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Preface

We are excited (and a little relieved) to present the proceedings from the 2019 Shared Task on Cross-
Framework Meaning Representation Parsing (MRP) at the Conference for Computational Language
Learning (CoNLL). This volume provides linguistic, methodological, and technical background to the
target representations, mode of operation, and participating systems in a ‘system bake-off’ for data-
driven parsing into graph-structured representations of sentence meaning.

The task received submissions from eighteen teams, of which two involved task co-organizers and do
not participate in the official ranking of submissions. Three teams declined the invitation to submit
a system description for publication in the proceedings, such that the volume in total comprises an in-
depth task overview, two ‘system descriptions’ by task co-organizers, and thirteen system descriptions by
task participants. All system descriptions were reviewed by at least three experts, drawing from among
the task participants and an external pool of colleagues working in meaning representation parsing.

We much look forward to the presentation of results and meeting with task participants in person at
CoNLL in early November 2019. The conference has allocated a 90-minute slot for oral presentations
from the shared task, where all teams will have the opportunity to present a ‘blitz’ overview of their
work. Following this plenary session, there will be poster presentations by all teams, allowing for more
detailed technical discussions.

The shared task has been an intensive experience for organizers and participants alike, with data
preparation, definition of evaluation metrics, system development, submission of parser outputs, scoring
and compilation of the task proceedings—running near-continuously between March and October 2019.
We are deeply grateful to all participants (including several who in the end did not make a submission)
for the time and effort they have invested in system development and documentation. With no less
than five distinct linguistic frameworks for graph-based meaning representation combined for the first
time in a uniform training and evaluation setting, this was not an easy competition to enter. As co-
organizers of the MRP 2019 competition, we will continue to work on facilitating cross-framework
meaning representation parsing and enabling participants to further build on their work. We are delighted
(and a litte scared) to confirm that there will be a follow-up shared task MRP 2020 at the next CoNLL
meeting a year from now.

Many colleagues have made essential contributions to the task organization along the way. We gratefully
acknowledge assistance by Emily M. Bender, Jayeol Chun, Dan Flickinger, Andrey Kutuzov, Sebastian
Schuster, Milan Straka, and Zdeňka Urešová.
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Abstract

The 2019 Shared Task at the Conference for
Computational Language Learning (CoNLL)
was devoted to Meaning Representation Pars-
ing (MRP) across frameworks. Five distinct
approaches to the representation of sentence
meaning in the form of directed graphs were
represented in the training and evaluation data
for the task, packaged in a uniform graph ab-
straction and serialization. The task received
submissions from eighteen teams, of which
five do not participate in the official ranking
because they arrived after the closing deadline,
made use of extra training data, or involved
one of the task co-organizers. All technical in-
formation regarding the task, including system
submissions, official results, and links to sup-
porting resources and software are available
from the task web site at:

http://mrp.nlpl.eu

1 Background and Motivation

All things semantic are receiving heightened at-
tention in recent years, and despite remarkable ad-
vances in vector-based (continuous and distributed)
encodings of meaning, ‘classic’ (discrete and hier-
archically structured) semantic representations will
continue to play an important role in ‘making sense’
of natural language. While parsing has long been
dominated by tree-structured target representations,
there is now growing interest in general graphs as
more expressive and arguably more adequate target
structures for sentence-level analysis beyond sur-
face syntax, and in particular for the representation
of semantic structure.

The 2019 Conference on Computational Lan-
guage Learning (CoNLL) hosts a shared task (or
‘system bake-off’) on Cross-Framework Meaning

Representation Parsing (MRP 2019). The goal
of the task is to advance data-driven parsing into
graph-structured representations of sentence mean-
ing. For the first time, this task combines formally
and linguistically different approaches to meaning
representation in graph form in a uniform train-
ing and evaluation setup. Participants were invited
to develop parsing systems that support five dis-
tinct semantic graph frameworks (see §3 below)—
which all encode core predicate–argument struc-
ture, among other things—in the same implemen-
tation. Ideally, these parsers predict sentence-level
meaning representations in all frameworks in paral-
lel. Architectures utilizing complementary knowl-
edge sources (e.g. via parameter sharing) were en-
couraged, though not required. Learning from mul-
tiple flavors of meaning representation in tandem
has hardly been explored (with notable exceptions,
e.g. the parsers of Peng et al., 2017; Hershcovich
et al., 2018; or Stanovsky and Dagan, 2018).

Training and evaluation data were provided for
all five frameworks. The task design aims to reduce
framework-specific ‘balkanization’ in the field of
meaning representation parsing. Its contributions
include (a) a unifying formal model over differ-
ent semantic graph banks (§2), (b) uniform rep-
resentations and scoring (§4 and §6), (c) con-
trastive evaluation across frameworks (§5), and
(d) increased cross-fertilization via transfer and
multi-task learning (§7). Thus, the task engages
the combined community of parser developers for
graph-structured output representations, including
from prior framework-specific tasks at the Seman-
tic Evaluation (SemEval) exercises between 2014
and 2019 (Oepen et al., 2014, 2015; May, 2016;
May and Priyadarshi, 2017; Hershcovich et al.,
2019). Owing to the scarcity of semantic anno-
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tations across frameworks, the MRP 2019 shared
task is regrettably limited to parsing English for the
time being.

2 Definitions: Graphs and Flavors

Reflecting different traditions and communities,
there is wide variation in how individual meaning
representation frameworks think (and talk) about
semantic graphs, down to the level of visual con-
ventions used in rendering graph structures. The
following paragraphs provide semi-formal defini-
tions of core graph-theoretic concepts that can be
meaningfully applied across the range of frame-
works represented in the shared task.

Basic Terminology Semantic graphs (across dif-
ferent frameworks) can be viewed as directed
graphs or digraphs. A semantic digraph is a
triple (T,N,E) where N is a set of nodes and
E ⊆ N × N is a set of edges. The in- and out-
degree of a node count the number of edges arriving
at or leaving from the node, respectively. In con-
trast to the unique root node in trees, graphs can
have multiple (structural) roots, which we define as
nodes with in-degree zero. The majority of seman-
tic graphs are structurally multi-rooted. Thus, we
distinguish one or several nodes in each graph as
top nodes, T ⊂ N ; the top(s) correspond(s) to the
most central semantic entities in the graph, usually
the main predication(s).

In a tree, every node except the root has in-
degree one. In semantic graphs, nodes can have
in-degree two or higher (indicating shared argu-
ments), which constitutes a reentrancy in the graph.
In contrast to trees, general digraphs may contain
cycles, i.e. a directed path leading from a node to
itself. Another central property of trees is that they
are connected, meaning that there exists an undi-
rected path between any pair of nodes. In contrast,
semantic graphs need not generally be connected.

Finally, in some semantic graph frameworks
there is a (total) linear order on the nodes, typi-
cally induced by the surface order of correspond-
ing tokens. Such graphs are conventionally called
bi-lexical dependencies and formally constitute
ordered graphs. A natural way to visualize a bi-
lexical dependency graph is to draw its edges as
semicircles in the halfplane above the sentence. An
ordered graph is called noncrossing if in such a
drawing, the semicircles intersect only at their end-
points (this property is a natural generalization of
projectivity as it is known from dependency trees).

A natural generalization of the noncrossing prop-
erty, where one is allowed to also use the halfplane
below the sentence for drawing edges is a prop-
erty called pagenumber two. Kuhlmann and Oepen
(2016) provide additional definitions and a quanti-
tative summary of various formal graph properties
across frameworks.

Hierarchy of Formal Flavors In the context of
the shared task, we distinguish different flavors of
semantic graphs based on the nature of the rela-
tionship they assume between the linguistic surface
signal (typically a written sentence, i.e. a string)
and the nodes of the graph. We refer to this rela-
tion as anchoring (of nodes onto sub-strings); other
commonly used terms include alignment, corre-
spondence, or lexicalization.

Flavor (0) is the strongest form of anchoring,
obtained in bi-lexical dependency graphs, where
graph nodes injectively correspond to surface lex-
ical units (i.e. tokens or ‘words’). In such graphs,
each node is directly linked to one specific token
(conversely, there may be semantically empty to-
kens), and the nodes inherit the linear order of their
corresponding tokens.

Flavor (1) includes a more general form of an-
chored semantic graphs, characterized by relaxing
the correspondence between nodes and tokens, al-
lowing arbitrary parts of the sentence (e.g. sub-
token or multi-token sequences) as node anchors,
as well as multiple nodes anchored to overlapping
sub-strings. These graphs afford greater flexibility
in the representation of meaning contributed by, for
example, (derivational) affixes or phrasal construc-
tions and facilitate lexical decomposition (e.g. of
causatives or comparatives).

Finally, Flavor (2) semantic graphs do not con-
sider the correspondence between nodes and the
surface string as part of the representation of mean-
ing (thus backgrounding notions of derivation and
compositionality). Such semantic graphs are sim-
ply unanchored.

While different flavors refer to formally defined
sub-classes of semantic graphs, we reserve the
term framework for specific linguistic approaches
to graph-based meaning representation (typically
encoded in a particular graph flavor, of course).

3 Meaning Representation Frameworks

The shared task combines five frameworks for
graph-based meaning representation, each with its
specific formal and linguistic assumptions. This
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A similar technique almost impossible apply other crop such as cotton soybean rice
DT JJ NN RB JJ VB JJ NNS JJ IN NN NNS NN
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similar technique be almost impossible apply other crop as cotton soybean and rice
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Figure 1: Bi-lexical semantic dependencies for the running example A similar technique is almost impossible to
apply to other crops, such as cotton, soybeans and rice: DELPH-IN MRS Bi-Lexical Dependencies (DM; top) and
Prague Semantic Dependencies (PSD; bottom).

section reviews the frameworks and presents ex-
ample graphs for sentence #20209013 from the
venerable Wall Street Journal (WSJ) Corpus from
the Penn Treebank (PTB; Marcus et al., 1993):

(1) A similar technique is almost impossible to
apply to other crops, such as cotton, soybeans
and rice.

The example exhibits some interesting linguistic
complexity, including what is called a tough adjec-
tive (impossible), a scopal adverb (almost), a tripar-
tite coordinate structure, and apposition. The ex-
ample graphs in Figures 1 through 3 are presented
in order of (arguably) increasing ‘abstraction’ from
the surface string, i.e. ranging from ordered Fla-
vor (0) to unanchored Flavor (2).

Two of the frameworks in the shared task present
simplifications into bi-lexical semantic dependen-
cies (i.e. lossy reductions) of independently de-
veloped syntactico-semantic annotations. These
representations were first prepared for the Seman-
tic Dependency Parsing (SDP) tasks at the 2014
and 2015 SemEval campaigns (Oepen et al., 2014,
2015). The SDP graph banks were originally re-
leased through the Linguistic Data Consortium
(as catalogue entry LDC 2016T10); they comprise
four distinct bi-lexical semantic dependency frame-
works, from which the MRP 2019 shared task se-
lects two (a) DELPH-IN MRS Bi-Lexical Depen-
dencies (DM) and (b) Prague Semantic Dependen-
cies (PSD).1

1Note, however, that the parsing problem for these frame-
works is harder in the current shared task than in the ealier

DELPH-IN MRS Bi-Lexical Dependencies
The DM bi-lexical dependencies (Ivanova et al.,
2012) originally derive from the underspecified
logical forms computed by the English Resource
Grammar (Flickinger et al., 2017; Copestake et al.,
2005). These logical forms are not in and of them-
selves semantic graphs (in the sense of §2 above)
and are often refered to as English Resource Se-
mantics (ERS; Bender et al., 2015). The underlying
grammar is rooted in the general linguistic theory
of Head-Driven Phrase Structure Grammar (HPSG;
Pollard and Sag, 1994).

Ivanova et al. (2012) propose a two-stage con-
version from ERS into bi-lexical semantic depen-
dency graphs, where ERS logical forms are first
recast as Elementary Dependency Structures (EDS;
Oepen and Lønning, 2006; see below) and then
further simplified into pure bi-lexical semantic de-
pendencies, dubbed DELPH-IN MRS Bi-Lexical
Dependencies (or DM). As a Flavor (0) framework,
graph nodes in DM are restricted to surface tokens.
But DM graphs are neither lexically fully covering
nor rooted trees, i.e. some tokens do not contribute
to the graph, and for some nodes there are multi-
ple incoming edges. In the example DM graph in
Figure 1, technique semantically depends on the
determiner (the quantificational locus), the modi-
fier similar, and the predicate apply. Conversely,
the predicative copula, infinitival to, and the vacu-

SDP 2014 and 2015 tasks, because gold-standard tokeniza-
tion, lemmas, and parts of speech are not available as part
of the parser input data. Also, some minor lemmatization
errors have been corrected for both the DM and PSD graphs,
in comparison to the original SDP releases.

3



ous preposition marking the deep object of apply
(in the top of Figure 1) are analyzed as not hav-
ing a semantic contribution of their own. The top
node in the DM graph is the degree adverb almost,
reflecting the underlying logical form, where al-
most has operator-like status scoping over the full
proposition.

In DM, edge labels predominantly indicate se-
mantic argument positions (ARG1, ARG2, . . . ) into
the relation corresponding to their source node, but
there are some more specialized edge labels too,
like BV (bound variable) as a reflection of quan-
tification in the underlying logic, conj and others
for coordinate structures, and mwe to structurally
tie together multi-token predicates. Node labels
are tripartite, combining the lemmatized surface
form with a part of speech (pos) and a framework-
specific frame identifier. Together, these encode
grammaticalized word sense distinctions, such as
those between the nominal vs. verbal usages of
crop or the distinct valency frames for three-place
apply . . . to (e.g. paint, to the wall) vs. binary apply
for (e.g. promotion).

Prague Semantic Dependencies Another in-
stance of simplification from richer syntactico-
semantic representations into Flavor (0) bi-lexical
semantic dependencies is the reduction of tec-
togrammatical trees (or t-trees) from the linguis-
tic school of Functional Generative Description
(FGD; Sgall et al., 1986; Hajič et al., 2012) into
what are called Prague Semantic Dependencies (or
PSD). Miyao et al. (2014) sketch the nature of this
conversion, which essentially collapses empty (or
generated, in FGD terminology) t-tree nodes with
corresponding surface nodes and forward-projects
incoming dependencies onto all members of para-
tactic constructions, e.g. the appositive and coordi-
nate structures in the bottom of Figure 1.

The PSD graph for our running example has
many of the same dependency edges as the DM
one (albeit using a different labeling scheme and
inverse directionality in a few cases), but it analyzes
the predicative copula as semantically contentful
and does not treat almost as ‘scoping’ over the en-
tire graph. The ADDR.m(ember) argument relation
to the apply predicate has been recursively propa-
gated to both elements of the apposition and to all
members of the coordinate structure. Accordingly,
edge labels in PSD are not in general functional,
in the sense of allowing multiple outgoing edges
from one node with the same label.

In FGD, role labels (called functors) ACT(or),
PAT(ient), ADDR(essee), ORIG(in), and EFF(ect)
indicate ‘participant’ positions in an underlying va-
lency frame and, thus, correspond more closely to
the numbered argument positions in other frame-
works than their names might suggest.2 The PSD
annotations are grounded in a machine-readable
valency lexicon (Urešová et al., 2016), and the
frame values on verbal nodes in Figure 1 indi-
cate specific verbal senses in the lexicon.

Elementary Dependency Structures Elemen-
tary Dependency Structures (EDS; Oepen and
Lønning, 2006) encode English Resource Seman-
tics in a variable-free semantic dependency graph—
not limited to bi-lexical dependencies—where
graph nodes correspond to logical predications and
edges to labeled argument positions. The EDS
conversion from underspecified logical forms to
directed graphs discards partial information on se-
mantic scope from the full ERS, which makes these
graphs abstractly—if not linguistically—similar to
Abstract Meaning Representation (see below).

Nodes in EDS are in principle independent of
surface lexical units, but for each node there is an
explicit, many-to-many anchoring onto sub-strings
of the underlying sentence. Thus, EDS instanti-
ates Flavor (1) in our hierarchy of different for-
mal types of semantic graphs. Breaking free of
the Flavor (0) one-to-one correspondence between
graph nodes and surface lexical units enables EDS
to more adequately represent, among other things,
lexical decomposition (e.g. of comparatives), sub-
lexical or construction semantics, and covert (e.g.
elided) meaning contributions. All nodes in the
example EDS in the top of Figure 2 make explicit
their anchoring onto sub-strings of the underlying
input, for example span 〈2 : 9〉 for similar.

In the EDS analysis for the running ex-
ample, nodes representing covert quantifiers
(e.g. on bare nominals, labeled udef q3), the
two-place such+as p relation, as well as the
implicit conj(unction) relation (which reflects re-
cursive decomposition of the coordinate structure

2Accordingly, multiple instances of the same core partic-
ipant role—as ADDR.m in Figure 1—will only occur with
propagation of dependencies into paratactic constructions.

3In the EDS example in the top of Figure 2, all nodes
corresponding to instances of bare ‘nominal’ meanings are
bound by a covert quantificational predicate, including the
group-forming implicit conj and and c nodes that represent
the nested, binary-branching coordinate structure. This prac-
tice of uniform quantifier introduction in ERS is acknowledged
as “particularly exuberant” by Steedman (2011, p. 21).
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Figure 2: Semantic dependency graphs for the running example A similar technique is almost impossible to apply
to other crops, such as cotton, soybeans and rice: Elementary Dependency Structures (EDS; top) and Universal
Conceptual Cognitive Annotation (UCCA; bottom).

into binary predications) do not correspond to indi-
vidual surface tokens (but are anchored on larger
spans, overlapping with anchors from other nodes).
Conversely, the two nodes associated with similar
indicate lexical decomposition as a comparative
predicate, where the second argument of the comp
relation (the ‘point of reference’) remains unex-
pressed in Example (1).

Universal Conceptual Cognitive Annotation
Universal Cognitive Conceptual Annotation
(UCCA; Abend and Rappoport, 2013) is based
on cognitive linguistic and typological theo-
ries, primarily Basic Linguistic Theory (Dixon,
2010/2012). The shared task targets the UCCA
foundational layer, which focuses on argument
structure phenomena (where predicates may be
verbal, nominal, adjectival, or otherwise). This
coarse-grained level of semantics has been shown
to be preserved well across translations (Sulem
et al., 2015). It has also been successfully used

for improving text simplification (Sulem et al.,
2018b), as well as to the evaluation of a number
of text-to-text generation tasks (Birch et al., 2016;
Sulem et al., 2018a; Choshen and Abend, 2018).

The basic unit of annotation is the scene, denot-
ing a situation mentioned in the sentence, typically
involving a predicate, participants, and potentially
modifiers. Linguistically, UCCA adopts a notion of
semantic constituency that transcends pure depen-
dency graphs, in the sense of introducing separate,
unlabeled nodes, called units. One or more labels
are assigned to each edge. Formally, UCCA has a
Type (1) flavor, where leaf (or terminal) nodes of
the graph are anchored to possibly discontinuous
sequences of surface sub-strings, while interior (or
‘phrasal’) graph nodes are formally unanchored.

The UCCA graph for the running example (see
the bottom of Figure 2) includes a single scene,
whose main relation is the Process (P) evoked by
apply. It also contains a secondary relation labeled
Adverbial (D), almost impossible, which is broken
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Figure 3: Abstract Meaning Representation (AMR) for
the running example A similar technique is almost im-
possible to apply to other crops, such as cotton, soy-
beans and rice.

down into its Center (C) and Elaborator (E); as
well as two complex arguments, labeled as Partici-
pants (A). Unlike the other frameworks in the task,
the UCCA foundational layer integrates all surface
tokens into the graph, possibly as the targets of
semantically bleached Function (F) and Punctua-
tion (U) edges. UCCA graphs need not be rooted
trees: Argument sharing across units will give rise
to reentrant nodes much like in the other frame-
works. For example, technique in Figure 2 is both
a Participant in the scene evoked by similar and
a Center in the parent unit. UCCA in principle
also supports implicit (unexpressed) units which
do not correspond to any tokens, but these are cur-
rently excluded from parsing evaluation and, thus,
suppressed in the UCCA graphs distributed in the
context of the shared task.

Abstract Meaning Representation Finally, the
shared task includes Abstract Meaning Representa-
tion (AMR; Banarescu et al., 2013), which in the
MRP hierarchy of different formal types of seman-
tic graphs (see §2 above) is simply unanchored, i.e.
represents Flavor (2). The AMR framework is inde-
pendent of particular approaches to derivation and
compositionality and, accordingly, does not make
explicit how elements of the graph correspond to
the surface utterance. Although most AMR pars-
ing research presupposes a pre-processing step that
‘aligns’ graph nodes with (possibly discontinuous)
sets of tokens in the underlying input, this anchor-

ing is not part of the meaning representation proper.
At the same time, AMR frequently invokes lexi-

cal decomposition and normalization towards ver-
bal senses, such that AMR graphs often appear to
‘abstract’ furthest from the surface signal. Since
the first general release of an AMR graph bank in
2014, the framework has provided a popular tar-
get for data-driven meaning representation parsing
and has been the subject of two consecutive tasks
at SemEval 2016 and 2017 (May, 2016; May and
Priyadarshi, 2017).

The AMR example graph in Figure 3 has a topo-
logy broadly comparable to EDS, with some no-
table differences. Similar to the UCCA example
graph (and unlike EDS), the AMR representation
of the coordinate structure is flat. Although most
lemmas are linked to derivationally related forms
in the sense lexicon, this is not universal, as seen
by the nodes corresponding to similar and such as,
which are labeled as resemble-01 and exemplify-01,
respectively. These sense distinctions (primarily
for verbal predicates) are grounded in the inventory
of predicates from the PropBank lexicon (Kings-
bury and Palmer, 2002; Hovy et al., 2006).

Role labels in AMR encode semantic argument
positions, with the particular roles defined accord-
ing to each PropBank sense, though the counting in
AMR is zero-based such that the ARG1 and ARG2
roles in Figure 3 often correspond to ARG2 and
ARG3, respectively, in the EDS of Figure 2. Prop-
Bank distinguishes such numbered arguments from
non-core roles labeled from a general semantic in-
ventory, such as frequency, duration, or domain.

