores of different
“atomic” component pieces on all the test dataset.

pytorch-transformers7 as our codebase
to develop the downstream parsing models. The
weights of pre-trained language model BERT
with whole word masking8 are used to initialize
the encoder of our models. Due to the absence of
development dataset, we split the training dataset
to 10 sections and 0-8 for training and 9 for
development. Our model is trained using Adam
(Kingma and Ba, 2014) up to 30 epochs for DM,
PSD, and EDS, and 20 epochs for UCCA and
120 epochs for AMR, with early stopping strategy
based on the MRP F1 score9 on the development
dataset with mtool10 toolkit. Table 1 lists the
hyperparameters used in our full model. We apply
the hidden dropout (dropout rate = 0.1) to the
outputs of each module in our model.

5.2 Main Results

We list our official evaluation scores11 on the
all test dataset in Tables 2 and 3. Table 2
summarizes the MRP F1 scores of the 6 graph
components. The results listed in Table 2 shows
that we obtained the state-of-the-art MRP F1 score
on the top nodes component. In Table 3,
we assess the quality on each frameworks. Our
model also achieved the best results on the DM
framework. We observed a notable phenomenon
that as the anchoring relationship between the
graph node and the surface lexical units is getting
farther, the difficulty of parsing is getting higher.

From the results of parsing on different

7https://github.com/huggingface/
pytorch-transformers.

8In our experiments, we use the BERT-Large, uncased
(Whole Word Masking) with 24-layer, 1024-hidden, 16-
heads, and 340M parameters released by Google, https:
//github.com/google-research/bert.

9http://mrp.nlpl.eu/index.php.
10https://github.com/cfmrp/mtool.
11The official evaluation results are at http://bit.

ly/cfmrp19.

P R F1 RANK
DM 0.96 0.95 0.9550 1
PSD 0.91 0.91 0.9119 3
EDS 0.95 0.86 0.8990 3

UCCA 0.80 0.76 0.7780 3
AMR 0.75 0.69 0.7197 3

all 0.87 0.83 0.853 2

Table 3: The official evaluation scores of different
frameworks on all the test dataset.

frameworks, our results on the EDS framework
have the biggest gap with other priority teams,
probably because of the existence of multiple
edges between the same pair of pseudo nodes
in the EDS framework after our modeling
transformation. Therefore, our subsequent
experiments modeled the edges of EDS as multi-
classification problems, and our results on the
development dataset have been improved.

6 Conclusion and Future Work

In this paper, we present our end-to-end graph-
based system participated in the CoNLL 2019
shared task on Cross-Framework Meaning Rep-
resentation Parsing (MRP 2019). We extend
existing models and make our model be end-to-
end and does not depend on any other information
(including the companion data provided by the
organizer). We introduce our previous graph
pruning algorithm to a variety of semantic graphs,
solving the problem of excessive semantic graph
search space and adopt multi-task learning for
multiple objectives within the same framework.
Specifically, we model the semantic graph task as
a multi-objective learning task of nodes, edges,
node attributes, and edge attributes. The nodes
candidates are scored and then pruned within
the model, thus controlling the overall graph
search space, and finally forming an end-to-end
style parsing system. We achieve state-of-the-art
results on the top nodes component and DM
framework.

For future work, we are going to integrate all
the different frameworks into one single model,
not just the same modeling approach. Based
on the MRP representation method, a single
model is used to generate various semantic graphs.
Furthermore, we would like to extend our model to
other more semantic parsing tasks.

https://github.com/huggingface/pytorch-transformers
https://github.com/huggingface/pytorch-transformers
https://github.com/google-research/bert.
https://github.com/google-research/bert.
http://mrp.nlpl.eu/index.php
https://github.com/cfmrp/mtool
http://bit.ly/cfmrp19
http://bit.ly/cfmrp19
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