Figure 3 also shows the use of inverted edges
in AMR, for example ARG1-of and mod. These
serve to allow annotators (and in principle also pars-
ing systems) to view the graph as a tree-like struc-
ture (with occasional reentrancies) but are formally
merely considered notational variants. Therefore,
the MRP rendering of the AMR example graph
also provides an unambiguous indication of the
underlying, normalized graph: Edges with a label
component shown in parentheses are to be reversed
in normalization, e.g. representing an actual ARG0
edge from resemble-01 to technique or a domain
edge from other to crop.

Given the non-compositionality of AMR anno-
tation, AMR allows the introduction of semantic
concepts which have no explicit lexicalization in
the text, for example the et-cetera element in the
coordinate structure in Figure 3. Conversely, like
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DM PSD EDS UCCA AMR

Flavor 0 0 1 1 2

T
R

A
IN Text Type newspaper newspaper newspaper mixed mixed

Sentences 35,656 35,656 35,656 6,572 56,240
Tokens 802,717 802,717 802,717 138,268 1,000,217

T
E

ST

Text Type mixed mixed mixed mixed mixed
Sentences 3,359 3,359 3,359 1,131 1,998

Tokens 64,853 64,853 64,853 21,647 39,520

Table 1: Quantitative summary of gold-standard training and evaluation data for the five frameworks.

in the other frameworks (except UCCA), some sur-
face tokens are analyzed as semantically vacuous.
For example, parallel to the PSD graph in Figure 1,
there is no meaning contribution annotated for the
determiner a (let alone for covert determiners in
bare nominals, as are made explicit as quantifica-
tional nodes in EDS).

4 Task Setup

The following paragraphs summarize the ‘logistics’
of the MRP 2019 shared task, including data and
software provided to participants, the schedule, and
rules of participation.

Training and Evaluation Data Table 1 summa-
rizes the primary training and evaluation data pro-
vided to task participants. The DM and PSD data
sets are annotations over the exact same selection
of texts, which for the eariler SemEval tasks have
been aligned at the sentence and token levels. As
DM was originally derived from EDS, the EDS
graphs also cover the same texts. The training data
for these frameworks draws from a homogeneous
source, WSJ Sections 00–20 from the PTB. As a
common point of reference, a sample of 100 WSJ
sentences annotated in all five frameworks is avail-
able for public download from the task web site
(see §9 below).

UCCA training annotations are over web reviews
from the English Web Treebank (LDC 2012T13),
and from English Wikipedia articles on celebri-
ties. While in principle UCCA structures are not
confined to a single sentence (about 0.18 percent
of edges cross sentence boundaries), in the MRP
context passages are split to individual sentences,
discarding inter-relations between them, to create
a standard setting across the frameworks.

AMR annotations are drawn from a wide vari-
ety of texts, with the majority of sentences coming
from on-line discussion forums. The training cor-
pus also contains newswire, folktales, fiction, and

Wikipedia articles.

Table 2 provides a quantitative side-by-side com-
parison of the training data, using some of the
graph-theoretic properties discussed by Kuhlmann
and Oepen (2016); see §2 for semi-formal defini-
tions (the row indices in Table 2 correspond to the
numbering used by Kuhlmann and Oepen, 2016).
The table indicates clear differences among the
frameworks. The underlying input strings for AMR
(where text selection is more varied), for exam-
ple, are shorter; and EDS and UCCA have many
more nodes per token, on average, than the other
frameworks—reflecting lexical decomposition and
‘phrasal’ grouping, respectively, as evident in Fig-
ure 2. In some respects, the PSD and UCCA graphs
are more tree-like than graphs in the other frame-
works, for example in their proportions of actual
rooted trees, the frequencies of reentrant nodes, and
the lower percentages of multi-rooted structures.
At the same time, PSD exhibits comparatively high
average and maximal treewidth. Finally, the proper-
ties applicable to the ordered bi-lexical frameworks
only are largely comparable, though PSD edges on
average span over larger distances; propagation of
dependencies into paratactic structures observed in
Figure 1 may well contribute substantially to this
quantitative difference.

Evaluation data for the five frameworks (also
summarized in Table 1) draws on many of the same
domains and genres, with two major additions: For
DM, PSD, and EDS (where the training data is
homogeneously comprised of newspaper texts), a
little more than half of the evaluation data are taken
from ‘out-of-domain’ texts, viz. a balanced sample
of documents from the Brown Corpus (Francis and
Kučera, 1982). Additionally, a fresh random se-
lection of 100 sentences from the novel The Little
Prince (by Antoine de Saint-Exupéry) was manu-
ally annotated with gold-standard semantic graphs
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DM PSD EDS UCCA AMR−1

C
O

U
N

T
S (02) Average Tokens per Graph 22.51 22.51 22.51 21.03 17.78

(03) Average Nodes per Token 0.77 0.64 1.29 1.37 0.65
(04) Number of Edge Labels 59 90 10 15 101

T
R

E
E

N
E

SS

(05) %g Rooted Trees 2.31 42.26 0.09 34.83 22.24
(06) %g Treewidth One 69.82 43.08 68.99 41.57 50.00
(07) Average Treewidth 1.30 1.61 1.31 1.61 1.56
(08) Maximal Treewidth 3 7 3 4 5
(09) Average Edge Density 1.019 1.073 1.015 1.053 1.092
(10) %n Reentrant 27.43 11.41 32.78 4.98 19.89
(11) %g Cyclic 0.00 0.00 0.12 0.00 0.38
(12) %g Not Connected 6.57 0.70 1.74 0.00 0.00
(13) %g Multi-Rooted 97.47 40.60 99.93 0.00 71.37

O
R

D
E

R (15) Average Edge Length 2.684 3.320 – – –
(16) %g Noncrossing 69.21 64.61 – – –
(17) %g Pagenumber Two 99.59 98.08 – – –

Table 2: Contrastive graph statistics for the MRP 2019 training data using a subset of the properties defined by
Kuhlmann and Oepen (2016). Here, %g and %n indicate percentages of all graphs and nodes, respectively, in each
framework; AMR−1 refers to the normalized form of the graphs, with inverted edges reversed, as discussed in §3.

in all five frameworks.4 This subset of the evalu-
ation data is available for download from the task
site.

Because some of the semantic graph banks in-
volved in the shared task had originally been re-
leased by the Linguistic Data Consortium (LDC),
the training data was made available to task par-
ticipants by the LDC under no-cost evaluation li-
censes. Upon completion of the competition, all
task data (including system submissions and eval-
uation results) are being prepared for general re-
lease through the LDC, while those subsets that
are copyright-free will also become available for
direct, open-source download.

Additional Resources For reasons of compara-
bility and fairness, the shared task constrained
which additional data or pre-trained models (e.g.
corpora, word embeddings, lexica, or other anno-
tations) can be legitimately used besides the re-
sources distributed by the task organizers. The
overall goal was that all participants should in prin-
ciple be able to use the same range of data. How-
ever, to keep such constraints to the minimum re-
quired, a ‘white-list’ of legitimate resources was
compiled from nominations by participants (with a
cut-off date six weeks before the end of the evalua-

4Annotations of the full novel have long served as a com-
mon reference point for AMR, and gold-standard DM and
EDS graphs could be converted from the ERS inter-annotator
agreement study by Bender et al. (2015). For PSD and UCCA,
the 100-sentence subset used for MRP evaluation has been
annotated specifically for the shared task.

tion period).5 Thus, the task design reflects what
is at times called a closed track, where participants
are constrained in which additional data and pre-
trained models can be used in system development.

At a technical level, training (and evaluation)
data were distributed in two formats, (a) as se-
quences of ‘raw’ sentence strings and (b) in pre-
tokenized, part-of-speech–tagged, lemmatized, and
syntactically parsed form. For the latter, premium-
quality English morpho-syntactic analyses were
provided to participants, described in more detail
below. These parser outputs are referred to as the
MRP 2019 morpho-syntactic companion trees. Ad-
ditional companion data available to participants
includes automatically generated reference anchor-
ings (commonly called ‘alignments’ in AMR par-
sing) for the AMR graphs in the training data, ob-
tained from the JAMR and ISI tools of Flanigan
et al. (2016) and Pourdamghani et al. (2014), re-
spectively.

Companion Dependency Trees The optional
morpho-syntactic trees were generated from the
combination of a rule-based PTB-style tokenizer
and a high-accuracy dependency parser trained on
the union of (the majority of) available English syn-
tactic treebanks. Notably, we applied an updated
version of the converter by Schuster and Manning
(2016) to the PTB annotations of the Brown Cor-
pus (Francis and Kučera, 1982) and of the WSJ

5See http://svn.nlpl.eu/mrp/2019/public/
resources.txt for the full list of seventeen generally
available third-party resources, including a broad range of
large English corpora and distributed word representations.
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Corpus, as well as to the PTB-style annotations
of the GENIA Corpus (Tateisi et al., 2005). This
conversion targets Universal Dependencies (UD;
McDonald et al., 2013; Nivre, 2015) version 2.x, so
that the resulting gold-standard annotations could
be concatenated with the UD English Web Tree-
bank (Silveira et al., 2014), for a total of 2.2 million
tokens annotated with lemmas, Universal and PTB-
style parts of speech, and UD labeled dependency
trees.

We then trained the currently best-performing
UDPipe architecture (Straka, 2018; Straka et al.,
2019), which implements a joint part-of-speech
tagger, lemmatizer, and dependency parser employ-
ing contextualized BERT embeddings. To avoid
overlap of morpho-syntactic training data with the
texts underlying the semantic graphs of the shared
task, we performed five-fold jack-knifing on the
WSJ and EWT corpora. For compatibility with the
majority of the training data, the ‘raw’ input strings
for the MRP semantic graphs were tokenized using
the PTB-style REPP rules of Dridan and Oepen
(2012) and input to UDPipe in pre-tokenized form.
Whether as merely a source of state-of-the-art PTB-
style tokenization, or as a vantage point for ap-
proaches to meaning representation parsing that
start from explicit syntactic structure, the optional
morpho-syntactic companion data offers commu-
nity value in its own right.

Graph Interchange Format Besides differ-
ences in anchoring, the frameworks also vary in
how they label nodes and edges, and to what de-
gree they allow multiple edges between two nodes,
multiple outgoing edges of the same label, or multi-
ple instances of the same property on a node. Node
labels for Flavor (0) graphs typically are lemmas,
optionally combined with a (morpho-syntactic) part
of speech and a (syntactico-semantic) frame (or
sense) identifier. Node labels for the other graph
flavors tend to be more abstract, i.e. are interpreted
as concept or relation identifiers (where for the
vast majority, of course, there also is a system-
atic relationship to lemmas, lexical categories, and
(sub-)senses). Graph nodes in UCCA are formally
unlabeled, and anchoring is used to relate leaf
nodes of these graphs to input sub-strings. Con-
versely, edge labels in all cases come from a fixed
and relatively small inventory of (semantic) argu-
ment names, though there is stark variation in la-
bel granularity, ranging between about a dozen in
UCCA and around 90 or 100 in PSD and AMR,

respectively; see Table 2. The shared task has, for
the first time, repackaged the five graph banks into
a uniform and normalized abstract representation
with a common serialization format.

The common interchange format for semantic
graphs implements the abstract model of Kuhlmann
and Oepen (2016) as a JSON-based serialization for
graphs across frameworks. This format describes
general directed graphs, with structured node and
edge labels, and optional anchoring and ordering
of nodes. JSON is easily manipulated in all pro-
gramming languages and offers parser developers
the option of ‘in situ’ augmentation of the graph
representations from the task with system-specific
additional information, e.g. by adding private prop-
erties to the JSON objects. The MRP interchange
format is based on the JSON Lines format, where
a stream of objects is serialized with line breaks as
the separator character.

Each MRP graph is represented as a JSON ob-
ject with top-level properties tops, nodes, and
edges, reflecting the definitions in §2 above.
Additionally, an input property on all graphs
presents the ‘raw’ surface string corresponding
to this graph; thus, parser inputs for the task
are effectively assumed to be sentence-segmented
but not pre-tokenized. Additional information
about each graph is provided as properties id
(a string), flavor (an integer in the range 0–
2), framework (a string), version (a decimal
number), and time (a string, encoding when the
graph was serialized).

The nodes and edges values on graphs each
are list-valued, but the order among list elements is
only meaningful for the nodes of Flavor (0) graphs.
Node objects have an obligatory id property (an
integer) and optional properties called label,
properties and values, as well as anchors.
The label (a string) has a distinguished status in
evaluation; the properties and values are
both list-valued, such that elements between the
lists correspond by position. Together, the two
lists present a framework-specific, non-recursive
attribute–value matrix (where duplicate properties
are in principle allowed). The anchors list, if
present, contains pairs of from–to sub-string in-
dices into the input string of the graph. Finally,
the edge objects in the top-level edges list all
have two integer-valued properties: source and
target, which encode the start and end nodes,
respectively, to which the edge is incident. All
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edges in the MRP collection further have a (string-
valued) label property, although formally this
is considered optional. Parallel to graph nodes,
edges can carry framework-specific attributes
and values lists; in MRP 2019, only the UCCA
framework makes use of edge attributes, viz. a
boolean remote flag (corresponding to dashed
edges in the bottom of Figure 2).

Rules of Participation The shared task was first
announced in early March 2019, the initial release
of the unified training data became available in mid-
April, and the evaluation period ran between July
8 and 25, 2019; during this period, teams obtained
the unannotated input strings for the evaluation data
and had available a little more than two weeks to
prepare and submit parser outputs. Submission of
semantic graphs for evaluation was through the on-
line CodaLab infrastructure, which proved a sub-
optimal choice—in part due to limited transparency
and customization options of the service, in part
because technical problems on the CodaLab site
caused the entire infrastructure to be unavailable
for five days during the MRP evaluation period.

Teams were allowed to make repeated submis-
sions, but only the most recent successful upload
to CodaLab within the evaluation period was con-
sidered for the official, primary ranking of sub-
missions. Task participants were encouraged to
process all inputs using the same general parsing
system, but—owing to inevitable fuzziness about
what constitutes ‘one’ parser—this constraint was
not formally enforced. Unlike in recent years of
other CoNLL shared tasks, processing of the evalu-
ation data was not tied to a uniform virtualization
platform (such as TIRA; Potthast et al., 2014), be-
cause GPU computing resources are a prerequisite
to modern, neural parsing architectures but are not
currently available on such platforms.

5 Evaluation

For each of the individual frameworks, there
are established ways of evaluating the quality of
parser outputs in terms of graph similarity to gold-
standard target representations called EDM (Dri-
dan and Oepen, 2011), SMATCH (Cai and Knight,
2013), SDP (Oepen et al., 2014), and UCCA (Her-
shcovich et al., 2019). There is broad similarity
between the framework-specific evaluation met-
rics used to date, but also some subtle differences.
Meaning representation parsing is commonly eval-
uated in terms of a graph similarity F1 score at

DM PSD EDS UCCA AMR

Top Nodes 3 3 3 3 3
Node Labels 3 3 3 7 3
Node Properties 3 3 3 7 3
Node Anchoring 3 3 3 3 7
Labeled Edges 3 3 3 3 3
Edge Attributes 7 7 7 3 7

Table 3: Different tuple types per framework.

the level of individual node–edge–node and node–
property–value triples. Variations in extant metrics
relate to among others, how node correspondences
across two graphs are established, whether edge
labels can optionally be ignored in triple compari-
son, and how top nodes (and other node properties,
including anchoring) are evaluated.

Background In a nutshell, semantic graphs in all
frameworks can be broken down into ‘atomic’ com-
ponent pieces, i.e. tuples capturing (a) top nodes,
(b) node labels, (c) node properties, (d) node an-
choring, (e) labeled edges, and (f) edge attributes.6

Not all tuple types apply to all frameworks, how-
ever, as is summarized in Table 3.

To evaluate any of these tuple types, a correspon-
dence relation must be established between nodes
(and edges) from the gold-standard vs. the system
graphs. This relation presupposes a notion of node
(and edge) identities, which is where the various fla-
vors and frameworks differ. In bi-lexical (semantic)
dependencies—e.g. DM and PSD, our Flavor (0)—
the nodes are surface lexical units (tokens); their
identities are uniquely determined as the character
range of the corresponding sub-strings (rather than
by token indices, which would not be robust to to-
kenization mis-matches). In the Flavor (1) graphs
(EDS and UCCA), multiple distinct nodes can have
overlapping or even identical anchors; in EDS, for
example, the semantics of an adverb like today is
decomposed into four nodes, all anchored to the
same substring:

implicit q x : time n(x) ∧
today a 1(x) ∧ temp loc(e, x) .

The standard EDS and UCCA evaluation metrics
determine node identities through anchors (and

6In principle, one could further view unlabeled edges and
their labels as two distinct pieces of information, but the task
design shies away from such formal purity for both linguistic
and practical reasons. First, it does not appear desirable to
try and give credit for edges with incompatible labels (e.g. an
ARG1 with an ARG3); and, second, it would make the search
for node-to-node correspondences somewhat less tractable.
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transitively the union of child anchors, in the case
of UCCA) and allow many-to-many correspon-
dences across the gold-standard and system graphs
(Oepen et al., 2014; Hershcovich et al., 2019). Fi-
nally, as a Flavor (2) framework, nodes in AMR
graphs are unanchored. Thus, node-to-node cor-
respondences need to be established (as one-to-
one equivalence classes of node identifiers), to
maximize the set of shared tuples between each
pair of graphs. Abstractly, this is an instance of
the NP-hard maximum common edge subgraph
isomorphism problem (where node-local tuples
can be modeled as ‘pseudo-edges’ with globally
unique target nodes). The standard SMATCH
scorer for AMR approximates a solution through
a hill-climbing search for high-scoring correspon-
dences, with a fixed number of random restarts (Cai
and Knight, 2013).

Unified Evaluation For the shared task, we
have implemented a generalization of existing,
framework-specific metrics, along the lines above.
Our goal is for the unified MRP metric to (a) be ap-
plicable across different flavors of semantic graphs,
(b) enable labeled and unlabeled variants, as much
as possible, (c) not require corresponding node
anchoring, but (d) minimize the impact of non-
deterministic approximations, and (e) take advan-
tage of anchoring information when available. The
official MRP metric for the task is the average F1

score across frameworks over all tuple types.
The basic principle is that all information pre-

sented in the MRP graph representations is scored
with equal weight, i.e. all applicable tuple types
for each framework. There is no special status
(or ‘primacy’) to anchoring in this scheme: Unlike
the original SDP, EDM, and UCCA metrics, the
MRP scorer searches for a correspondence rela-
tion between the gold-standard and system graphs
that maximizes tuple overlap. Thus, the MRP ap-
proach is abstractly similar to SMATCH, but using
a search algorithm that considers the full range of
different tuple types and finds an exact solution in
the majority of cases.7

Anchoring (for all frameworks but AMR) in this
scheme is treated on a par with node labels and
properties, labeled edges, and edge attributes. Like-
wise, the pos and frame (or sense) node proper-
ties in DM and PSD are scored with equal weight as

7The MRP scorer further avoids a few known implementa-
tion issues in SMATCH related to over-counting, incomplete
normalization, and top nodes.

the node labels (which are lemmas for the bi-lexical
semantic graphs), given that the three properties
jointly determine the semantic predicate.

For AMR evaluation, there is an exception to
the above principle that all information in MRP
graphs be scored equally: The MRP encodings of
AMR graphs preserve the tree-like topology used
in AMR annotations, using ‘inverted’ edges with la-
bels like ARG0-of (see §3 above). To make explicit
which AMR edges actually are inverted, the MRP
encoding in JSON provides an additional normal
property, which is present only an inverted edges
and provides the effective ‘base’ label (e.g. ARG0).
AMR graphs are standardly evaluated in normal-
ized form, i.e. with inverted edges restored to their
‘base’ directionality and label.

Software Support MRP scoring is implemented
in the open-source mtool software (the Swiss
Army Knife of Meaning Representation), which is
hosted in a public Microsoft GitHub repository to
stimulate community engagement.8 mtool imple-
ments a refinement of the maximum common edge
subgraph (MCES) algorithm by McGregor (1982),
initializing and scheduling candidate node-to-node
correspondences based on pre-computed per-node
rewards and upper bounds on adjacent edge corre-
spondences.9 In addition to the cross-framework
MRP metric, the tool also provides reference im-
plementations of the SDP, EDM, SMATCH, and
UCCA metrics, in the case of SDP and UCCA
generalized to support character-based anchoring
(rather than using token indices).

Value comparison in MRP evaluation is robust
to ‘uninteresting’ variation, i.e. different encodings
of essentially the same information. Specifically,
literal values will always be compared as case-
insensitive strings, such that for example 42 (an
integer) and "42" (a string) are considered equiv-
alent, as are "Pierre" and "pierre"; this ap-
plies to node and edge labels, node properties, and
edge attributes. Anchor values are normalized for
comparison into sets of non-whitespace character
positions. For example, assuming the underlying

8See https://github.com/cfmrp/mtool for ac-
cess to the software and available documentation.

9For the ordered DM and PSD graphs, an optimal initializa-
tion regarding node-local information can be efficiently com-
puted, using an adaptation of the dynamic programming algo-
rithm for minimum-edit–distance problems. For these graphs,
scheduling of variant correspondences is further constrained
to search for local variations first, i.e. alternate node–node
pairings are considered in increasing node distance relative to
the initial candidate correspondences.
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Teams DM PSD EDS UCCA AMR MTL Approach Reference

ERG∦§† 3 7 3 7 7 7 Composition Oepen and Flickinger (2019)
TUPA§† 3 3 3 3 3 7 Transition Hershcovich and Arviv (2019)
TUPA§† 3 3 3 3 3 3 Transition Hershcovich and Arviv (2019)

HIT-SCIR 3 3 3 3 3 7 Transition Che et al. (2019)
SJTU–NICT 3 3 3 3 3 7 Factorization Li et al. (2019)
SUDA–Alibaba 3 3 3 3 3 (3) Factorization Zhang et al. (2019c)
Saarland 3 3 3 3 3 7 Composition Donatelli et al. (2019)
Hitachi 3 3 3 3 3 (3) Factorization Koreeda et al. (2019)
ÚFAL MRPipe 3 3 3 3 3 7 Transition Straka and Straková (2019)
ShanghaiTech 3 3 3 7 3 7 Factorization Wang et al. (2019)
Amazon 3 3 7 7 3 7 Factorization Cao et al. (2019)
JBNU 3 3 7 3 7 7 Factorization Na et al. (2019)
SJTU 3 3 3 3 3 3 Transition Bai and Zhao (2019)
ÚFAL–Oslo 3 3 3 7 7 7 Transition Droganova et al. (2019)
HKUST 3 3 7 3 7 ?
Bocharov 7 7 7 7 3 ?

ÚFAL MRPipe§ 3 3 3 3 3 7 Transition Straka and Straková (2019)
Peking∦ 3 3 3 3 7 7 Factorization Chen et al. (2019)
ÚFAL–Oslo§ 3 3 3 3 3 7 Transition Droganova et al. (2019)
CUHK§ 3 3 3 3 3 3 Transition Lai et al. (2019)
Anonymous§ 7 3 7 7 7 ?
Peking∦§ 3 3 3 3 7 7 Composition Chen et al. (2019)

Table 4: Overview of participating teams. The top and bottom blocks represent ‘unofficial’ submissions, which are
not considered for the primary ranking because they used training data beyond the white-listed resources (indicated
by the symbol “∦”), arrived after the closing deadline (“§”), or were prepared by the task co-organizers as points of
reference (“†”). The secondary ranking (see §6) considers all submissions by genuine task participants (excluding
co-organizers), i.e. both the middle and bottom blocks (but not the ‘reference’ systems from the top block).

input string contains whitespace at character po-
sition 6, the following are considered equivalent:
{〈0 : 13〉} and {〈0 : 6〉 , 〈7 : 13〉}.

Furthermore, character positions corresponding
to basic punctuation marks in the left or right pe-
riphery of a normalized anchor are discarded for
comparison:

. ? ! : ; , “ " ” ‘ ' ’ ( ) [ ] { }

6 Submissions and Results

The task received submissions from sixteen teams,
plus another two ‘reference’ submissions prepared
by the task co-organizers (Hershcovich and Arviv,
2019; Oepen and Flickinger, 2019). These refer-
ence points are not considered in the overall rank-
ing. Non-reference submissions are further sub-
divided into ‘official’ and ‘unofficial’ ones, where
the latter are characterized by either arriving af-
ter the closing deadline of the evaluation period or
using training data beyond the official resources
provided (and white-listed) for the task; see §4
above.

Table 4 provides an inventory of participating
teams, where the top block corresponds to ref-
erence submissions from the co-organizers, and

the bottom block shows unofficial submissions by
task participants. In two cases, participants dis-
covered serialization or other technical issues in
their submissions shortly after the closing date and
provided corrected parser outputs (ÚFAL MRPipe
and ÚFAL–Oslo). The two submissions from the
Peking team are considered unofficial because they
incorporate EDS-specific training data beyond the
white-listed resources for the shared task (see §4
above).10 And, finally, the Anonymous and CUHK
submissions only became available a few days after
the closing date of the evaluation period.

It is evident in Table 4 that some submissions are
partial, in the sense of not providing parser outputs
for all target frameworks. Albeit not the ultimate
goal of the cross-framework shared task design,
such partiality was explicitly allowed to lower the
technical barrier to entry and make it possible to
include framework-specific parsers in the compari-
son. Seven (of thirteen) of the official submissions,
as well as the two TUPA baselines, provide seman-
tic graphs for all five frameworks. Three highly par-

10In the case of the factorization-based Peking submission,
the extra training data is limited to gold-standard tokenization
from the original EDS annotations, which in hindsight could
in principle have been white-listed.
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tial submissions declined the invitation to submit
a system description for publication in the shared
task proceedings (and one team asked to remain
anonymous), such that only limited information is
available about these parsers, and they will not be
considered in further detail in §7.

Finally, based on input by task participants, Ta-
ble 4 also provides an indication of which submis-
sions employed multi-task learning (MTL) and a
high-level characterization of the overall parsing
approach. The distinction between transition-, fac-
torization-, and composition-based architectures
follows Koller et al. (2019) and is discussed in
more detail in §7 below. In some submissions
there can of course be elements of more than one
of these high-level architecture types. Also, not
all of the teams who indicate the use of multi-task
learning actually apply it across different semantic
graph frameworks, but in some cases rather to mul-
tiple sub-tasks within the parsing architecture for a
single framework.11

The main task results are summarized in Table 6,
showing average MRP scores across frameworks,
broken down by the different component pieces
(see §5 above). These cross-framework averages
can only be meaningfully compared for parsers that
support all five frameworks, indicated with italics
in the table. The top-three submissions achieve
performance levels in the mid-80s F1 range, fol-
lowed by a competitive middle field of complete
submissions that perform comparably to the TUPA
baselines and well above. Despite fundamental
architectural differences, there are emergent pat-
terns in the average performance levels for differ-
ent graph elements. Except for the binary top prop-
erty, node-local information (fine-grained labels
and properties) tend to be harder to predict than
labeled edges. Edge attributes are only present in
UCCA, encoding a binary distinction between pri-
mary and remote edges, which none of the parsers
appear to predict successfully.

The correlation between the primary ranking of
the official submissions (by overall average MRP
F1) and per-framework ranks is indicated in Ta-
ble 5. The top-performing HIT-SCIR submission
performs best on only one of the five frameworks
(UCCA), but achieves uniformly strong results

11In the case of the SUDA–Alibaba submission, multi-task
learning is only applied for the two bi-lexical frameworks; and
for the Hitachi team it was only enabled in follow-up work
after completion of the official evaluation period, as discussed
in the system description by Koreeda et al. (2019).

System DM PSD EDS UCCA AMR

HIT-SCIR 2 : 2 4 : 3 2 : 3 1 : 1 2 : 2
SJTU–NICT 1 : 3 3 : 1 3 : 2 3 : 3 3 : 4
SUDA–Alibaba 7 : 7 8 : 8 1 : 1 2 : 2 5 : 5
Saarland 4 : 6 1 : 6 4 : 5 6 : 6 6 : 6
Hitachi 8 : 4 2 : 4 6 : 6 5 : 5 8 : 8
ÚFAL MRPipe 9 : 10 9 : 10 7 : 7 4 : 4 4 : 3
ShanghaiTech 3 : 1 6 : 2 5 : 4 10 : 10 7 : 7
Amazon 6 : 9 5 : 9 10 : 10 10 : 10 1 : 1
JBNU 5 : 5 7 : 5 10 : 10 7 : 8 11 : 11
SJTU 11 : 11 11 : 12 8 : 8 9 : 9 9 : 9
ÚFAL–Oslo 10 : 8 10 : 7 9 : 9 10 : 10 11 : 11
HKUST 12 : 12 12 : 11 10 : 10 8 : 7 11 : 11
Bocharov 13 : 13 13 : 13 10 : 10 10 : 10 10 : 10

Table 5: Per-framework rankings of the official sub-
missions, contrasting the cross-framework MRP metric
(first in each cell) and framework-specific evaluation
(second). The order of entries reflects the primary rank-
ing by overall average MRP F1. Team names in italics
indicate submissions that support all five frameworks.

across the board; the picture is similar for the
second-ranked SJTU–NICT submission (which has
the best performance on DM). For the other top-
performing submissions, there is more variation
across frameworks: SUDA–Alibaba is strongest on
the Flavor (1) EDS and UCCA graphs, and Saar-
land and Hitachi rank first and second, respectively,
on the PSD graphs, but are not among the top-three
ranks for the other frameworks.

As indicated, Table 5 shows the primary ranking,
and unofficial submissions are not included. The
complete summary of quantitative results from the
task (see §9 below) also provides a secondary rank-
ing, considering all submissions (but not reference
points) and excluding those entries that are super-
seded by others from the same team, viz. the earlier
submissions from ÚFAL MRPipe and ÚFAL–Oslo
and the EDS-only composition-based entry from
Peking. In terms of secondary ranks, the unofficial
ÚFAL MRPipe entry (correcting a minor bug in the
original submission) would come in third overall
(outranking SUDA–Alibaba), and the factorization-
based Peking submission would take an overall
seventh rank (outranking ShanghaiTech, and no-
tably showing overall best performance for the
EDS framework). Remaining secondary ranks are
eleventh, thirteenth, and sixtenth, for ÚFAL–Oslo,
CUHK, and Anonymous, respectively.

Table 5 also contrasts the ranking obtained from
the official, cross-framework MRP metric in com-
parison to the pre-existing framework-specific met-
rics. For EDS, UCCA, and AMR there are only few
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Tops Labels Properties Anchors Edges Attributes All

P R F P R F P R F P R F P R F P R F P R F

ERG .36 .36 .364 .39 .39 .390 .38 .38 .383 .39 .39 .391 .37 .37 .368 – – – .38 .38 .383
.38 .38 .376 .39 .39 .390 .36 .37 .368 .39 .40 .396 .37 .37 .372 – – – .39 .39 .386

TUPA single .65 .56 .603 .59 .76 .664 .41 .58 .479 .87 .81 .837 .34 .54 .414 .12 .22 .152 .51 .67 .577
.76 .68 .718 .61 .76 .677 .43 .61 .501 .90 .79 .842 .31 .56 .401 .24 .24 .240 .50 .67 .575

TUPA multi .67 .57 .616 .40 .55 .457 .29 .42 .327 .68 .60 .626 .30 .45 .347 .02 .02 .018 .39 .57 .453
.75 .68 .714 .43 .55 .470 .21 .36 .234 .69 .64 .658 .35 .48 .390 .06 .03 .037 .45 .61 .506

HIT-SCIR .91 .90 .904 .72 .70 .709 .70 .69 .699 .78 .77 .776 .81 .78 .794 .13 .12 .124 .87 .85 .862
.93 .93 .932 .69 .68 .685 .60 .66 .625 .78 .78 .779 .80 .78 .786 .11 .08 .097 .85 .85 .848

SJTU–NICT .92 .91 .915 .73 .70 .712 .71 .67 .687 .78 .77 .776 .80 .75 .777 .13 .07 .094 .87 .83 .853
.94 .92 .931 .71 .70 .702 .50 .52 .505 .78 .77 .778 .79 .76 .773 .10 .05 .069 .85 .84 .842

SUDA–Alibaba .88 .84 .860 .69 .70 .695 .68 .68 .682 .77 .77 .771 .77 .76 .768 .11 .07 .082 .84 .84 .840
.90 .87 .884 .65 .67 .662 .60 .67 .636 .77 .78 .775 .77 .77 .770 .13 .05 .076 .82 .84 .832

Saarland .83 .92 .867 .72 .71 .713 .72 .56 .611 .76 .75 .751 .76 .74 .750 – – – .83 .80 .819
.88 .93 .905 .72 .72 .723 .61 .58 .586 .77 .77 .771 .79 .77 .778 – – – .85 .85 .849

Hitachi .89 .90 .893 .64 .64 .641 .56 .54 .519 .75 .75 .755 .70 .69 .696 .08 .03 .042 .77 .75 .760
.91 .92 .917 .62 .63 .624 .48 .43 .374 .75 .77 .760 .71 .70 .703 .10 .02 .034 .75 .77 .762

ÚFAL MRPipe
.83 .71 .751 .71 .59 .640 .70 .50 .565 .76 .64 .695 .70 .56 .622 .10 .06 .079 .83 .69 .747
.85 .72 .758 .67 .55 .604 .68 .47 .539 .76 .63 .686 .69 .55 .608 .12 .05 .068 .80 .67 .729

ShanghaiTech .73 .73 .733 .66 .67 .668 .59 .69 .633 .58 .57 .577 .63 .63 .628 – – – .66 .68 .670
.75 .75 .748 .65 .65 .649 .48 .61 .507 .58 .58 .578 .64 .64 .640 – – – .66 .68 .668

Amazon .45 .42 .438 .55 .54 .547 .53 .52 .525 .39 .39 .394 .46 .44 .450 – – – .52 .51 .513
.49 .47 .484 .52 .53 .526 .45 .49 .471 .39 .39 .392 .45 .46 .454 – – – .50 .51 .502

JBNU .56 .56 .560 .35 .35 .353 .37 .36 .365 .55 .55 .551 .41 .39 .400 .04 .02 .028 .47 .46 .465
.57 .57 .566 .33 .33 .331 .34 .37 .355 .57 .58 .575 .44 .43 .431 .03 .01 .018 .48 .48 .483

SJTU .68 .44 .527 .45 .42 .428 .29 .38 .321 .69 .45 .547 .36 .27 .295 .00 .00 .002 .46 .43 .430
.74 .52 .602 .45 .45 .443 .22 .31 .249 .70 .47 .560 .37 .29 .308 .00 .00 .001 .47 .46 .451

ÚFAL–Oslo
.51 .51 .514 .20 .29 .239 .21 .37 .261 .43 .53 .464 .48 .40 .432 – – – .30 .42 .344
.53 .54 .534 .18 .28 .222 .19 .38 .239 .40 .54 .455 .50 .43 .459 – – – .28 .43 .334

HKUST .48 .45 .463 .20 .29 .238 – – – .36 .49 .417 .25 .22 .230 .09 .04 .057 .22 .28 .245
.43 .41 .420 .18 .28 .222 – – – .37 .51 .426 .27 .23 .248 .07 .03 .046 .24 .30 .258

Bocharov .17 .17 .167 .09 .07 .079 .01 .01 .011 – – – .06 .05 .057 – – – .07 .06 .065
.17 .17 .172 .07 .09 .076 .02 .06 .027 – – – .04 .07 .055 – – – .06 .09 .068

ÚFAL MRPipe
.89 .78 .815 .74 .72 .731 .71 .69 .700 .77 .77 .772 .75 .73 .739 .10 .06 .079 .85 .83 .840
.91 .78 .822 .71 .71 .710 .62 .65 .634 .77 .78 .775 .75 .74 .744 .12 .05 .068 .84 .83 .833

Peking .74 .71 .725 .55 .54 .544 .56 .56 .560 .78 .78 .779 .67 .66 .666 .05 .07 .062 .71 .71 .711
.76 .73 .744 .51 .52 .515 .43 .55 .480 .78 .78 .781 .67 .66 .663 .06 .03 .041 .70 .70 .702

ÚFAL–Oslo
.86 .78 .812 .34 .36 .332 .35 .42 .326 .49 .56 .502 .57 .44 .484 – – – .46 .49 .439
.88 .87 .871 .32 .42 .357 .33 .45 .335 .46 .60 .513 .57 .49 .527 – – – .43 .56 .473

CUHK .51 .50 .502 .34 .40 .365 .29 .35 .317 .55 .59 .568 .10 .10 .095 – – – .36 .41 .378
.51 .51 .514 .30 .39 .340 .24 .35 .283 .52 .62 .565 .09 .09 .087 – – – .33 .42 .365

Anonymous .04 .03 .035 .08 .13 .101 – – – – – – – – – – – – .02 .03 .022
.04 .04 .038 .07 .11 .084 – – – – – – – – – – – – .01 .03 .019

Peking .16 .16 .163 .19 .18 .185 .19 .19 .188 .19 .19 .187 .18 .18 .179 – – – .18 .18 .184
.17 .17 .174 .18 .18 .181 .16 .18 .166 .19 .19 .190 .18 .18 .178 – – – .18 .19 .183

Table 6: Official results using the cross-framework MRP metric, broken down by ‘atomic’ component pieces. For
each component we report precision (P), recall (R), and F1 score (F). Entries are split into the same three blocks as
in Table 4: references (top), official submissions (middle), and unofficial submissions (bottom). For each system,
the first row shows MRP scores on the full evaluation set, while the second shows results on the public 100-sentence
subset sampled from The Little Prince. The official and unofficial submissions are sorted by overall average F1.
Team names in italics indicate submissions that support all five frameworks.
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and ‘local’ divergences in the rankings obtained
from the different scoring approaches: In total,
there are four instances of pairs of teams swap-
ping ranks when comparing MRP vs. framework-
specific results (the absolute per-framework scores
in Table 7 suggest that such ‘fluctuation’ primar-
ily reflects minor differences in performance). For
DM and PSD, on the other hand, Table 5 reveals
greater differences between the two ranks indicated
in each cell: ShanghaiTech, for example, ranks
much higher in the framework-specific SDP metric
than in the official MRP ranks. These divergences
likely reflect the more limited scope of the SDP ap-
proach to scoring, which essentially only considers
labeled edges (and top nodes, as a pseudo-edge)
but ignores node labels, properties, and anchors
(which all used to be provided as part of the parser
inputs in the original SDP parsing tasks; see §3
above).

Finally, Tables 7 and 8 complement the break-
down of official results from the shared task
with two per-framework views, using the offi-
cial MRP metric and earlier framework-specific
metrics, respectively. On both views, there are
stark differences in overall parser accuracy across
frameworks—ranging from the low-70s to mid-90s
F1 ranges—with mostly decreasing performance
when moving from the bi-lexical Flavor (0) graphs
to the unanchored Flavor (2) ones. Given the cross-
framework MRP metric, these results become com-
parable for the first time (within the same parsing
system at least, and assuming optimistically that
it has been engineered and tuned at comparable
effort levels for all frameworks). As such, it is
tempting to interpret these differences as indicative
of framework-specific parsing difficulty.

However, the volume, uniformity, and quality of
available training data (and its similarity to evalua-
tion data, in each framework) inevitably also must
factor into such comparison; for example, gold-
standard UCCA annotations count at less than one
fifth the tokens of the other frameworks. Break-
ing down results further, viz. into component-wise
per-framework scores (available through the task
web site; see §9), suggests that scoring the more
technical anchoring information at equal weight as
the genuinely linguistic node and edge properties
contributes to higher average MRP accuracies, in
particular for the bi-lexical frameworks where an-
chors essentially encode tokenization. Ultimately,
to put these differences into perspective more, con-

trastive, phenomena-oriented studies would likely
be called for, as for example the comparison of
parsing accuracies for EDS vs. AMR by Lin and
Xue (2019).

7 Overview of Approaches

The participating systems in the shared task have
approached this multi-meaning representation task
in a variety of ways, which we characterize into
three broad families of approaches: transition-,
factorization-, or composition-based architectures.

Transition-Based Architectures In these pars-
ing system, the meaning representation graph is
generated via a series of actions, in a process that
is very similar to dependency tree parsing, with the
difference being that the actions for graph parsing
need to allow reentrancies, as well as (possibly)
non-token nodes, labels, properties, and attributes.
At any given point in the parsing process, a parser
state, which typically consists of a stack that holds
already processed elements in the input and a buffer
for yet-to-be processed elements, needs to be main-
tained. Which action to take next is predicted by a
classifier using a representation of the parser state
as input. When this parsing procedure is complete,
the sequence of parsing actions will be used to
deterministically reconstitute the meaning repre-
sentation graph.

This basic method allows variations in various
aspects of the parsing process. First of all, the set of
actions can vary from system to system. Apart from
the standard actions used in syntactic dependency
parsing such as SHIFT, LEFTARC, RIGHTARC, and
REDUCE (Nivre, 2003; Yamada and Matsumoto,
2003), transition systems in meaning representa-
tion parsing also include actions to create reentrant
edges, such as LEFTREMOTE and RIGHTREMOTE

from the pre-task version of TUPA (Hershcovich
et al., 2017). It may also include actions to cre-
ate abstract concepts that do not correspond to a
word token in the input sentence, such as the NODE

action from TUPA, and actions that allow the tran-
sition to skip a word token in the input when it does
not have semantic content, such as the PASS action
from HIT-SCIR. The transition set may also include
actions that label the nodes or edges, such as LA-
BEL in the version of TUPA used in the shared task.
CUHK developed a transition-based parser with a
general transition system suited for all five frame-
works, by including a variable-arity RESOLVE ac-
tion.
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DM PSD EDS UCCA AMR

P R F P R F P R F P R F P R F

ERG .96 .96 .961 – – – .95 .95 .952 – – – – – –
.97 .97 .973 – – – .96 .96 .959 – – – – – –

TUPA single .47 .67 .555 .44 .63 .518 .83 .79 .810 .20 .45 .276 .42 .48 .447
.50 .70 .586 .52 .68 .589 .83 .79 .814 .31 .57 .401 .43 .51 .470

TUPA multi .31 .69 .427 .45 .63 .526 .74 .74 .740 .17 .38 .236 .29 .41 .338
.28 .68 .395 .47 .65 .545 .74 .76 .748 .34 .52 .410 .45 .42 .434

HIT-SCIR .95 .95 .951 .90 .91 .905 .91 .90 .907 .83 .81 .817 .77 .69 .729
.95 .95 .950 .85 .90 .874 .89 .90 .898 .84 .82 .826 .72 .66 .690

SJTU–NICT .96 .95 .955 .91 .91 .912 .95 .86 .899 .80 .76 .778 .75 .69 .720
.95 .95 .949 .86 .91 .885 .94 .88 .912 .77 .74 .755 .72 .70 .706

SUDA–Alibaba .91 .93 .923 .85 .86 .856 .92 .92 .918 .81 .76 .784 .73 .70 .717
.89 .92 .907 .79 .87 .828 .92 .93 .925 .85 .80 .821 .67 .69 .679

Saarland .95 .95 .947 .91 .91 .913 .90 .88 .891 .71 .65 .675 .70 .63 .667
.94 .95 .948 .86 .91 .883 .93 .91 .920 .78 .74 .762 .74 .72 .731

Hitachi .91 .91 .910 .91 .92 .912 .84 .84 .837 .72 .68 .704 .47 .41 .439
.89 .90 .894 .86 .91 .884 .78 .84 .811 .78 .73 .750 .47 .47 .470

ÚFAL MRPipe
.91 .79 .850 .87 .68 .763 .82 .57 .674 .76 .71 .732 .77 .67 .718
.91 .80 .854 .82 .60 .691 .77 .57 .651 .78 .71 .741 .74 .67 .707

ShanghaiTech .95 .95 .949 .90 .89 .895 .86 .88 .869 – – – .61 .66 .636
.94 .94 .943 .83 .88 .852 .86 .89 .875 – – – .66 .67 .668

Amazon .94 .93 .933 .90 .90 .900 – – – – – – .75 .71 .734
.92 .92 .921 .85 .91 .879 – – – – – – .71 .72 .711

JBNU .94 .94 .940 .88 .88 .879 – – – .53 .49 .507 – – –
.92 .92 .924 .84 .88 .857 – – – .66 .62 .636 – – –

SJTU .36 .53 .431 .48 .48 .476 .75 .41 .532 .31 .35 .327 .40 .37 .385
.35 .53 .419 .47 .51 .488 .74 .44 .553 .31 .40 .353 .46 .42 .441

ÚFAL–Oslo
.72 .91 .805 .48 .83 .609 .27 .35 .306 – – – – – –
.68 .91 .778 .43 .83 .566 .26 .43 .326 – – – – – –

HKUST .34 .41 .370 .28 .48 .353 – – – .51 .50 .502 – – –
.32 .42 .364 .26 .48 .334 – – – .61 .58 .592 – – –

Bocharov – – – – – – – – – – – – .37 .29 .327
– – – – – – – – – – – – .28 .44 .342

ÚFAL MRPipe
.94 .95 .947 .90 .92 .910 .90 .89 .891 .76 .71 .732 .77 .67 .718
.93 .95 .943 .85 .91 .878 .89 .90 .896 .78 .71 .740 .74 .67 .707

Peking .94 .94 .944 .90 .89 .893 .95 .94 .945 .78 .77 .772 – – –
.92 .93 .925 .83 .88 .853 .92 .93 .928 .82 .78 .803 – – –

ÚFAL–Oslo
.72 .91 .805 .48 .83 .609 .27 .35 .306 .23 .07 .112 .58 .27 .364
.68 .91 .778 .43 .83 .566 .26 .43 .326 .23 .14 .175 .54 .50 .519

CUHK .63 .75 .687 .60 .71 .648 .31 .25 .276 .18 .22 .196 .06 .12 .081
.57 .73 .644 .51 .70 .590 .31 .32 .313 .22 .26 .235 .03 .08 .042

Anonymous – – – .08 .16 .109 – – – – – – – – –
– – – .07 .15 .095 – – – – – – – – –

Peking – – – – – – .92 .92 .918 – – – – – –
– – – – – – .90 .93 .914 – – – – – –

Table 7: Per-framework results using the official MRP metric. For each framework we report precision (P), recall
(R), and F1 score (F). Entries are split and sorted into the same three blocks as in Tables 4 and 6, and again the two
rows per submission correspond to the full evaluation data and the Little Prince subset.
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DM PSD EDS UCCA AMR

P R F P R F P R F P R F P R F

ERG .91 .91 .912 – – – .93 .92 .926 – – – – – –
.93 .93 .929 – – – .94 .95 .944 – – – – – –

TUPA single .65 .69 .670 .51 .60 .552 .77 .71 .741 .28 .19 .224 .41 .47 .438
.66 .71 .690 .55 .63 .585 .77 .72 .744 .32 .25 .284 .42 .49 .451

TUPA multi .51 .62 .562 .47 .53 .501 .68 .64 .656 .28 .19 .224 .28 .39 .328
.50 .63 .557 .52 .59 .553 .67 .65 .660 .32 .25 .284 .42 .40 .411

HIT-SCIR .93 .92 .925 .81 .81 .810 .87 .86 .866 .68 .66 .667 .77 .69 .725
.94 .94 .937 .79 .80 .794 .85 .86 .857 .66 .63 .644 .71 .65 .680

SJTU–NICT .93 .92 .924 .82 .81 .817 .93 .83 .877 .63 .59 .609 .75 .68 .714
.94 .93 .936 .81 .81 .810 .93 .87 .897 .63 .57 .597 .71 .69 .696

SUDA–Alibaba .89 .91 .898 .76 .76 .760 .90 .89 .893 .66 .62 .639 .73 .70 .713
.88 .91 .895 .75 .77 .759 .90 .91 .903 .69 .63 .662 .66 .69 .674

Saarland .90 .91 .906 .80 .80 .796 .80 .78 .794 .34 .31 .324 .70 .63 .661
.91 .93 .919 .79 .80 .798 .87 .85 .860 .52 .49 .505 .73 .71 .722

Hitachi .91 .93 .919 .80 .82 .808 .78 .78 .783 .39 .37 .381 .46 .40 .425
.92 .94 .927 .80 .82 .807 .73 .79 .757 .47 .44 .454 .45 .45 .453

ÚFAL MRPipe
.80 .70 .745 .69 .52 .594 .73 .49 .587 .42 .38 .396 .77 .67 .716
.81 .72 .759 .68 .45 .539 .67 .48 .560 .48 .42 .445 .74 .67 .700

ShanghaiTech .94 .92 .930 .83 .81 .816 .81 .82 .814 – – – .61 .66 .631
.95 .94 .945 .82 .82 .819 .81 .84 .825 – – – .65 .66 .659

Amazon .87 .86 .866 .76 .72 .742 – – – – – – .75 .71 .730
.87 .87 .869 .77 .78 .771 – – – – – – .70 .71 .704

JBNU .92 .90 .912 .80 .80 .800 – – – .19 .17 .177 – – –
.93 .92 .926 .82 .81 .815 – – – .34 .31 .325 – – –

SJTU .51 .30 .379 .49 .26 .340 .66 .33 .435 .05 .04 .045 .39 .36 .373
.45 .27 .335 .52 .28 .359 .64 .34 .449 .06 .05 .055 .43 .39 .411

ÚFAL–Oslo
.90 .86 .880 .81 .73 .769 .14 .21 .168 – – – – – –
.90 .88 .888 .82 .77 .795 .15 .27 .192 – – – – – –

HKUST .33 .27 .297 .45 .36 .398 – – – .21 .20 .203 – – –
.33 .27 .299 .47 .36 .412 – – – .25 .24 .244 – – –

Bocharov – – – – – – – – – – – – .35 .28 .314
– – – – – – – – – – – – .26 .41 .321

ÚFAL MRPipe
.87 .90 .881 .76 .79 .775 .87 .85 .859 .42 .38 .396 .77 .67 .716
.87 .91 .893 .77 .80 .782 .87 .87 .869 .48 .41 .442 .73 .67 .699

Peking .92 .92 .924 .81 .80 .808 .93 .91 .919 .63 .61 .620 – – –
.93 .93 .925 .80 .80 .797 .90 .91 .906 .67 .62 .640 – – –

ÚFAL–Oslo
.90 .86 .880 .81 .73 .769 .14 .21 .168 – – .002 .56 .26 .351
.90 .88 .888 .82 .77 .795 .15 .27 .192 – – .001 .53 .49 .508

CUHK .10 .12 .108 .06 .06 .057 .05 .04 .047 .01 .01 .007 .05 .09 .060
.10 .12 .109 .04 .05 .042 .08 .08 .083 .02 .01 .018 – .01 .005

Anonymous – – – – – – – – – – – – – – –
– – – – – – – – – – – – – – –

Peking – – – – – – .88 .88 .879 – – – – – –
– – – – – – .88 .90 .890 – – – – – –

Table 8: Results using the framework-specific (labeled) metrics: SDP (for DM and PSD), EDM (for EDS), UCCA,
and SMTACH (for AMR); see §5 above. For each framework (and its metric) we report precision (P), recall (R),
and F1 score (F). Entries are split and sorted into the same three blocks as in Tables 4 and 6, and again the two
rows per submission correspond to the full evaluation data and the Little Prince subset.
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Second, the classifier used to predict the action
for any given state can also vary a great deal. For
example, the HIT-SCIR system aggregates infor-
mation from the action history, the stack, the list,
and the buffer with a stack LSTM and then pre-
dicts the action by taking a softmax over the output
of the LSTM. The CUHK system uses a regular
LSTM to aggregate information from the stack, the
sequence of words before the current word token,
and the sequence of words after the current token,
and then predict the action with a softmax. The
TUPA system uses a BiLSTM with an MLP and
softmax layer, with the BiLSTM running over the
sequence of input tokens.

Factorization-Based Architectures These pars-
ing models for meaning representation also have
their roots in syntactic dependency parsing (where
they are often called graph-based; McDonald and
Pereira, 2006). Given a set of nodes, the basic idea
of the factorization-based approach is to find the
graph that has the highest score among all possi-
ble graphs. In the case of dependency parsing, the
goal is to find the Maximum Spanning Tree, and
this has been extended to meaning representation
parsing, where the goal is to find the Maximum
Spanning Connected Subgraphs (Flanigan et al.,
2014). To make the computation of the score of a
graph practical, the typical strategy is to factorize
the score of a graph into the sum of the scores of
its subgraphs, and in the case of first-order factor-
ization, into the sum of the scores of its nodes and
edges. A popular choice for predicting the edge is
to feed the output of an LSTM encoder to a biaffine
classifier to predict if an edge exists between a pair
of nodes as well as the label of the edge (SJTU–
NICT, SUDA–Alibaba, Hitachi, and JBNU), with
slight variations as to the input to the LSTM en-
coder. Due to the difference in anchoring between
the nodes in the graph and the word tokens in the
sentence, the way to identify nodes also differs
from framework to framework. ÚFAL–Oslo used
the factorization-based NeurboParser (Peng et al.,
2017) for DM and PSD, and for EDS they simply
submitted graphs identical to the DM ones. They
also used the factorization-based JAMR (Flanigan
et al., 2014, 2016) for AMR, and further adjusted
JAMR to support UCCA graphs, by converting
UCCA to the standard AMR serialization.

Composition-Based Architectures Finally, this
approach to meaning representation parsing empha-

sizes the principle of compositionality in meaning
construction and assumes an explict inventory of
operations that combine pieces of meaning into
larger fragments. Typically grounded in some
kind of formal derivation process, composition-
based architectures associate meaning fragments
with lexical items (leaf nodes in the derivation)
and apply a designated composition operation
for each step in the derivation. What differenti-
ates composition-based approaches from transition-
based or factorization-based ones is that the deriva-
tions are licensed by some form of ‘grammar’
(explicit or implicit), where illegitimate deriva-
tions can be ruled out by the structural constraints
over the lexical items and the rules of deriva-
tion. The MRP shared task attracted two (and
a half) composition-based systems, the Apply-
Modify (AM) algebra based system from Saarland
and the Peking parser based on Synchronous Hyper-
edge Replacement Grammar (SHRG) for EDS.12

For composition-based approaches, the extraction
of lexical items from a sentence is a crucial com-
ponent of the system. In the case of the Saar-
land parser, the lexical items are produced by a
BiLSTM-based supertagger, and the best derivation
is selected in a tree dependency parsing process
where the edge between a head and its argument
or modifier is labeled with the derivation operation.
In the case of the Peking system, the SHRG rules
are extracted with a context-free parser, and the
derivation is scored by a sum of the scores of its
subgraphs.

Other Approaches The transition-, factoriza-
tion-, and composition-based systems represent the
main approaches in the shared task, but there are
a few systems that stretch the dividing lines of
this this categorization. When parsing the UCCA
framework, a number of systems—e.g. SJTU–
NICT, SUDA–Alibaba, and Amazon—adopt an
approach where ‘remote’ (reentrancy) edges are
first removed to create constituent tree structures to
train standard constituent tree parsers using neural
network–based models, and then in a postprocess-
ing stage, the remote edges are added back with a
separate classifier, following Jiang et al. (2019).

The MRPipe system could be said to define its
own category. It differs from transition-based sys-
tems in that it does not use the typical actions

12The unofficial submission of DM and EDS reference
graphs obtained from parsing with the ERG also represents a
composition-based approach.
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used in transition-based systems and it also does
not maintain a typical parser state. It also differs
from factorization-based systems in that it builds
the meaning representation iteratively, while in a
factorization-based systems all possible graphs are
(conceptually) enumerated at once and the focus is
on finding the graph with the highest score.

Anchoring One difference among the five mean-
ing representation frameworks covered in the
shared task is the correspondence relation between
the concepts (graph nodes) and word tokens in the
sentence (see §2). In Flavors (0) and (1) (DM,
PSD, EDS, and UCCA), this alignment is explicit,
while in Flavor (2) AMRs there is no explicit an-
choring. How to tackle anchoring in the parsing
system has a significant impact on parser perfor-
mance. Some of the participating systems follow
early approaches in AMR parsing and use a sep-
arate ‘alignment’ model to provide hard anchor-
ings and then proceed with the rest of the pars-
ing process (e.g. the HIT-SCIR system) assuming
the alignments are already in place. Other sub-
missions use a soft alignment component that is
trained jointly with other components of their sys-
tems. For example, the Amazon and the SUDA–
Alibaba parsers jointly model anchoring, node de-
tection, and edge detection, adopting the approach
of Lyu and Titov (2018), while the SJTU–NICT
system uses a sequence-to-sequence model with a
pointer-generator network to predict the concepts
in AMR, following Zhang et al. (2019a). That
sequence-to-sequence model is trained jointly with
other components of their system.

Cross-Framework Architecture Design One
question that the co-organizers would like to help
answer through the shared task is to what degree the
same general architecture can be used to effectively
parse all five meaning representation frameworks.
The answer to this question is tentatively in the
affirmative. The HIT-SCIR and TUPA systems use
a transition-based system to parse all five meaning
representations, with the caveat that the transitions
for the five meaning representations vary in the ac-
tions that are used. The CUHK parser, on the other
hand, uses a uniform transition set for all frame-
works. The Saarland system uses the same AM
algebra composition system to parse all five mean-
ing representations, but has to do a considerable
amount of pre-processing to convert the meaning
representations into well-formed terms of the AM

algrebra (accordingly, some of the pre-processing
effects need to be undone in post-processing). The
MRPipe system adopts an approach in which the
meaning representation graph is built up iteratively
with two operations, ADDNODES and ADDEDGES,
and applies this model successfully to all five mean-
ing representations. Other participating systems
adopt the strategy of using the model that they con-
sider to be the most appropriate for a particular
flavor of meaning representation. For example, the
SJTU–NICT submission uses a factorization-based
model for DM, PSD, and EDS parsing, but uses
a constituent tree parsing approach for UCCA, as
it is not obvious how a factorization-based model
would be extended to also handle UCCA parsing.
The Amazon system uses a factorization-based
model for DM, PSD, and AMR while adopting
a constituent tree parsing approach for UCCA and
EDS. The SUDA–Alibaba system also adopts a
constituent tree parsing approach to UCCA, similar
to Jiang et al. (2019).

Benefits of Multi-Task Learning Another re-
search question the shared task seeks to advance is
whether and how multi-task learning (MTL) helps
with multi-framework meaning representation pars-
ing. The term, in fact, seems to be applied some-
what variably in the system descriptions. In one
sense, it is equated with traditional joint learning,
where different components of the SUDA–Alibaba
system are trained jointly by combining their ob-
jectives. The sense of the term that was intended
by the organizers is whether pooling the training
data for all five frameworks in a multi-task learn-
ing framework can improve the parser performance
of one particular framework. A number of partici-
pating systems attempted MTL in the latter sense,
and the results are mixed and not definitive. The
MTL version of the TUPA system performs much
worse than its single-task version, but this might
be attributed to inadequate training strategies and
incomplete tuning. The Hitachi systems (in a post-
competition experiment) show MTL results that are
slightly better than single framework results, but
the difference is probably not statistically signifi-
cant.

8 On the State of the Art

Prior to the shared task, various methods have been
proposed for semantic graph parsing, including
transition-, factorization-, and composition-based,
as well as sequence-to-sequence systems. Existing

19



parsers also diverge in terms of their assumptions
regarding the syntax–semantics interface, some
parsing raw text directly to meaning representa-
tion graphs, and some producing the graphs from
or in parallel with syntactic derivations.

While some meaning representations have
parsers for languages other than English (Oepen
et al., 2015; Wang et al., 2018; Damonte and Co-
hen, 2018; Hershcovich et al., 2019), we limit the
discussion here to the state of the art in English
meaning representation parsing, as has been the
focus of the current shared task.

DM and PSD were both among the represen-
tations targeted in two SemEval shared tasks on
Semantic Dependency Parsing (Oepen et al., 2014,
2015), where the winning system (Kanerva et al.,
2015) utilized SVM-based sequence labeling. The
runner-up (Du et al., 2014, 2015) used an ensemble
based on factorization-based weighted tree approx-
imation. More recently, Peng et al. (2017, 2018a,b)
improved upon previous approaches by using a neu-
ral factorization-based multi-task system, sharing
parameters between representations and applying
joint inference. Stanovsky and Dagan (2018) lin-
earized the bi-lexical graphs and modeled the pars-
ing task as a sequence-to-sequence problem. They
also used multi-task learning, adapting multilin-
gual machine translation algorithms to ‘translate’
between text and meaning representations, outper-
forming the previous best results on PSD. Linde-
mann et al. (2019) trained a composition-based
parser on DM, PAS, PSD, AMR and EDS, using
the Apply–Modify algebra, on which the Saarland
submission to the shared task is based. They em-
ployed multi-task training with all tackled semantic
frameworks and UD, establishing the state of the
art on all graph banks but AMR 2017.

AMR has been a challenging target represen-
tation for parsing, due to the fact that AMRs are
Flavor (2), unanchored graphs. AMR parsing was
pioneered by Flanigan et al. (2014), who performed
alignment as a preprocessing step during train-
ing. They developed their own rule-based align-
ment method, complemented by Pourdamghani
et al. (2014), who adapted methods from machine
translation. Some transition-based AMR parsers
also perform rule-based alignment (Damonte et al.,
2017; Damonte and Cohen, 2018; Ballesteros and
Al-Onaizan, 2017; Naseem et al., 2019), while
others derive AMRs from syntactic dependencies
by applying transitions (Wang et al., 2015; Wang

and Xue, 2017). The latter approach reached the
best performance (Wang et al., 2016; Nguyen and
Nguyen, 2017) in two SemEval shared tasks on
AMR parsing (May, 2016; May and Priyadarshi,
2017), where in the former it performed as well as a
novel character-level neural translation based AMR
parser (Barzdins and Gosko, 2016). Composition-
based AMR parsers include Artzi et al. (2015),
who combined CCG grammar induction with AMR
parsing. Sequence-to-sequence attention-based ap-
proaches (Konstas et al., 2017; van Noord and
Bos, 2017) use techniques from machine transla-
tion to directly generate (linearized) graphs from
text. Lyu and Titov (2018) parsed AMR using a
joint probabilistic model with latent alignments,
avoiding cascading errors due to alignment inaccu-
racies and outperforming previous approaches. The
factorization-based parser by Zhang et al. (2019a,b)
uses an attention-based architecture, but derives
target graphs directly instead of a linearization,
also treating alignment as a latent variable with
a copy mechanism. Their parser additionally sup-
ports UCCA and SDP, and establishes the state-
of-the-art in AMR parsing, though without using
multi-task training across frameworks.

UCCA parsing was first tackled by Hershcovich
et al. (2017), who used a neural transition-based
parser. Hershcovich et al. (2018) further showed
that multi-task learning with AMR, DM, and UD
as auxiliary tasks improves UCCA parsing perfor-
mance. UCCA also recently featured in a SemEval
shared task (Hershcovich et al., 2019), where the
composition-based best system (Jiang et al., 2019)
outperformed the transition-based baseline by treat-
ing the task as constituency tree parsing with the
recovery of remote edges as a postprocessing task.

EDS, being a result of automatic conversion
from English Resource Semantics (Bender et al.,
2015), can be derived by any ERG parser (e.g.
Callmeier, 2002; Packard, 2012). Buys and Blun-
som (2017) were the first to build a purely data-
driven EDS parser, combining graph linearization
with a custom transition system. Chen et al. (2018)
established the state of the art on data-driven EDS
parsing, using a neural SHRG-based, ERG-guided
parser. Their comparison on in-domain WSJ evalu-
ation data showed parsing accuracies on par or in
excess of the full, grammar-based ACE parser of
Packard (2012).

While some shared task submissions are based
on existing systems that have been specifically im-
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proved, direct comparison to previously published
results is impossible: Our definition of the SDP
task, for example, is different from Oepen et al.
(2014, 2015); prior EDS work has mostly tested
on WSJ only; the UCCA annotations have been re-
vised and extended; we are using a new, forthcom-
ing version of AMRbank; and gold-standard tok-
enization is not provided for any of the frameworks.
Also, even some of our framework-specific met-
rics are not exactly what was used previously: We
have made SDP and UCCA character-based (for
increased robustness to tokenization mismatches),
and we un-invert edges more thoroughly in AMR
graphs before calling SMATCH for scoring. How-
ever, overall performance levels and general trends
observed in §6 appear consistent with recent devel-
opments in the field: By and large, the transition-,
factorization-, and composition-based approaches
all can yield competitive parsers, where cross-
framework multi-task learning sometimes helps
but only slightly so. While general methods for
meaning representation graph parsing are clearly
beneficial, there is yet progress to be made (so far)
in sharing information between parsers for different
frameworks and making better use of their overlap.

9 Reflections and Outlook

The MRP 2019 shared task was a first step in a new
direction, aiming to more closely (inter)relate the
representations and parsing approaches across a di-
verse range of semantic graph frameworks. Despite
new uniformity in packaging and evaluation, cu-
mulative overall complexity and inherent technical
and linguistic diversity of the frameworks deemed
participation in the competition a demanding chal-
lenge. The problem attracted broad interest: Some
140 individuals have subscribed to the shared task
mailing list, and 38 teams obtained the training data
package from the LDC (of these, sixteen submitted
parser outputs for evaluation). In a post-evaluation
questionnaire and through informal communica-
tion, several prospective participants have indicated
that they had started to work towards a system sub-
mission but in the end simply ran out of time for
the official evaluation period.

Possibly related to the high technological barrier
to participation is the comparatively low proportion
of submissions that successfully utilize multi-task
learning (across frameworks). Even though some
of the participating teams have previously applied
multi-task learning for semantic graph parsing, it

appears some may have shied away from increased
training times and tuning effort and instead had
to focus their work on developing strong end-to-
end parsers for individual frameworks. As task
co-organizers, we remain committed to enabling
continued research along these lines, and we will
ultimately make all training and evaluation data
generally available. In the interim, however, we are
delighted (and a little frightened) to confirm that
CoNLL has invited us to orchestrate a follow-up
shared task on Cross-Framework Meaning Repre-
sentation Parsing in 2020.

Deciding on the task parameters for MRP 2020
will be a balancing act between keeping overall
complexity manageable, in particular for ‘new-
comer’ participants, and pushing further in the di-
rection of learning from complementary knowledge
sources. Above all, the mid- to long-term goals of
the cross-framework meaning representation initia-
tive are to advance our understanding of degrees of
complementarity among the various frameworks.
Current plans foresee inclusion of one additional
framework, viz. a graph-based encoding of the Dis-
course Representation Structures of Basile et al.
(2012). Further, we plan on refining and extending
the available training data (in particular for UCCA)
and will put greater focus on the systematic explo-
ration of variant evaluation perspectives, for ex-
ample scoring at the level of larger sub-graphs in
the spirit of the ‘complete predications’ metric of
Oepen et al. (2015), or ‘semantic n-grams’ along
the lines of the SemBleu proposal by Song and
Gildea (2019). Aiming for increased linguistic di-
versity, it will of course also be tempting to seek
to include meaning representations for additional
languages. For each of the frameworks involved
(six in total for MRP 2020), gold-standard anno-
tations are in principle available for at least one
language besides English, but in most cases these
would be different languages for each framework.
Thus, it remains yet to be decided how best to bal-
ance cross-linguistic and multi-task perspectives
on the MRP problem.

All technical information regarding the
MRP 2019 shared task, including system sub-
missions, detailed official results, and links to
supporting resources and software are available
from the task web site at:

http://mrp.nlpl.eu
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Abstract

This paper describes the TUPA system
submission to the shared task on Cross-
Framework Meaning Representation Parsing
(MRP) at the 2019 Conference for Compu-
tational Language Learning (CoNLL). TUPA
provides a baseline point of comparison and is
not considered in the official ranking of partic-
ipating systems. While originally developed
for UCCA only, TUPA has been generalized
to support all MRP frameworks included in
the task, and trained using multi-task learning
to parse them all with a shared model. It is
a transition-based parser with a BiLSTM en-
coder, augmented with BERT contextualized
embeddings.

1 Introduction

TUPA (Transition-based UCCA/Universal Parser;
Hershcovich et al., 2017) is a general transition-
based parser for directed acyclic graphs (DAGs),
originally designed for parsing text to graphs in the
UCCA framework (Universal Conceptual Cogni-
tive Annotation; Abend and Rappoport, 2013).
It was used as the baseline system in SemEval
2019 Task 1: Cross-lingual Semantic Parsing with
UCCA (Hershcovich et al., 2019b), where it was
outranked by participating team submissions in all
tracks (open and closed in English, German and
French), but was also among the top 5 best-scoring
systems in all tracks, and reached second place in
the English closed tracks.

Being a general DAG parser, TUPA has been
shown (Hershcovich et al., 2018a,b) to support
other graph-based meaning representations and
similar frameworks, including UD (Universal De-
pendencies; Nivre et al., 2019), which was the fo-
cus of CoNLL 2017 and 2018 Shared Tasks (Ze-
man et al., 2017, 2018); AMR (Abstract Mean-
ing Representation; Banarescu et al., 2013), tar-
geted in SemEval 2016 and 2017 Shared Tasks

(May, 2016; May and Priyadarshi, 2017); and
DM (DELPH-IN MRS Bi-Lexical Dependencies;
Ivanova et al., 2012), one of the target representa-
tions, among PAS and PSD (Prague Semantic De-
pendencies; Hajic et al., 2012; Miyao et al., 2014),
in the SemEval 2014 and 2015 Shared Tasks
on SDP (Semantic Dependency Parsing; Oepen
et al., 2014, 2015, 2016). DM is converted from
DeepBank (Flickinger et al., 2012), a corpus of
hand-corrected parses from LinGO ERG (Copes-
take and Flickinger, 2000), an HPSG (Pollard and
Sag, 1994) using Minimal Recursion Semantics
(Copestake et al., 2005). EDS (Elementary De-
pendency Structures; Oepen and Lønning, 2006)
is another framework derived from ERG, encod-
ing English Resource Semantics in a variable-free
semantic dependency graph.

The CoNLL 2019 Shared Task (Oepen et al.,
2019) combines five frameworks for graph-based
meaning representation: DM, PSD, EDS, UCCA
and AMR. For the task, TUPA was extended to
support the MRP format and frameworks, and is
used as a baseline system, both as a single-task
system trained separately on each framework, and
as a multi-task system trained on all of them. The
code is publicly available.1

2 Intermediate Graph Representation

Meaning representation graphs in the shared tasks
are distributed in, and expected to be parsed to,
a uniform graph interchange format, serialized as
JSON Lines.2

The formalism encapsulates annotation for
graphs containing nodes (corresponding either to
text tokens, concepts, or logical predications),
with the following components: top nodes, node

1https://github.com/danielhers/tupa/
tree/mrp

2http://mrp.nlpl.eu/index.php?page=4
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Figure 1: Left: AMR graph, in the MRP formalism, for the sentence “After graduation, John moved to New York
City.” Edge labels are shown on the edges. Node labels are shown inside the nodes, along with any node properties
(in the form property=value). The text tokens are not part of the graph, and are matched to nodes by automatic
alignment (anchoring). Right: converted AMR graph in the intermediate graph representation. Same as in the
intermediate graph representation for all frameworks, it contains a virtual root node attached to the graph’s top
node with a TOP edge, and virtual terminal nodes corresponding to text tokens, attached according to the anchoring
(or, for AMR, the provided automatic alignments) with ANCHOR edges. Same as for all frameworks with node
labels and properties (i.e., all but UCCA), labels and properties are replaced with placeholders corresponding to
anchored tokens, where possible. The placeholder 〈`〉 corresponds to the concatenated lemmas of anchored tokens.
Specifically for AMR, name operator properties (e.g., op* for New York City) are collapsed to single properties.

labels, node properties, node anchoring, directed
edges, edge labels, and edge attributes.

While all frameworks represent top nodes, and
include directed, labeled edges, UCCA does not
contain node labels and properties, AMR lacks
node anchoring, and only UCCA has edge at-
tributes (distinguishing primary/remote edges).

2.1 Roots and Anchors

TUPA supports parsing to rooted graphs with la-
beled edges, and with the text tokens as terminals
(leaves), which is the standard format for UCCA
graphs. However, MRP graphs are not given in
this format, since there may be multiple roots and
the text tokens are only matched to the nodes by
anchoring (and not by explicit edges).

For the CoNLL 2019 Shared Task, TUPA was
extended to support node labels, node properties,
and edge attributes (see §3.1). Top nodes and an-
choring are combined into the graph by adding a
virtual root node and virtual terminal nodes, re-
spectively, during preprocessing.

A virtual terminal node is created per token ac-
cording to the tokenization predicted by UDPipe
(Straka and Straková, 2017) and provided as com-

panion data by the task organizers. All top nodes
are attached as children of the virtual root with a
TOP-labeled edge.

Nodes with anchoring are attached to the virtual
terminals associated with the tokens whose char-
acter spans intersect with their anchoring, with
ANCHOR-labeled edges. Note that anchoring is
automatically determined for training in the case
of AMR, using the alignments from the com-
panion data, computed by the ISI aligner (Pour-
damghani et al., 2014). There is no special treat-
ment of non-trivial anchoring for EDS: in case a
node is anchored to multiple tokens (as is the case
for multi-word expressions), they are all attached
with ANCHOR-labeled edges, resulting in possibly
multiple parents for some virtual terminal nodes.

During inference, after TUPA returns an output
graph, the virtual root and terminals are removed
as postprocessing to return the final graph. Top
nodes and anchoring are then inserted accordingly.

2.2 Placeholder Insertion

The number of distinct node labels and properties
is very large for most frameworks, resulting in se-
vere sparsity, as they are taken from an open vo-
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Before Transition
Transition

After Transition
Stack Buffer N. Edges Stack Buffer Nodes Edges Extra Effect
S x | B V E SHIFT S | x B V E
S | x B V E REDUCE S B V E
S | x B V E NODEX S | x y | B V ∪ {y} E | (y, x) `E(y, x)← X
S | x B V E CHILDX S | x y | B V ∪ {y} E | (x, y) `E(x, y)← X
S | x B V E LABELX S | x B V E `V (x)← X
S | x B V E PROPERTYX S | x B V E p(x)← X
S | y, x B V E LEFT-EDGEX S | y, x B V E | (x, y) `E(x, y)← X
S | x, y B V E RIGHT-EDGEX S | x, y B V E | (x, y) `E(x, y)← X
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S | x, y B V E SWAP S | y x | B V E
[root] ∅ V E FINISH ∅ ∅ V E terminal state

Figure 2: The TUPA-MRP transition set. We write the stack with its top to the right and the buffer with its
head to the left; the set of edges is also ordered with the latest edge on the right. NODE, LABEL, PROPERTY
and ATTRIBUTE require that x 6= root; CHILD, LABEL, PROPERTY, LEFT-EDGE and RIGHT-EDGE require that
x 6∈ w1:n; ATTRIBUTE requires that y 6∈ w1:n; LEFT-EDGE and RIGHT-EDGE require that y 6= root and that there
is no directed path from y to x; and SWAP requires that i(x) < i(y), where i(x) is the swap index (see §3.5).

cabulary of e.g. word senses and named entities.
However, many are simply copies of text tokens
and their lemmas.

To reduce the number of unique node labels
and properties, we use the (possibly automatic)
anchoring and UDPipe preprocessing to introduce
placeholders in the values. For example, a node
labeled move-01 anchored to the token moved
will be instead labeled 〈`〉-01, where 〈`〉 is a
placeholder for the token’s lemma. In this way
we reduce the number of node labels in the AMR
training set, for example, from tens of thousands
to 7,300, of which 2,000 occur only once and are
treated as unknown. We use similar placeholders
for the token’s surface form. Placeholders are re-
solved back to the full value after an output graph
is produced by the parser, according to the anchor-
ing in the graph. While nodes labels and properties
sometimes have a non-trivial relationship to the
text tokens, in most cases they contain the lemma
or surface form, making this a simple and effective
solution.

While more sophisticated alignment rules have
been developed (Flanigan et al., 2014; Pour-
damghani et al., 2014), such as using entity link-
ing (Daiber et al., 2013), as employed by Bjerva
et al. (2016); van Noord and Bos (2017), in this
baseline system we are employing a simple strat-
egy without relying on external, potentially non-
whitelisted resources.

Named entities in AMR are expressed by
name-labeled nodes, with a property for each to-
ken in the name, with keys op1, op2, etc. We in-

stead collapse these properties to a single op prop-
erty whose label is the concatenation of the name
tokens, with special separator symbols. This value
is in turn replaced by a placeholder, if the node is
anchored and the anchored tokens match the prop-
erty. Figure 1 demonstrates an AMR graph before
and after the conversion to the intermediate graph
representation.

3 Transition-based Meaning
Representation Parser

TUPA is a transition-based parser (Nivre, 2003),
constructing graphs incrementally from input to-
kens by applying transitions (actions) to the
parser state (configuration). The parser state is
composed of a buffer B of tokens and nodes to be
processed, a stack S of nodes currently being pro-
cessed, and an incrementally constructed graphG.
Some states are marked as terminal, meaning that
G is the final output. The input to the parser is a se-
quence of tokens: w1, . . . , wn. Parsing starts with
a (virtual) root node on the stack, and the input
tokens in the buffer, as (virtual) terminal nodes.

Given a gold-standard graph and a parser state,
an oracle returns the set of gold transitions to ap-
ply at the next step, i.e., all transitions that pre-
serve the reachability of the gold target graph.3

A classifier is trained using the oracle to select

3This type of oracle is similar to a dynamic oracle (Gold-
berg and Nivre, 2012; Goldberg, 2013), but in TUPA it only
supports the case where the current parser state is valid, i.e.,
only gold transitions have been applied since the initial state.
Training with exploration is thus not supported (yet).
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Figure 3: Illustration of the TUPA model, adapted from Hershcovich et al. (2018a), at an intermediate point in
the process of parsing the sentence “The fox gazed at the little prince for a long time.” Top: parser state (stack,
buffer and intermediate graph) for each framework. Bottom: encoder architecture. Input feature embeddings are
concatenate with BERT embeddings for each token. Vector representations for the input tokens are then computed
by two layers of shared and framework-specific bidirectional LSTMs. At each point in the parsing process, the
encoded vectors for specific tokens (from specific location in the stack/buffer) are concatenated with embedding
and numeric features from the parser state (for existing edge labels, number of children, etc.), and fed into the MLP
for selecting the next transition. Note that parsing the different frameworks is not performed jointly; the illustration
only expresses the parameter sharing scheme.

the next transition based on features encoding the
parser’s current state, where the training objective
is to maximize the sum of log-likelihoods of all
gold transitions at each step. If there are multiple
gold transitions, the highest-scoring one is taken
in training. Inference is performed greedily: the
highest-scoring transition is always taken.

Formally, the incrementally constructed graph
G consists of (V,E, `V , `E , p, a), where V is the
set of nodes, E is the sequence of directed edges,
`V : V → LV is the node label function, LV be-
ing the set of possible node labels, `E : E → LE
is the edge label function, LE being the set of pos-
sible edge labels, p : V → P(P ) is the node
property function, P being the set of possible node
property-value pairs, and a : E → P(A) is
the edge attribute function, A being the set of pos-
sible edge attribute-value pairs (a node may have
any number of properties; an edge may have any
number of attributes).

3.1 Transition Set

The set of possible transitions in TUPA is based
on a combination of transition sets from other

parsers, designed to support reentrancies (Sagae
and Tsujii, 2008; Tokgöz and Eryiğit, 2015), dis-
continuities (Nivre, 2009; Maier, 2015; Maier and
Lichte, 2016) and non-terminal nodes (Zhu et al.,
2013). Beyond the original TUPA transitions
(Hershcovich et al., 2017, 2018a), for the CoNLL
2019 Shared Task, transitions are added to support
node labels, node properties, and edge attributes.
Additionally, top nodes and node anchoring are
encoded by special edges from a virtual root node
and to virtual terminal nodes (corresponding to
text tokens), respectively (see §2).

The TUPA-MRP transition set is shown in Fig-
ure 2. It includes the following original TUPA
transitions: the standard SHIFT and REDUCE op-
erations (to move a node from the buffer to the
stack and to discard a stack node, respectively),
NODEX for creating a new non-terminal node and
an X-labeled edge (so that the new node is a par-
ent of the stack top), LEFT-EDGEX and RIGHT-
EDGEX to create a new X-labeled edge, SWAP

to handle discontinuous nodes (moving the second
topmost stack node back to the buffer), and FIN-
ISH to mark the state as terminal.
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Figure 4: BiLSTM module, illustrated for an input se-
quence of four tokens.

Besides the original TUPA transitions, TUPA-
MRP contains a CHILD transition to create unan-
chored children for existing nodes (like NODE, but
the new node is a child of the stack top),4 a LA-
BEL transition to select a label for an existing node
(either the stack top of the second topmost stack
node), a PROPERTY transition to select a property-
value pair for an existing node, and an ATTRIBUTE

transition to select an attribute-value pair for an
existing edge (the last created edge).

The original TUPA transitions LEFT-
REMOTEX and RIGHT-REMOTEX , creating
new remote edges (a UCCA-specific distinction),
are omitted. Remote edges are encoded instead
as edges with the remote attribute, and are
supported by the combination of EDGE and
ATTRIBUTE transitions. In contrast to the original
TUPA transitions, EDGE transitions are allowed
to attach multiple parents to a node.

3.2 Transition Classifier

To predict the next transition at each step, TUPA
uses a BiLSTM module followed by an MLP and
a softmax layer for classification (Kiperwasser and
Goldberg, 2016). The model is illustrated in Fig-
ure 3.

The BiLSTM module (illustrated in more de-
tail in Figure 4) is applied before the transition se-

4While UCCA contains unanchored (implicit) nodes cor-
responding to non-instantiated arguments or predicates, the
original TUPA disregards them as they are not included in
standard UCCA evaluation. The CoNLL 2019 Shared Task
omits implicit UCCA nodes too, in fact, but the CHILD tran-
sition is included to support unanchored nodes in AMR, and
is not used otherwise.

quence starts, running over the input tokenized se-
quence. It consists of a pre-BiLSTM MLP with
feature embeddings (§3.3) and pre-trained con-
textualized embeddings (§3.4) concatenated as in-
puts, followed by (multiple layers of) a bidirec-
tional recurrent neural network (Schuster and Pali-
wal, 1997; Graves, 2008) with a long short-term
memory cell (Hochreiter and Schmidhuber, 1997).

While edge labels are combined into the iden-
tity of the transition (so that for example, LEFT-
EDGEP and LEFT-EDGES are separate transitions
in the output), there is just one transition for each
of LABEL, PROPERTY and ATTRIBUTE. After
each time one of these transition is selected, an ad-
ditional classifier is evoked with the set of possible
values for the currently parsed framework. This
hard separation is made due to the large number
of node labels and properties in the MRP frame-
works. Since there is only one possible edge at-
tribute value (remote for UCCA), performing
this transition always results in this value being se-
lected.

3.3 Features
In both training and testing, we use vector embed-
dings representing the lemmas, coarse POS tags
(UPOS) and fine-grained POS tags (XPOS). These
feature values are provided by UDPipe as compan-
ion data by the task organizers. In addition, we
use punctuation and gap type features (Maier and
Lichte, 2016), and previously predicted node and
edge labels, node properties, edge attributes and
parser actions. These embeddings are initialized
randomly (Glorot and Bengio, 2010).

To the feature embeddings, we concatenate nu-
meric features representing the node height, num-
ber of parents and children, and the ratio between
the number of terminals to total number of nodes
in the graph G. Numeric features are taken as
they are, whereas categorical features are mapped
to real-valued embedding vectors. For each non-
terminal node, we select a head terminal for fea-
ture extraction, by traversing down the graph, se-
lecting the first outgoing edge each time according
to alphabetical order of labels.

3.4 Pre-trained Contextualized Embeddings
Contextualized representation models such as
BERT (Devlin et al., 2019) have recently achieved
state-of-the-art results on a diverse array of down-
stream NLP tasks, gaining improved results com-
pared to non-contextual representations. We use
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the weighted sum of last four hidden layers of a
BERT pre-trained model as extra input features.5

BERT uses a wordpiece tokenizer (Wu et al.,
2016), which segments all text into sub-word
units, while TUPA uses the UDPipe tokenization.
To maintain alignment between wordpieces and
tokens, we use a summation of the outputs of
BERT vectors corresponding to the wordpieces of
each token as its representation.

3.5 Constraints

As each annotation scheme has different con-
straints on the allowed graph structures, we apply
these constraints separately for each task. Dur-
ing training and parsing, the relevant constraint set
rules out some of the transitions according to the
parser state.

Some constraints are task-specific, others are
generic. For example, in AMR, a node with an
incoming NAME edge must have the NAME label.
In UCCA, a node may have at most one outgoing
edge with label ∈ {PROCESS, STATE}.

An example of a generic constraint is that stack
nodes that have been swapped should not be
swapped again, to avoid infinite loops in inference.
To implement this constraint, we define a swap in-
dex for each node, assigned when the node is cre-
ated. At initialization, only the root node and ter-
minals exist. We assign the root a swap index of
0, and for each terminal, its position in the text
(starting at 1). Whenever a node is created as a
result of a NODE or CHILD transition, its swap
index is the arithmetic mean of the swap indices
of the stack top and buffer head. While this con-
straint may theoretically limit the ability to parse
arbitrary graphs, in practice we find that all graphs
in the shared task training set can still be reached
without violating it.

4 Multi-Task Learning

Whereas in the single-task setting TUPA is trained
separately on each framework as described above,
in the multi-task setting, all frameworks share a
BiLSTM for encoding the input. In addition,
each framework has a framework-specific BiL-
STM, private to it. Each framework has its own
MLP on top of the concatenation of the shared and
framework-specific BiLSTM (see Figure 3).

5We used the bert-large-cased model
from https://github.com/huggingface/
pytorch-transformers.

Hyperparameter Value
Lemma dim. 200
UPOS dim. 20
XPOS dim. 20
Dep. rel. dim. 10
Punct. dim. 1
Action dim. 3
Node label dim. 20
Node prop. dim. 20
Edge label dim. 20
Edge attrib. dim. 1
MLP layers 2
MLP dim. 50
Shared BiLSTM layers 2
Shared BiLSTM dim. 500
Shared pre-BiLSTM MLP layers 1
Shared pre-BiLSTM MLP dim. 300
Private BiLSTM layers 2
Private BiLSTM dim. 500
Private pre-BiLSTM MLP layers 1
Private pre-BiLSTM MLP dim. 300

Table 1: Hyperparameter settings.

For node labels and properties and for edge at-
tributes (when applicable), an additional “axis”
(private BiLSTM and MLP) is added per frame-
work (e.g., AMR node labels are predicted sepa-
rately and with an identical architecture to AMR
transitions, except the output dimension is differ-
ent). This is true for the single-task setting too,
so in fact the single-task setting is multi-task over
{transitions, node labels, node properties, edge at-
tributes}.

5 Training details

The model is implemented using DyNet v2.1
(Neubig et al., 2017).6 Unless otherwise noted,
we use the default values provided by the pack-
age. We use the same hyperparameters as used in
previous experiments on UCCA parsing (Hersh-
covich et al., 2018a), without any hyperparameter
tuning on the CoNLL 2019 data.

5.1 Hyperparameters
We use dropout (Srivastava et al., 2014) be-
tween MLP layers, and recurrent dropout (Gal and
Ghahramani, 2016) between BiLSTM layers, both
with p = 0.4. We also use word, lemma, coarse-
and fine-grained POS tag dropout with α = 0.2

6http://dynet.io
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Offi- TUPA (single-task) TUPA (multi-task) Best System
cial ALL LPPS ALL LPPS ALL LPPS

DM 55.54 58.60 42.69 39.45 95.50 (Bai and Zhao, 2019) 94.96 (Che et al., 2019)
PSD 51.76 58.87 52.65 54.53 91.28 (Donatelli et al., 2019) 88.46 (Li et al., 2019)
EDS 81.00 81.36 73.95 74.81 91.85 (Zhang et al., 2019) 92.55 (Zhang et al., 2019)
UCCA 27.56 40.06 23.65 41.03 81.67 (Che et al., 2019) 82.61 (Che et al., 2019)
AMR 44.73 47.04 33.75 43.37 73.38 (Cao et al., 2019) 73.11 (Donatelli et al., 2019)
Overall 57.70 57.55 45.34 50.64 86.20 (Che et al., 2019) 84.88 (Donatelli et al., 2019)

Table 2: Official test MRP F-scores (in %) for TUPA (single-task and multi-task). For comparison, the highest
score achieved for each framework and evaluation set is shown.

(Kiperwasser and Goldberg, 2016): in training,
the embedding for a feature value w is replaced
with a zero vector with a probability of α

#(w)+α ,
where #(w) is the number of occurrences of w
observed. In addition, we use node dropout (Her-
shcovich et al., 2018a): with a probability of 0.1
at each step, all features associated with a single
node in the parser state are replaced with zero vec-
tors. For optimization we use a minibatch size
of 100, decaying all weights by 10−5 at each up-
date, and train with stochastic gradient descent for
50 epochs with a learning rate of 0.1, followed
by AMSGrad (Sashank J. Reddi, 2018) for 250
epochs with α = 0.001, β1 = 0.9 and β2 = 0.999.
Table 1 lists other hyperparameter settings.

5.2 Official Evaluation

For the official evaluation, we did not use a devel-
opment set, and trained on the full training set for
as many epochs as the evaluation period allowed
for. The multi-task model completed just 3 epoch
of training. The single task models completed 12
epochs for DM, 22 epochs for PSD, 14 epochs for
EDS, 100 epochs for UCCA (the maximum num-
ber we allowed) and 13 epochs for AMR.

Due to an oversight resulting from code re-use,
in the official evaluation we used non-whitelisted
resources. Specifically, for AMR, we used a con-
straint forcing any node whose label corresponds
to a PropBank (Palmer et al., 2005) frame to only
have the core arguments defined for the frame. We
obtained the possible arguments per frame from
the PropBank frame files.7 Additionally, for the
intermediate graph representation, we used place-
holders for tokens’ negation, verb, noun and adjec-
tive form, as well as organizational and relational
roles, from a pre-defined lexicon included in the

7https://github.com/propbank/
propbank-frames

AMR official resources.8 This is similar to the
delexicalization employed by Buys and Blunsom
(2017a) for AMR parsing.

5.3 Post-evaluation Training

After the evaluation period, we continued training
for a longer period of time, using a slightly modi-
fied system: we used only resources whitelisted by
the task organizers in the post-evaluation training,
removing the constraints and placeholders based
on PropBank and AMR lexicons.

In this setting, training is done over a shuffled
mix of the training set for all frameworks (no spe-
cial sampling is done to balance the number of in-
stances per framework), and a development set of
500 instances per framework (see §5.1). We se-
lect the epoch with the best average MRP F-score
score on a development set, selected by sampling
500 random training instances from each frame-
work (the development instances are excluded
from the training set). The large multi-task model
only completed 4 training epochs in the available
time, the single-task models completed 24 epochs
for DM, 31 epochs for PSD, 25 epochs for EDS,
69 epochs for UCCA and 23 epochs for AMR.

6 Results

Table 2 presents the averaged scores on the test
sets in the official evaluation (§5.2), for TUPA
and for the best-performing system in each frame-
work and evaluation set. Since non-whitelisted
resources were used, the TUPA scores cannot be
taken as a baseline. Furthermore, due to insuffi-
cient training time, all models but the UCCA one
are underfitting, while the UCCA model is overfit-
ting due to excessive training without early stop-
ping (no development set was used in this setting).

8https://amr.isi.edu/download.html

34



Post- MRP Test Scores Native Evaluation Test Scores Trans./
Evalua- TUPA (single-task) TUPA (multi-task) TUPA (single-task) TUPA (multi-task) Token
tion ALL LPPS ALL LPPS ALL LPPS ALL LPPS Ratio
DM 75.57 80.46 62.16 66.07 77.16 79.27 72.65 71.80 8.4
PSD 70.86 70.62 65.95 68.05 69.53 72.03 61.27 65.81 6.7
EDS 84.85 85.36 79.39 80.25 72.38 72.68 79.84 80.29 12.8
UCCA 77.69 82.15 64.05 73.11 57.42 65.90 35.60 50.29 8.4
AMR 53.85 53.47 39.00 42.62 53.05 52.52 38.11 40.47 6.6
Overall 75.73 77.63 66.01 68.58 8.4

Table 3: Post-evaluation test scores (in %) for TUPA (single-task and multi-task), using the MRP F-score (left),
and using Native Evaluation (middle): labeled SDP F-score for DM and PSD, EDM F-score for EDS, primary
labeled F-score for UCCA, and Smatch for AMR. The rightmost column (Trans./Token Ratio) shows the mean
ratio between length of oracle transition sequence and sentence length, over the training set.

6.1 Post-evaluation Results

Table 3 presents the averaged scores on the test
sets for the post-evaluation trained models (§5.3).
Strikingly, the multi-task TUPA consistently falls
behind the single-task one, for each framework
separately and in the overall score. This stems
from several factors, namely that the sharing strat-
egy could be improved, but mainly since the multi-
task model is probably underfitting due to insuffi-
cient training. We conclude that better efficiency
and faster training is crucial for practical applica-
bility of this approach. Perhaps a smaller multi-
task model would have performed better by train-
ing on more data in the available time frame.

6.2 Diagnostic Evaluation

The rightmost column of Table 3 displays the
mean ratio between length of oracle transitions se-
quence and sentence length by framework, over
the shared task training set. Scores are clearly bet-
ter as the framework has longer oracle transition
sequences, perhaps because many of the transi-
tions are “easy” as they correspond to structural
elements of the graphs or properties copied from
the input tokens.

6.3 Comparability with Previous Results

Previous published results of applying TUPA to
UCCA parsing (Hershcovich et al., 2017, 2018a,
2019b,a) used a different version of the parser,
without contextualized word representations from
BERT.

For comparability with previous results, we
train and test an identical model to the one
presented in this paper, on the SemEval 2019
Task 1 data (Hershcovich et al., 2019b), which

is UCCA-only, but contains tracks in English,
German and French. For this experiment, we
use bert-multilingual instead of bert-
large-cased, and train a shared model over all
three languages. A 50-dimensional learned lan-
guage embedding vector is concatenated to the in-
put. Word, lemma and XPOS features are not
used. No multi-task learning with other frame-
works is employed. The results are shown in Ta-
ble 4. While improvement is achieved uniformly
over the previous TUPA scores, even with BERT,
TUPA is outperformed by the shared task win-
ners (Jiang et al., 2019). Note that Jiang et al.
(2019) also used bert-multilingual in the
open tracks.

We also train and test TUPA with BERT em-
beddings on v1.0 of the UCCA English Web Tree-
bank (EWT) reviews dataset (Hershcovich et al.,
2019a). While the EWT reviews are included in
the MRP shared task UCCA data, the different for-
mat and preprocessing makes for slightly different
scores, so we report the scores for comparability
with previous work in Table 5. We again see pro-
nounced improvements from incorporating pre-
trained contextualized embeddings into the model.

7 Related Work

Transition-based meaning representation parsing
dates back already to semantic dependency pars-
ing work by Sagae and Tsujii (2008); Tokgöz and
Eryiğit (2015), who support a DAG structure by
allowing multiple parents to be created by EDGE

transitions, and by Titov et al. (2009), who ap-
plied a SWAP transition (Nivre, 2008) for online
reordering of nodes to support non-projectivity.

Transition-based parsing was applied to AMR
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SemEval 2019 All Prim. Rem.
English-Wiki (open)
TUPA (w/o BERT) 73.5 73.9 53.5
TUPA (w/ BERT) 77.8 78.3 57.4
Jiang et al. (2019) 80.5 81.0 58.8
English-20K (open)
TUPA (w/o BERT) 68.4 69.4 25.9
TUPA (w/ BERT) 74.9 75.7 44.0
Jiang et al. (2019) 76.7 77.7 39.2
German-20K (open)
TUPA (w/o BERT) 79.1 79.6 59.9
TUPA (w/ BERT) 81.3 81.6 69.2
Jiang et al. (2019) 84.9 85.4 64.1
French-20K (open)
TUPA (w/o BERT) 48.7 49.6 2.4
TUPA (w/ BERT) 72.0 72.8 45.8
Jiang et al. (2019) 75.2 76.0 43.3

Table 4: Test UCCA F-score scores (in %) on all
edges, primary edges and remote edges, on the Se-
mEval 2019 Task 1 data. The previous published
TUPA scores are shown (TUPA w/o BERT), as well
as scores for TUPA with BERT contextualized embed-
dings, TUPA (w/ BERT), averaged over three sepa-
rately trained models in each setting, differing only by
random seed (standard deviation < 0.03); and the scores
for the best-scoring system from that shared task.

by Wang et al. (2015b,a, 2016); Wang and Xue
(2017); Guo and Lu (2018), who transformed syn-
tactic dependencies into AMRs by a sequence
of transitions. Subsequent work used transition-
based parsing to create AMRs from text di-
rectly (Damonte et al., 2017; Ballesteros and Al-
Onaizan, 2017; Naseem et al., 2019). Buys and
Blunsom (2017b) developed a transition-based
parser supporting both AMR and EDS.

8 Conclusion

We have presented TUPA, a baseline system in
the CoNLL 2019 shared task on Cross-Framework
Meaning Representation. TUPA is a general
transition-based DAG parser, which is trained with
multi-task learning on multiple frameworks. Its
input representation is augmented with BERT con-
textualized embeddings.
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Abstract

The English Resource Grammar (ERG) is
a broad-coverage computational grammar of
English that derives underspecified logical-
form representations of meaning. Elementary
Dependency Structures (EDS) and DELPH-
IN MRS Bi-Lexical Dependencies (DM) are
graph-based simplifications of ERG mean-
ing representations. As a point of refer-
ence outside the official competition of the
2019 Shared Task on Cross-Framework Mean-
ing Representation Parsing, we evaluate ERG-
derived EDS and DM graphs. These graphs
yield higher accuracy scores than the purely
data-driven parsers in the shared task, sug-
gesting that the general-purpose grammatical
knowledge encoded in the ERG aids parsing
into these meaning representations.

1 Introduction

Two of the target representations in the 2019 Shared
Task on Cross-Framework Meaning Representation
Parsing (MRP 2019; Oepen et al., 2019) derive
from the framework dubbed English Resource Se-
mantics (ERS; Flickinger et al., 2014; Bender et al.,
2015). ERS instantiates the designer logic for sco-
pally underspecified meaning representation called
Minimal Recursion Semantics (MRS; Copestake
et al., 2005); in and of themselves, ERS terms are
logic- rather than graph-based, i.e. require conver-
sion into graph-structured representations of mean-
ing in the context of the MRP shared task. Ele-
mentary Dependency Structures (EDS; Oepen and
Lønning, 2006) and DELPH-IN MRS Bi-Lexical
Dependencies (DM; Ivanova et al., 2012) achieve
simplification of ERS into labeled directed graphs
by elimination of most of the information regard-
ing scope underspecification and, in the case of
DM, further reduction into pure bi-lexical graphs.
Oepen et al. (2019) provide additional background
on these representations. This paper gives some lin-
guistic and technical background on ERS parsing
(§2), summarizes the processes used in deriving
EDS and DM graphs for the MRP evaluation data

(§3), and puts quantitative ERS parsing results into
the perspective of the shared task at large (§4).

2 The LinGO English Resource
Grammar and Redwoods Treebank

At the core of this work are two linguistic resources
that have been under continuous development for
multiple decades now, as part of the world-wide
Deep Linguistic Processing with HPSG Initiative
(DELPH-IN; http://delph-in.net). First,
the LinGO English Resource Grammar (ERG;
Flickinger, 2000) is an implementation of the gram-
matical theory of Head-Driven Phrase Structure
Grammar (HPSG; Pollard and Sag, 1994) for En-
glish, i.e. a computational grammar that can be
used for parsing and generation. Development of
the ERG started in 1993, building conceptually on
earlier work on unification-based grammar engi-
neering for English at Hewlett Packard Laborato-
ries (Gawron et al., 1982). The ERG has contin-
uously evolved through a series of R&D projects
(and a small handful of commercial applications)
and today allows the grammatical analysis of run-
ning text across domains and genres. The hand-
built ERG lexicon of some 38,000 lemmata (for
27,000 distinct citation forms) aims for complete
coverage of function words and open-class words
with ‘non-standard’ syntactic properties (e.g. argu-
ment structure). Built-in support for light-weight
named entity recognition and an unknown word
mechanism combining statistical PoS tagging and
on-the-fly lexical instantiation for ‘standard’ open-
class words (e.g. names or non-relational common
nouns and adjectives) typically enable the grammar
to derive complete syntactico-semantic analyses for
85 – 95 percent of all utterances in standard corpora,
including newspaper text, the English Wikipedia,
or bio-medical research literature (Flickinger et al.,
2017). Parsing times for these data sets measure in
seconds per sentence, time comparable to human
production or comprehension.

Second, since around 2001 the ERG has been
accompanied by a selection of development cor-
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pora, where for each sentence an annotator has
selected the intended analysis among the alterna-
tives provided by the grammar (or has recorded
that no appropriate analysis is available, in a given
version of the grammar). This companion resource
is called the LinGO Redwoods Treebank (Oepen
et al., 2004). For each release of the ERG, a cor-
responding version of the treebank has been pro-
duced, manually validating and updating existing
analyses to reflect changes in the underlying gram-
mar, as well as ‘picking up’ analyses for previously
out-of-scope inputs and new development corpora.
Since mid-2016, the current version of Redwoods
(dubbed Ninth Growth, corresponding to ERG re-
lease 1214) encompasses gold-standard analyses
for some 85,400 utterances (or close to 1.3 million
tokens) of running text from half a dozen different
genres and domains, including the first 22 sections
of the venerable Wall Street Journal (WSJ) text in
the Penn Treebank (PTB; Marcus et al., 1993).

The original motivation for treebanking ERG
analyses was to enable training discriminative parse
ranking models, i.e. a conditional probability distri-
bution over ERG derivations (Johnson et al., 1999).
For this purpose, the treebank must disambiguate
at the same level of granularity as is maintained
in the grammar, i.e. encode its exact linguistic dis-
tinctions. Furthermore, to train discriminative (i.e.
conditional) stochastic models, both the intended
as well as the dispreferred analyses are needed.

The Redwoods treebank is built exclusively from
ERG analyses, i.e. full HPSG syntactico-semantic
signs. Annotation in Redwoods amounts to disam-
biguation among the candidate analyses derived
by the grammar (identifying the intended parse)
and, of course, analytical validation of the final
result. To make this task practical, a specialized
tree selection tool extracts a set of what are called
discriminants from the complete set of analyses.
Discriminants encode contrasts among alternate
analyses—for example whether to treat a word like
crop as nominal or verbal, or where to attach a
prepositional phrase modifier. While picking one
full analysis (among a set of hundreds or thousands
of trees) would be daunting (to say the least), the
isolated contrasts presented as discriminants are
comparatively easy to judge for a human annotator.

Discriminant-based tree selection was first pro-
posed by Carter (1997) and has since been suc-
cessfully applied to a range of grammatical frame-
works. To the best of our knowledge, Redwoods is

the most comprehensive such effort, complement-
ing the original proposal by Carter (1997) with the
notion of dynamic treebanking, in two senses of
this term. First, different views can be projected
from the multi-stratal HPSG analyses at the core
of the treebank, highlighting subsets of the syn-
tactic or semantic properties of each analysis, e.g.
HPSG derivations, more conventional phrase struc-
ture trees, full logical-form meaning representa-
tions, and various variable-free forms of semantic
dependency graphs—including EDS and DM.

Second, the dynamic treebank is extended and
refined over time. As the grammar (the core reposi-
tory of knowledge about derivation and composi-
tion) evolves, dynamic refinement refers to the abil-
ity to mostly automatically update the Redwoods
treebank, to for example add detail to the linguistic
analyses or apply targeted error correction while
minimizing any loss of manual input from previous
annotation cycles. Although we can by no means
quantify precisely the effort devoted to ERG and
Redwoods development to date, we estimate that
in excess of thirty person years have been accumu-
lated between 1993 and 2019.

3 Parsing with the ERG

There are several highly engineered implemen-
tations of the DELPH-IN feature structure refer-
ence formalism; for our experiments we used the
PET parser of Callmeier (2002), as bundled in the
open-source distribution of DELPH-IN resources
called LOGON (Lønning and Oepen, 2006).1 At its
core, PET is a classic, agenda-driven chart parser
(Kay, 1986), synthesizing a large body of algo-
rithm design for efficient feature structure manip-
ulation and unification-based parsing by among
others Tomabechi (1995), Malouf et al. (2000),
Erbach (1991), Kiefer et al. (1999), and Oepen
and Callmeier (2000). The parser achieves exact
inference by constructing the complete parse for-
est, factoring local ambiguity under feature struc-
ture subsumption (a technique termed retroactive
packing by Oepen and Carroll, 2000) and subse-
quently enumerating n-best full derivations from
the forest according to a discriminative parse rank-
ing model in the tradition of Johnson et al. (1999)
and Toutanova et al. (2005).

Despite the non-local nature of features (of ERG
derivations) used in parse ranking, the selective
unpacking procedure of Carroll and Oepen (2005)

1See http://moin.delph-in.net/LogonTop.
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Tops Labels Properties Anchors Edges Attributes All

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F

ERG .92 .92 .918 .99 .99 .987 .96 .96 .956 .99 .99 .994 .91 .91 .912 – – – .96 .96 .961
.95 .95 .950 .99 .99 .987 .98 .98 .978 .99 .00 .995 .93 .93 .927 – – – .97 .97 .973

SJTU–NICT .93 .93 .933 .95 .95 .949 .96 .95 .955 .99 .99 .993 .93 .92 .924 – – – .96 .95 .955
.97 .96 .965 .93 .93 .933 .94 .94 .944 .99 .99 .990 .93 .93 .933 – – – .95 .95 .949

D
M HIT-SCIR .93 .93 .926 .93 .93 .930 .95 .95 .953 .99 .99 .993 .93 .92 .925 – – – .95 .95 .951

.95 .95 .950 .93 .93 .928 .95 .95 .947 .99 .99 .990 .94 .94 .935 – – – .95 .95 .950

SUDA–Alibaba .91 .91 .911 .90 .91 .903 .91 .92 .915 .97 .99 .982 .89 .91 .898 – – – .91 .93 .923
.91 .88 .893 .86 .89 .872 .88 .91 .895 .96 .99 .979 .88 .92 .896 – – – .89 .92 .907

Peking .93 .93 .927 .92 .91 .915 .95 .94 .945 .99 .99 .991 .92 .92 .924 – – – .94 .94 .944
.96 .96 .960 .88 .88 .882 .91 .92 .914 .99 .99 .989 .92 .92 .921 – – – .92 .93 .925

ERG .90 .90 .902 .97 .96 .965 .96 .96 .960 .96 .96 .963 .93 .93 .929 – – – .95 .95 .952
.93 .93 .930 .96 .97 .964 .85 .88 .863 .98 .99 .983 .93 .94 .932 – – – .96 .96 .959

SUDA–Alibaba .90 .90 .899 .91 .91 .912 .89 .91 .897 .95 .95 .949 .90 .90 .897 – – – .92 .92 .918
.94 .94 .940 .91 .92 .913 .72 .84 .778 .95 .96 .953 .91 .91 .911 – – – .92 .93 .925

E
D

S

HIT-SCIR .88 .82 .852 .90 .89 .894 .89 .91 .895 .95 .94 .943 .89 .88 .888 – – – .91 .90 .907
.92 .91 .915 .85 .86 .854 .76 .88 .815 .95 .96 .950 .89 .89 .890 – – – .89 .90 .898

SJTU–NICT .91 .85 .877 .93 .86 .894 .79 .76 .775 .97 .90 .934 .95 .82 .878 – – – .95 .86 .899
.97 .89 .927 .93 .88 .904 .27 .24 .255 .97 .93 .949 .94 .86 .894 – – – .94 .88 .912

Peking .83 .83 .829 .95 .94 .946 .91 .96 .936 .96 .96 .961 .94 .93 .933 – – – .95 .94 .945
.89 .89 .890 .91 .92 .918 .49 .88 .629 .95 .96 .959 .92 .92 .918 – – – .92 .93 .928

Table 1: MRP results for DM (top) and EDS (bottom), with precision (P), recall (R), and F1 for different types of
graph components: top nodes, node labels, other node properties, anchoring into the surface string, labeled edges,
and all of these combined (neither DM nor EDS use edge attributes). Best F1 scores in each category are in bold.
The pair of rows per submission indicate the full MRP evaluation data vs. the 100-sentence Little Prince subset.

guarantees n-best enumeration from the parse for-
est in globally correct rank order. At its core, this
is a specialized search procedure on a weighted
and–or graph (the forest), where for packed (i.e.
disjunctive) nodes local contexts of optimization
are established on demand. Although worst-case
complexity for both forest construction and unpack-
ing is in principle exponential, parsing times (for
small values of n) with the ERG in practice mostly
grow polynomially in input length. For example,
parser throughput for the sentences from the Lit-
tle Prince subset of the MRP evaluation data (see
Oepen et al., 2019) averages at two sentences per
second, whereas average parse times for the much
longer 100-sentence MRP sample of WSJ text lie
around four seconds per sentence.

For parsing the MRP evaluation data, we applied
ERG release 1214 with its bundled WSJ parse rank-
ing model, which uses the feature configuration of
Zhang et al. (2007) and was trained on Sections 00–
20 of the Redwoods Ninth Growth using the Maxi-
mum Entropy estimation toolkit of Malouf (2002).
We use the LOGON distribution as of August 2019

to parse in one-best mode the ‘raw’ strings for the
MRP evaluation data whose target representations
were indicated as DM or EDS. The resulting HPSG
derivations each uniquely determine an ERS mean-
ing representation in underspecified logic, which
we subsequently convert to EDS and DM.2

Given the formal nature of this process, the re-
sulting graphs are guaranteed to reflect the com-
position algebra of the ERG, recursively building
larger fragments of meaning from smaller parts.

4 Experimental Results

Parsing accuracies for PET and the ERG are sum-
marized in Table 1, for both the DM (top) and
EDS (bottom) evaluation graphs. The table com-
pares ERG parsing results to a selection of ‘real’
submissions to the shared task, viz. the top per-
formers within each framework and for the task

2The ERS-to-EDS converter of Oepen and Lønning (2006)
is part of the LOGON distribution, as is the converter of
Ivanova et al. (2012) for further simplification to bi-lexical
DM. Exact command-line incantations for all tools and their
parameterization are specified as part of the submission
archive in the MRP 2019 data release.
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overall: HIT-SCIR (Che et al., 2019), Peking (Chen
et al., 2019)3, SJTU–NICT (Bai and Zhao, 2019),
and SUDA–Alibaba (Zhang et al., 2019). In con-
trast to the ERG parser, all of these systems are
purely data-driven, in the sense that they do not
incorporate manually curated linguistic knowledge
(beyond finite-state tokenization rules, maybe) but
rather learn all their parameters exclusively from
the shared task training data.

By and large, the data-driven parsers are compet-
itive to the ERG, in particular the SJTU–NICT and
HIT-SCIR systems for DM, and the Peking parser
for EDS. For some structural types of graph com-
ponents (tops and edges), the ERG is in fact out-
performed by some submissions, whereas it holds
at times commanding leads on node-local types of
information, e.g. labels, properties, and achors. It
could be argued that comparison for some of these
graph components favors the ERG, seeing as it em-
bodies the exact principles of deriving these values
that were used in creating the Redwoods annota-
tions. However, for DM at least, node labels are
essentially lemmas, and it is prima facie surprising
that none of the data-driven parsers succeeds very
well in replicating ERG-style lemmatization.

Likewise, anchoring for EDS is a many-to-many
relation between graph nodes and (arbitrary) input
sub-strings, where one can speculate that at least
some of the conventions used in the ERG may be
linguistically idiosyncratic. Inasmuch as that may
(or may not) be the case, the Peking parser shows
anchoring accuracies comparable to the ERG.

The Little Prince subset of the evaluation data
is comprised of much shorter sentences, and ob-
served accuracies for some types of graph compo-
nents may appear to correlate with input complex-
ity, notably top node and (to a lesser) degree edge
prediction. At the same time, the novelistic style
of this subset most likely makes it least similar to
the WSJ-derived training data for the data-driven
parsers, hence some submissions can seem to suffer
from detrimental cross-domain effects.

5 Reflections

As long-term co-developers of the ERG and its
PET parser, we are impressed by the overall perfor-
mance levels of the data-driven submissions to the
MRP 2019 shared task. We hope to conduct more

3The Peking submission is not considered in the primary
ranking of the official shared task results, because the team in-
advertently used tokenization training data beyond the ‘white-
listed’ resources for task participants

contrastive error-analysis, possibly in collabora-
tion with other parser developers, to further isolate
effects of domain variation, for example, and gener-
ally gauge the contributions (if any) of the explicit
body of linguistic knowledge in the ERG.
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Abstract

This paper describes our SJTU-NICT’s system
for participating in the shared task on Cross-
Framework Meaning Representation Parsing
(MRP) at the 2019 Conference for Compu-
tational Language Learning (CoNLL). Our
system uses a graph-based approach to model
a variety of semantic graph parsing tasks. Our
main contributions in the submitted system
are summarized as follows: 1. Our model
is fully end-to-end and is capable of being
trained only on the given training set which
does not rely on any other extra training source
including the companion data provided by the
organizer; 2. We extend our graph pruning
algorithm to a variety of semantic graphs,
solving the problem of excessive semantic
graph search space; 3. We introduce multi-
task learning for multiple objectives within the
same framework. The evaluation results show
that our system achieved second place in the
overall F1 score and achieved the best F1 score
on the DM framework.

1 Introduction

In recent years, the semantic graph parsing has
received a lot of attention from researchers.

∗ Corresponding authors. †This work was conductd
when Zuchao Li and Zhuosheng Zhang visited NICT
as internship students. Email: charlee@sjtu.edu.cn,
zhaohai@cs.sjtu.edu.cn, zhangzs@sjtu.edu.cn, {wangrui,
mutiyama, eiichiro.sumita}@nict.go.jp. This paper was par-
tially supported by National Key Research and Development
Program of China (No. 2017YFB0304100) and Key Projects
of National Natural Science Foundation of China (U1836222
and 61733011). This work was partially conducted under
the program “Research and Development of Enhanced
Multilingual and Multipurpose Speech Translation Systems”
of the Ministry of Internal Affairs and Communications
(MIC), Japan. Masao Utiyama is partly supported by
JSPS KAKENHI Grant Number 19H05660. Rui Wang
was partially supported by JSPS grant-in-aid for early-career
scientists (19K20354): “Unsupervised Neural Machine
Translation in Universal Scenarios” and NICT tenure-
track researcher startup fund “Toward Intelligent Machine
Translation”.

However, due to the variety of semantic graph
flavors, the framework-specific “balkanization”
of semantic parsing is worth noting. The
2019 Conference on Computational Language
Learning (CoNLL) hosts a shared task on
Cross-Framework Meaning Representation Pars-
ing (MRP 2019) (Oepen et al., 2019). From
the perspective of the formal representation of
semantic graphs, MRP 2019 uses the directed
graphs to unify the five different semantic
representation frameworks: DELPH-IN MRS Bi-
Lexical Dependencies (DM), Prague Semantic
Dependencies (PSD), Elementary Dependency
Structures (EDS), Universal Conceptual Cognitive
Annotation (UCCA), and Abstract Meaning
Representation (AMR). Wherein, the directed
graph is represented by a 〈T ,N , E〉 triplet, N
represents a set of nodes that constitutes the
semantic graph, E ⊆ N × N represents a
set of edges that express a specific semantic
relationship (N , E contains a specific attribute
corresponding to the semantic framework), and
T represents nodes with a degree of zero in N ,
usually corresponding to the most central semantic
entity.

Though the semantic graph parsing task is
uniformly modeled into a directed graph gener-
ation task, according to the relationship between
nodes in the directed graph and the surface lexical
units in the sentence, the five semantic graph
frameworks can be divided into three different
categories according to the alignment degree
between graph nodes and lexical semantics: (1)
graph nodes and surface lexical units anchor
correspondence strictly (i.e., DM, PSD, EDS),
(2) partial graph nodes and surface lexical units
anchor correspondence strictly (i.e., UCCA), and
(3) graph nodes and surface lexical units have
no anchor correspondence (i.e., AMR). As there
is a case of anchoring multiple nodes in the
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corresponding graph of the directed graph of EDS,
our system further treats EDS as one type, and DM
and PSD as another type.

Based on the experiences of Jiang et al. (2019)
and Zhang et al. (2019a) and our previous
works on the Dependency Parsing (Li et al.,
2018a,b,d; Zhou and Zhao, 2019; Zhou et al.,
2019), Semantic Role Labeling (He et al., 2018b;
Cai et al., 2018; Li et al., 2018c, 2019b; He
et al., 2019), Universal Conceptual Cognitive
Annotation (Jiang et al., 2019), Abstract Mean
Representation (Zhang et al., 2019a), Machine
Translation (Xiao et al., 2019; Sun et al., 2019;
Chen et al., 2019), Language Modeling (Li et al.,
2019a; Zhang et al., 2019c,b) tasks, we create
three graph parsing models based on the semantic
graph flavors: (1) Strictly anchored (DM, PSD,
EDS): scores the surface lexical units as nodes
of the graph, and performs edge training based
on the expression of the candidate graph nodes,
(2) Non-strictly anchored (UCCA): treats it as a
special constituent tree parsing task and uses an
additional component to recover the remote edges,
and (3) Completely unanchored (i.e., AMR): uses
the Seq2seq model to generate the nodes and then
performs edge scoring on the generated graph
nodes. In order to maintain the end-to-end style of
our system, we use the multi-task learning method
to jointly train and predict the attributes of nodes
and edges together with themselves. We use the
pre-trained language model BERT as the encoder.
In the training phase, in order to prevent the nodes
from falling into local optimum and the edges
unable to get enough training, we use the random
sampling method on the golden graph nodes to
push as many correct nodes as possible to join the
edge training. According to the official results of
the evaluation, our system ranked second place in
the overall F1 metric among the 16 participating
systems. On the DM framework, our system
achieved the best results. Our system on other 4
frameworks (PSD, EDS, UCCA, and AMR) are all
ranked the third place.

2 Tasks and Modeling

In this section, we will introduce this shared
task and our modeling approach. Our key idea
is to use a graph-based approach rather than a
transition-based one; therefore, all the modeling
and optimization methods we have on these
frameworks are graph-based. The CoNLL shared

task combines the following five frameworks for
graph-based meaning representation: DM, PSD,
EDS, UCCA, and AMR.

2.1 DM and PSD

The DM (Ivanova et al., 2012) and PSD
(Hajic et al., 2012; Miyao et al., 2014) are
two independently developed syntactic-semantic
annotations which project semantic forms onto bi-
lexical dependencies in a lossy manner.

In the representation of the DM and PSD
frameworks, the graph nodes and surface lexical
units are strictly anchored. There is an explicit,
one-to-many anchoring onto sub-strings of the
underlying sentence. These graphs are neither
fully connected nor rooted. The graphs of DM and
PSD have the following features:

• There is only a one-to-one correspondence1

between the graph node and the span in the
sentence.

• Graph nodes can have multiple in-edges or
out-edges.

• Graph nodes can be completely isolated, with
no in-edges or out-edges.

• There is at most one edge between any two
graph nodes.

According to the above properties, the task
is modeled as follows: Given a sentence S =
{w1, w2, ..., wn}, enumerate all the span in the
sentence spani,j = {wi, wi+1, ..., wj}, (i <=
j), which is used as a candidate graph node
and is fed into the node classifier classifiern2

to filter the truly graph nodes: nodek =
classifiern(spani,j), and then uses the edge
classifier classifiere to obtain the semantic rela-
tionship between the two graph nodes edgek1,k2 =
classifiere(nodek1 , nodek2).

2.2 EDS

EDS is a variable-free semantic dependency graph
representation proposed by Oepen and Lønning

1Due to one span in the sentence includes several surface
lexical units; therefore the one-to-many anchoring becomes
one-to-one correspondence.

2Here, we summarize the general terminology of using
only the classifier. In practice, it is possible that the
classifier contains several attribute classifiers, depending
on how many attributes of the node or edge need to be
predicted.
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(2006) which encode the English Resource Se-
mantics (ERS) (Flickinger et al., 2014). The EDS
conversion from under-specified logical forms of
the full ERS to variable-free graphs discards
partial semantic information which makes the
graph abstractly.

In the representation of the EDS framework,
the graph nodes are independent of surface lexical
units. For each graph node, there is an explicit,
many-to-many anchoring onto sub-strings of the
underlying sentence. The EDS graph has the
following features:

• There is a many-to-one correspondence
between the graph node and the span in the
sentence.

• Graph nodes do not correspond to individual
surface tokens in the sentence.

• Graph nodes can not be completely isolated
and have at least one in- or out-edge.

According to the above features, since there
is a many-to-one correspondence between the
graph nodes and the spans in the sentences, it
is impossible to use the modeling method of
DM and PSD simply. Therefore, we adopt a
pseudo node method to solve the problem. The
transformation is carried out: the pseudo node
has a one-to-one relationship with the span in the
sentence. The edge between nodes in the graph is
transformed into the edge of the pseudo node, and
two attributes are added for the edge: the source
node label and the target node label which are
used to indicate the node label in the original EDS
graph. In this way, the many-to-one relationship
is converted into a one-to-one relationship. After
conversion, we can model the problem using in
the same way as DM and PSD as described in
Subsection 2.1.

2.3 UCCA

UCCA is a multi-layer linguistic framework for
semantic annotation proposed by Abend and
Rappoport (2013). UCCA aims to recognize the
level of semantic granularity which abstracts away
from syntactic paraphrases in a typologically-
motivated, cross-linguistic fashion and does not
need to rely on language-specific resources.

In the representation of the UCCA framework,
some nodes have a one-to-one correspondence
with the span in the sentence, which is called

terminal nodes3. Other nodes do not have any
corresponding relationship with the span, which is
introduced as a notion of a semantic constituency
that transcends the pure dependency graphs to
represent the semantic granularity. The UCCA
graph has the following features:

• There is a one-to-one correspondence be-
tween the terminal nodes and the spans in the
sentence.

• Graph nodes may have multiple parents,
among which one is annotated as the primary
parent and others as remote parents.

• The primary edges between nodes and
their primary parents form a tree structure,
whereas the remote edges between nodes and
their remote parents enable the reentrancy,
forming directed acyclic graphs (DAGs).

• The non-terminal nodes may exist discontin-
uous leaves; in which some terminal nodes
are not its descendants.

Based on the above features and inspired by
Nivre and Nilsson (2005), we transform the tree
composed of primary edges (and nodes) into a
constituent syntax tree structure, which is modeled
using the constituent syntax tree parsing schema.
Use an additional classifier for the remote edges
prediction and recovery.

2.4 AMR
Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) parsing is the task of
transducing natural language text into AMR,
which is a graph-based formalism used for
capturing sentence-level semantics. The AMR
framework backgrounds notions of composition-
ality and derivation, therefore, without explicit
correspondence between graph nodes and lexical
units.

In the representation of AMR framework,
the graph nodes are obtained by composition,
derivation, lexical decomposition, normalization
towards verb senses and so on. The features of the
AMR graphs built on these graph nodes is similar

3MRP-transformed UCCA graph differs from on the
terminal nodes from the original UCCA graph. In the original
UCCA graph representation, terminal nodes refer to words,
and in the MRP-transformed UCCA graph, terminal nodes
refer to the lowest layer of non-terminal nodes in the original
UCCA graph due to a node can contain multiple words in the
MRP-transformed UCCA graph.
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to the dependency syntax tree except for the
reentrancy. Therefore, if the node is determined,
modeling can be performed using the method of
dependency syntax parsing. However, we can’t
get the nodes of the graph directly from the
sentence due to the nature of the AMR framework.
Therefore, inspired by Zhang et al. (2019a),
we model the nodes determination as sequence
generation tasks using the Seq2seq model and then
parse the tree structure on the generated nodes.

3 Data and Preprocessing

3.1 Data

The CoNLL shared task provides a training
dataset of 5 subtasks, of which DM, PSD, and
EDS are from Wall Street Journal (WSJ) text
of Penn Treebank (Marcus et al., 1993) and
contain 35,656 sentences. The UCCA training
data comes from the English Web Treebank’s
reviews text (Bies et al., 2012) and the English
Wikipedia celebrity articles, with a total data
volume of 5,672 sentences. AMR annotation data
are drawn from a variety of texts, including online
discussion forums, newswires, folktales, novels,
and Wikipedia articles, which contain a total of
56,240 sentences.

3.2 Tokenization, Lemmatization, and
Anchor conversion

Since the sentence in the training dataset is the
original text and no tokenization is performed, and
the subsequent processing requires the word root
form, we use the Stanford NLP toolkit4 (Manning
et al., 2014) to tokenize and lemmatize the original
text. As the graph node anchor in the original data
is defined at the character level, we need to convert
the anchor to the word level. In this process, due
to the difference in tokenization criteria and the
existence of tokenizing errors, some graph nodes
will be converted into the same one in the process
of conversion to word-level anchor. Therefore,
we performed some post-processing modifications
on the tokenization results of the Stanford NLP
toolkit to ensure that the graph nodes after the
conversion to the word level anchor correspond to
the previous character level, without increasing or
decreasing the nodes.

4https://stanfordnlp.github.io/
CoreNLP/index.html.

accept
ev-w20f1 ACT PAT 
[propbank/accept-v.xml :: accept.01 :: 135] 

ACT()[accept.01 :: 0 :: :: 81]{} 
PAT()[accept.01 :: 1 :: :: 130]{} 

ev-w20f2 ACT PAT ?ORIG 
[propbank/accept-v.xml :: accept.01 :: 7] 

ACT()[accept.01 :: 0 :: :: 3]{} 
PAT()[accept.01 :: 1 :: :: 6]{} 
ORIG()[accept.01 :: 2 :: :: 3, accept.01 :: 1 :: :: 2]{} 

access
ev-w21f1 ACT PAT 
[propbank/access-v.xml :: access.01 :: 2] 

ACT()[access.01 :: 0 :: :: 1]{} 
PAT()[access.01 :: 1 :: :: 2]{} 

acclaim
ev-w22f1 ACT PAT 
[propbank/acclaim-v.xml :: acclaim.01 :: 1] 

ACT(sub)[]{} 
PAT(obj1, ving)[acclaim.01 :: 1 :: :: 1]{} 

ev-w22f2 ACT PAT ?CAUS 
ACT(sub)[]{} 
PAT(obj1)[]{} 
CAUS(for[objpp, ving])[]{}

Figure 1: Examples of the most frequent frame-to-
frameset mapping extracted from “rng pb links.txt”.

3.3 Frame Label Projection in PSD
Framework

The node label in the PSD framework is a special
item id for Engvallex-to-PropBank mapping
dictionary. The node label contains the item id
of the item in the dictionary and the format id
of the item. Such as: [access: ev-w22f1 ACT
PAT] where 22 is the item id (word id) and 1
is the format id. Therefore, it is not convenient
to use the classifier directly for prediction on the
raw node label. Due to the word has a one-to-
many relationship with the item id, we cannot
obtain this item id by word directly. By observing
“rng pb links.txt”5 as shown in Figure 1, the item
id has a one-to-one correspondence with its usage
pattern string (like “ACT PAT”) in the case of
word determination, and the usage pattern has
duplicates among different words, the number is
much smaller than all item ids size; thus it is
more suitable as a learning goal. In the subsequent
recovery process, we can use lemma and the usage
pattern to restore to the item id.

3.4 Graph to Constituent Tree Conversion in
UCCA Framework

As described in subsection 2.3, the features, and
modeling approach, we need to preprocess the
UCCA graph in the training set, transforming
the graph into a constituent tree by removing
the remote edges and the edges that cause the

5https://ufal.mff.cuni.cz/pcedt2.0/
publications/eng_pb_links.txt
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discontinuous leaves. We have adopted the same
transformation method as Jiang et al. (2019). The
simple steps are as follows:

1) Remote edges removal. In the UCCA MRP
representation graph, we remove all edges with
the remote = True attribute. The label of the
primary edge corresponding to the remote edge
is added with a “remote” suffix to distinguish
the node with the remote relationship from the
ordinary node and subsequent recovery of the
remote edge.

2) Constituency continuity formation. Since
the current mainstream constituent parsing method
requires continuity of constituency, we need to
process the discontinuous nodes of the tree species
obtained in the previous step. For detailed
conversion steps, see Algorithm 1.

Algorithm 1 Constituency continuity formation
Input:

A tree with discontinuous leaves, Td;
Output:

A constituent tree, Tc;
1: set T (t) = Td
2: repeat
3: set n(t) is a non-descendant node with

discontinuous leaves;
4: find the discontinuous spans Sd in the range

of n(t);
5: for each span s ∈ Sd do
6: for each word w ∈ s do
7: find a maximum range parent node np

of word w whose range size is less
than s;

8: move node np to be the child of n(t),
and concatenate the original edge label
with “ancestor-d” where d represents
the original number of edges between
the ancestor of np and n(t);

9: remove all the children words of np
from s;

10: end for
11: end for
12: until T (t) is a constituent tree
13: set Tc = T (t)

3) Edge labels move down. Constituent syntax
parsing generally uses parenthetical notation to
represent the constituent syntax tree structure, so
in order to keep the model consistent, we also

move the edge label down to the child node. Since
the UCCA graphs need not be rooted trees, we
add a “ROOT” dummy node to ensure that the
transformed tree is a rooted tree.

3.5 Graph to Tree Conversion in AMR
Framework

AMR graph is rooted, directed, and most acyclic.
However, AMR is a graph instead of a tree due
to it allows re-entrant semantic relations. In order
to adopt the tree model for AMR parsing, we
need to convert the AMR graph to a tree in the
preprocessing step. Following the practice of
Zhang et al. (2019a), we duplicate the nodes that
have a re-entrant relation. In order to recover the
original graph, we assign an index to each node,
named reentrancy index. Duplicate nodes
will be assigned the same index.

3.6 Anonymization in AMR Framework

Anonymization is an important AMR preprocess-
ing method to reduce the data sparsity issue
(Werling et al., 2015; Peng et al., 2017; Guo
and Lu, 2018). Following the practice of Zhang
et al. (2019a), we first remove senses, wiki links,
and polarity attributes in the training dataset.
Secondly, we anonymize sub-graphs of named
entities which is labeled by one of AMR’s fine-
grained entity types that contain a name role, and
other entities which end with -entity6.

4 Models

To handle different flavors of representation,
our system has three types of models:
Anchoring-based Pruning Parsing
Model, Constituent Parsing Model,
Seq2seq-based Parsing Model.

4.1 Anchoring-based Pruning Parsing Model

The anchoring-based pruning parsing model is
suitable for frameworks where the graph nodes
are strictly one-to-one with the sentence span,
such as DM, PSD, and the transformed EDS
framework. The key idea of the anchoring-based
pruning parsing model is to obtain the candidate
graph nodes by enumerating the sentence span,
and then use a scorer to pruning the candidate
graph nodes and perform parsing on these graph
nodes.

6For details of preprocessing, please refer to (Zhang et al.,
2019a).
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Formally, for major structural parsing goals,
given a sentence S = {w1, w2, ..., wn}, where
n is the sequence length, we aim to predict a
set of labeled graph node-pair (sentence span-
pair) relations Y ⊆ N × N × L, where N =
{(wi, ..., wj)|1 ≤ i ≤ j ≤ n} contains all the
spans (graph nodes), and L is the space of the
edge labels (semantic roles), including a null label
ε indicating no edge between the node-pairs.

As our model deals with O(n2) possible
sentence spans (graph nodes), it needs to
consider O(n4|L|) possible relations, which is
computationally impractical. To overcome this
issue, motivated by our previous work (Li et al.,
2019b) and the work of (He et al., 2018a), we
limit the maximum width of the candidate spans
to fixed number W , which reduces the overall
number of relational factors need to be considered
by the model to O(n2|L|). In order to make the
training goal denser, we also introduce a unary
scorer φnode(·) and the candidate nodes are ranked
and pruned by their unary score in descending
order. The size of candidates reserved after the
pruning operation is limited to λn. Candidates
that are pruned do not participate in computing
the edge relation prediction, which can also further
reduce the computational complexity and memory
requirements. These parameters W and λ are
determined based on the statistics on the training
dataset of each framework.

Neural Architecture Our model builds the
candidate graph nodes representation based on
the BERT (Devlin et al., 2019) encoder outputs,
i.e., for each token wi, the contextualized vector
from BERT encoder is denoted as xi. The
candidate span (i, j) representation h consists
of two endpoint contextualized vectors (xi, xj)
where i and j are the start and end position of the
span in the sentence:

h = [xi;xj ]. (1)

The node unary scorer φnode(·) is implemented
with feed-forward networks based on the candi-
date graph nodes representation h:

φnode(·) = sigmoid(MLPnode(h)). (2)

The edge relation classifier φrel(·) is implemented
with biaffine attention mechanism. Following
Dozat and Manning (2017), we apply two seperate
MLPs to the source and target nodes respec-
tively, producing identity-specified representation:

rsrc = MLPsrc(h) and rtgt = MLPtgt(h).
We perform a biaffine operation to compute the
relation labeling score.

φrel(·) = rTsrcWrelrtgt+UT
relrsrc+VT

relrtgt+brel,
(3)

where Wrel, Urel, Vrel, and brel are the weight
matrix of the bi-linear term, the two weight
vectors of the linear terms, and the bias vector,
respectively.

Training Loss For the node scoring goal, we use
the binary cross-entropy loss between the target
and the output. For the edge classification, we
implement it with the standard cross-entropy loss.

Multi-Task Learning Each framework still has
some other goals to learn. The DM framework in-
cludes top node, node pos tag, and node
frame label. The PSD includes top node,
node pos tag, and node frame label.
The EDS includes edge source label and
edge target label. Overall, we use
multi-tasking learning strategy, shared hidden
representation, The top node uses the same
mechanism as node scoring, using binary cross-
entropy as loss implementation. The node pos
tag and node frame label use independent
feed-forward classifier, using cross-entropy as loss
implementation. The edge source label
and edge target label use a biaffine scorer
consistent with the edge label, using cross-entropy
loss as well. We accumulate the loss of all goals
together.

4.2 Constituent Parsing Model

For the UCCA framework, we directly adopt
the minimal span-based parser of Stern et al.
(2017) on the converted constituent trees. A
constituency tree can be regarded as a collection
of labeled spans over a sentence. There are two
components in the constituent parsing model: one
is to assign the scores directly to span existence
which determines the tree structure, and the other
one assigns scores to span labels which provides
the labeled outputs.

Neural Architecture In this model, we also
build the candidate span representation h based
on the BERT encoder outputs due to a span’s
correct label and its quality as a constituent
depend heavily on the context in which it appears.
Different from the previous span representation, in
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this model, the representation h of span (i, j) is the
concatenation of the two endpoint contextualized
vectors differences:

h = xj − xi. (4)

The span splitting unary scorer φsplit(·) and the
span label scorer φlabel(·) are both implemented
as feed-forward networks which take as input
the span representation and output either a single
span score or a vector of labeling scores. For
the tree inference, we adopt the greedy top-
down searching strategy introduced in Stern et al.
(2017).

In order to recover the full UCCA graph, the
model needs to learn the remote edge target. The
remote edge target is similar to the previous edge
target, which is to predict the relationship between
the node pairs, so we also use the relational
classifier φrel(·). As the same in the previous
model, there is also a null label ε indicating no
edge between the node-pairs.

4.3 Seq2seq-based Parsing Model
The AMR framework backgrounds notions of
compositionality and derivation and, accordingly,
declines to make explicit how elements of the
graph correspond to the surface utterance. Al-
though most AMR parsing research presupposes
a preprocessing step that aligns graph nodes
with (possibly discontinuous) sets of tokens in
the underlying input, these correspondences need
extra annotation and training. This does not match
our requirements for the model to be end-to-
end. Therefore, we consider the AMR tree with
indexed nodes as the prediction target (proposed
by Zhang et al. (2019a)). The approach of AMR
parsing is formulized as a two-stage process:
node prediction (concept identification) and edge
prediction (relation identification).

Formally, given a sentence S =
{w1, w2, ..., wn}, the model sequentially decodes
a list of nodes N = {u1, u2, ..., um} and their
reentrancy indicesD = {d1, d2, .., dm}. Then, the
model is required to search for the highest scoring
parsing tree similar to dependency parsing.

Neural Architecture For node prediction, we
adopt the widely-used Seq2seq model Seq2seq(·)
with pointer-generator network (Vinyals et al.,
2015). The pointer-network has the advantage
of copying words from the source text while
still retaining the ability to produce novel words

DM & PSD & EDS
node space dim 128

max seq len 100
DM & PSD

max span width (W ) 5
pruning reserve ratio∗ (λ) 1.0

EDS
max span width (W ) 8

pruning reserve ratio∗ (λ) 1.2
UCCA

split space dim (W ) 128
AMR

decoder type RNN
decoder hidden dim 512
decoder num layers 3

Deep biaffine classfier
edge space dim 512

edge label space dim 128
Optimizer

optimizer type Adam
learning rate 5e−5

max grad norm 1.0

Table 1: Hyper-parameter settings for our final
submission. ∗pruning reserve ratio (λ) is for the
sentence length n, not the number of candidate nodes.

through the generator. The node representation
h is obtained as the decoder hidden state of the
Seq2seq model:

h = Seq2seq(·). (5)

For the edge prediction, we also adopt the biaffine
attention mechanism to score all possible head-
dependent pairs like dependency parsing. The
relation classifier φrel(·) is the same as the
previous:

φarc(·) = hTheadWarchdep + UT
archhead

+ VT
archdep + barc,

(6)

where Warc, Uarc, Varc, and barc are the weight
matrix of the bi-linear term, the two weight
vectors of the linear terms, and the bias vector,
respectively.

5 Experiments

5.1 Setup

We first describe the final setup used
for our final submission. We use the
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P R F1 RANK
tops 0.92 0.91 0.915 1

labels 0.73 0.70 0.712 2
properties 0.70 0.67 0.687 2
anchors 0.78 0.77 0.776 1

edges 0.80 0.75 0.777 2
attributes 0.13 0.07 0.094 2

all 0.87 0.83 0.853 2

Table 2: The official evaluation scores of different
“atomic” component pieces on all the test dataset.

pytorch-transformers7 as our codebase
to develop the downstream parsing models. The
weights of pre-trained language model BERT
with whole word masking8 are used to initialize
the encoder of our models. Due to the absence of
development dataset, we split the training dataset
to 10 sections and 0-8 for training and 9 for
development. Our model is trained using Adam
(Kingma and Ba, 2014) up to 30 epochs for DM,
PSD, and EDS, and 20 epochs for UCCA and
120 epochs for AMR, with early stopping strategy
based on the MRP F1 score9 on the development
dataset with mtool10 toolkit. Table 1 lists the
hyperparameters used in our full model. We apply
the hidden dropout (dropout rate = 0.1) to the
outputs of each module in our model.

5.2 Main Results

We list our official evaluation scores11 on the
all test dataset in Tables 2 and 3. Table 2
summarizes the MRP F1 scores of the 6 graph
components. The results listed in Table 2 shows
that we obtained the state-of-the-art MRP F1 score
on the top nodes component. In Table 3,
we assess the quality on each frameworks. Our
model also achieved the best results on the DM
framework. We observed a notable phenomenon
that as the anchoring relationship between the
graph node and the surface lexical units is getting
farther, the difficulty of parsing is getting higher.

From the results of parsing on different

7https://github.com/huggingface/
pytorch-transformers.

8In our experiments, we use the BERT-Large, uncased
(Whole Word Masking) with 24-layer, 1024-hidden, 16-
heads, and 340M parameters released by Google, https:
//github.com/google-research/bert.

9http://mrp.nlpl.eu/index.php.
10https://github.com/cfmrp/mtool.
11The official evaluation results are at http://bit.

ly/cfmrp19.

P R F1 RANK
DM 0.96 0.95 0.9550 1
PSD 0.91 0.91 0.9119 3
EDS 0.95 0.86 0.8990 3

UCCA 0.80 0.76 0.7780 3
AMR 0.75 0.69 0.7197 3

all 0.87 0.83 0.853 2

Table 3: The official evaluation scores of different
frameworks on all the test dataset.

frameworks, our results on the EDS framework
have the biggest gap with other priority teams,
probably because of the existence of multiple
edges between the same pair of pseudo nodes
in the EDS framework after our modeling
transformation. Therefore, our subsequent
experiments modeled the edges of EDS as multi-
classification problems, and our results on the
development dataset have been improved.

6 Conclusion and Future Work

In this paper, we present our end-to-end graph-
based system participated in the CoNLL 2019
shared task on Cross-Framework Meaning Rep-
resentation Parsing (MRP 2019). We extend
existing models and make our model be end-to-
end and does not depend on any other information
(including the companion data provided by the
organizer). We introduce our previous graph
pruning algorithm to a variety of semantic graphs,
solving the problem of excessive semantic graph
search space and adopt multi-task learning for
multiple objectives within the same framework.
Specifically, we model the semantic graph task as
a multi-objective learning task of nodes, edges,
node attributes, and edge attributes. The nodes
candidates are scored and then pruned within
the model, thus controlling the overall graph
search space, and finally forming an end-to-end
style parsing system. We achieve state-of-the-art
results on the top nodes component and DM
framework.

For future work, we are going to integrate all
the different frameworks into one single model,
not just the same modeling approach. Based
on the MRP representation method, a single
model is used to generate various semantic graphs.
Furthermore, we would like to extend our model to
other more semantic parsing tasks.
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Abstract

This paper presents the system used in
our submission to the CoNLL 2019 shared
task: Cross-Framework Meaning Representa-
tion Parsing. Our system is a graph-based
parser which combines an extended pointer-
generator network that generates nodes and
a second-order mean field variational infer-
ence module that predicts edges. Our sys-
tem achieved 1st and 2nd place for the DM
and PSD frameworks respectively on the in-
framework ranks and achieved 3rd place for the
DM framework on the cross-framework ranks.

1 Introduction

The goal of the Cross-Framework Meaning Rep-
resentation Parsing (MRP 2019, Oepen et al.
(2019)) is learning to parse text to multiple for-
mats of meaning representation with a uniform
parsing system. The task combines five different
frameworks of graph-based meaning representa-
tion. DELPH-IN MRS Bi-Lexical Dependencies
(DM) (Ivanova et al., 2012) and Prague Seman-
tic Dependencies (PSD) (Hajič et al., 2012; Miyao
et al., 2014) first appeared in SemEval 2014 and
2015 shared task Semantic Dependency Parsing
(SDP) (Oepen et al., 2014, 2015). Elementary De-
pendency Structures (EDS) (Oepen and Lønning,
2006) is the origin of DM Bi-Lexical Dependen-
cies, which encodes English Resource Semantics
(Flickinger et al., 2016) in a variable-free semantic
dependency graph. Universal Conceptual Cogni-
tive Annotation (UCCA) (Abend and Rappoport,
2013) targets a level of semantic granularity that
abstracts away from syntactic paraphrases. Ab-
stract Meaning Representation (AMR) (Banarescu
et al., 2013) targets to abstract away from syn-
tactic representations, which means that sentences
have similar meaning should be assigned the same
AMR graph. One of the main differences be-

tween these frameworks is their level of abstrac-
tion from the sentence. SDP is a bi-lexical depen-
dency graph, where graph nodes correspond to to-
kens in the sentence. EDS and UCCA are general
forms of anchored semantic graphs, in which the
nodes are anchored to arbitrary spans of the sen-
tence and the spans can have overlaps. AMR is
an unanchored graph, which does not consider the
correspondence between nodes and the sentence
tokens. The shared task also provides a cross-
framework metric which evaluates the similarity
of graph components in all frameworks.

Previous work mostly focused on developing
parsers that support only one or two frameworks
while few work has explored cross-framework se-
mantic parsing. Peng et al. (2017), Stanovsky
and Dagan (2018) and Kurita and Søgaard (2019)
proposed methods learning jointly on the three
frameworks of SDP and Peng et al. (2018) fur-
ther proposed to learn from different corpora. Her-
shcovich et al. (2018) converted UCCA, AMR,
DM and UD (Universal Dependencies) into a uni-
fied DAG format and proposed a transition-based
method for UCCA parsing.

In this paper, we present our system for MRP
2019. Our system is a graph-based method which
combines an extended pointer-generator network
introduced by Zhang et al. (2019) to generate
nodes for EDS, UCCA and AMR graphs and
a second-order mean field variational inference
module introduced by Wang et al. (2019) to pre-
dict edges for all the frameworks. According to
the official results, our system gets 94.88 F1 score
in the cross-framework metric for DM, which is
the 3rd place in the ranking. For in-framework
metrics, our system gets 92.98 and 81.61 labeled
F1 score for DM and PSD respectively, which are
ranked 1st and 2nd in the ranking.
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Figure 1: An example of converting AMR graphs
into tree structures. This is a sub-graph of sentence
#20003002.

2 Data Processing

In this section, we introduce our data pre-
processing and post-processing in our system for
all the frameworks. We use sentence tokeniza-
tions, POS tags and lemmas from the official com-
panion data and named entity tags extracted by
Illinois Named Entity Tagger (Ratinov and Roth,
2009) in the official ‘white-list’. We follow Zhang
et al. (2019) to convert each EDS, UCCA, and
AMR graph to a tree through duplicating the nodes
that have multiple edge entrances, An example is
shown in Fig. 1. The node sequences for EDS,
UCCA and AMR are decided by depth-first search
that starts from the root node and sorts neighbour-
ing nodes in alphanumerical order.

2.1 AMR Data Processing

Our data processing follows Zhang et al. (2019).
In pre-processing, we remove the senses, wiki
links and polarity attributes in AMR nodes, and
replace the sub-graphs of special named entities,
such as names, places, time, with anonymized
words. The corresponding phrases in the sen-
tences are also anonymized. A mapping from

proper_q〈0:28〉

named〈7:14〉
carg Vinken

BV

compound〈0:14〉

named〈0:6〉
carg Pierre

ARG2ARG1

proper_q〈0:6〉
BV

(a) Before reduction.

proper_q〈0:28〉

Vinken〈7:14〉
attributes [named]

BV

Pierre〈0:6〉
attributes [named, proper_q]

compound

(b) After reduction.

Figure 2: An example of EDS reduction. This is a sub-
graph of sentence #20001001.

NER tags to these entities is built to process the
test data.

In post-processing, we generate the AMR sub-
graphs from the anonymized words. Then we as-
sign the senses, wiki links and polarity attributes
with the method in Zhang et al. (2019).

2.2 EDS and UCCA Data Processing
In pre-processing we first clean the companion
data to make sure the tokens in the companion data
is consistent with those in the MRP input. We sup-
pose anchors are continuous for each node, so we
replace the anchors with the corresponding start
and end token indices.

In EDS graphs, there are a lot of nodes with-
out a direct mapping to individual surface tokens,
which we call type 1 nodes. We call nodes with
corresponding surface tokens type 2 nodes. We re-
duce type 1 nodes in two ways:

• If a node a of type 1 is connected to only one
node b which is of type 2 and has the same
anchor as a, we reduce node a into node b as
a special attribute for the node.

• If a node a of type 1 is connected to exactly
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two nodes b and c which are of type 2 and
have a combined anchor range that matches
the anchor of a. We reduce node a as an edge
connecting b and c with the same label. The
edge direction is decided by the labels of the
edges connecting a to b and c. For example,
if node a has two child nodes b and c, edge
(a, c) has label ARG2 and edge (a, b) has la-
bel ARG1, then node a will be reduced to
directed edge (b, c) with the label of node a.

An example of the reduction is shown in Fig. 2.
This method reduces 4 nodes on average for each
graph. We also look at nodes whose node label
corresponds to a multi-word in the sentence For
example, ‘_such+as’ in an EDS graph corresponds
to ‘such as’ in the sentence. In such case, if the
phrase has a probability over 0.5 that maps to a
single node, then all words in this phrase will be
combined to a single token in the sentence.

In the post-processing, we recover reduced
nodes by reversing the reduction precedure ac-
cording to the node attributes and edge labels.

For UCCA, we label implicit nodes with spe-
cial labels ni, where i is the index that the implicit
node appears in the node sequence.

3 System Description

In this section, we describe our model for the task.
We first predict the nodes of the parse graph. For
DM and PSD, there is a one-to-one mapping be-
tween sentence tokens and graph nodes. For EDS,
UCCA and AMR, we apply an extended pointer-
generator network (Zhang et al., 2019) for node
prediction. Given predicted nodes, we then adopt
the method of second-order mean field variational
inference (Wang et al., 2019) for edge prediction.
Figure 3 illustrates our system architecture.

3.1 Word Representation

Previous work found that various word represen-
tation could help improve parser performance.
Many state-of-the-art parsers use POS tags and
pre-trained GloVe (Pennington et al., 2014) em-
beddings as a part of the word representation.
Dozat and Manning (2018) find that character-
based LSTM and lemma embeddings can further
improve the performance of semantic dependency
parser. Zhang et al. (2019) use BERT (Devlin
et al., 2019) embeddings for each token to improve
the performance of AMR parsing. In our system,

we find that predicted named entity tags are help-
ful as well. The word representation oi in our sys-
tem is:

oi = [owi ;o
pos
i ;olemmas

i ;opwi ;obwi ;ochar
i ;one

i ]

where owi is word embedding with random initial-
ization, opwi is pre-trained GloVe embedding and
obwi are BERT embedding through average pool-
ing over subwords. o

pos
i , olemmas

i , ochar
i , one

i are
XPOS, lemmas, character and NER embedding re-
spectively. XPOS and lemmas are extracted from
the official companion data.

3.2 Node Prediction
We use extended pointer-generator network
(Zhang et al., 2019) for nodes prediction. Given
a sentence with n words w = [w1, w2, ..., wn],
we predict a list of nodes u = [u1, u2, ..., um] se-
quentially and assign their corresponding indices
idx = [idx1, idx2, ..., idxm]. The indices idx are
used to track whether a copy of a previous gener-
ated nodes or a newly generated node.

P (u) =

m∏

i=1

P (ui | u<i, idx<i,w)

To encode the input sentence, we use a multi-layer
BiLSTM fed with embeddings of the words:

R = BiLSTM(O) (1)

whereO represents [o1, . . . ,on], oi is the concate-
nation different types of embeddings for wi, and
R = [r1, . . . , rn] represents the output from the
BiLSTM.

For the decoder, at each time step t, we use an
l-layer LSTM for generating hidden states zlt se-
quentially:

zlt = f l(zl−1
t , zlt−1)

where f l is the l-th layer of LSTM, zl0 is the last
hidden state rn in Eq. 1. z0t is the concatenation of
the label embedding of node ut−1 and attentional
vector z̃t−1. z̃t is defined by:

etsrc =W⊤
satttanh(WsrcR+Usrcz

l
t + bsrc) (2)

atsrc =softmax(etsrc) (3)

ct =
n∑

i

atsrc,iri

z̃t =tanh(Wc[ct; z
l
t] + bc) (4)
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Figure 3: Illustration of our system architecture.

Where atsrc is the source attention distribution, and
ct is contextual vector of encoder hidden layers,
Wsatt, Wsrc, Usrc, bsrc, Wc, bc are learnable pa-
rameters. The vocabulary distribution is given by:

Pvocab = softmax(Wvocabz̃t + bvocab) (5)

where Wvocab and bvocab are learnable parameters.
The target attention distribution is defined simi-
larly as Eq. 2 and 3:

ettgt =W⊤
tatttanh(Wtgtz̃1:t−1 +Utgtz̃t + btgt),

attgt = softmax(ettgt),

where W⊤
tatt, Wtgt, Utgt, btgt are learnable param-

eters. Finally, at each time step, we need to de-
cide which action should be taken. Possible ac-
tions include copying an existing node from previ-
ous nodes and generating a new node whose label
is either from the vocabulary or a word from the
source sentence. The corresponding probability of
these three actions are ptgt, pgen and psrc:

[ptgt, pgen, psrc] = softmax(Wactionz̃t + baction)

where ptgt + pgen + psrc = 1.
At time step t, if ut is a copy of an existing

nodes, then the probability P (node)(ut) and the in-
dex idxt is defined by:

P (node)(ut) = ptgt
∑

i:ui=ut

attgt[i]

idxt = idxj

where idxj is the copied node index. If ut is a new
node:

P (node)(ut) = pgenPvocab(ut) + psrc
∑

i:wi=ut

atsrc[i]

idxt = t

3.3 Edge Prediction

We adopt the method presented in Wang et al.
(2019) for edge prediction, which is based on
second-order scoring and inference. Suppose that
we have a sequence of vector representations of
the predicted nodes [r′1, . . . , r

′
m], which can be the

BiLSTM output ri in Eq. 1 in the cases of DM and
PSD, or the extended pointer-generator network
output z̃i in Eq. 4 in the cases of EDS, UCCA
and AMR. The edge prediction module is shown
in Fig. 4.

To score first-order and second-order parts (i.e.,
edges and edge-pairs) in both edge-prediction and
label-prediction, we apply the Biaffine function
(Dozat and Manning, 2017, 2018) and Trilinear
function (Wang et al., 2019) fed with node rep-
resentations.

Biaff(v1,v2) := v⊤
1 Uv2 + b

gi := Uivi i ∈ [1, 2, 3]

Trilin(v1,v2,v3) :=
d∑

i=1

g1i ◦ g2i ◦ g3i (6)
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Figure 4: The structure of our edge prediction module. The figure is from Wang et al. (2019) with minor modifi-
cations.

where Ui is a (d×d)-dimensional tensor, where d
is hidden size and ◦ represents element-wise prod-
uct. We consider three types of second-order parts:
siblings (sib), co-parents (cop) and grandparents
(gp) (Martins and Almeida, 2014). For a specific
first-order and second-order part, we use single-
layer FNNs to compute a head representation and
a dependent representation for each word, as well
as a head_dep representation which is used for
grandparent parts:

part ∈ {edge, label, sib, cop, gp}
h

(part-head)
i = FNN(part-head)(r′i)

h
(part-dep)
i = FNN(part-dep)(r′i)

h
(gp-head_dep)
i = FNN(gp-head_dep)(r′i)

We then compute the part scores as follows:

s
(edge)
ij = Biaff (edge)(h

(edge-dep)
i ,h

(edge-head)
j ) (7)

s(label)
ij = Biaff (label)(h

(label-dep)
i ,h(label-head)

j ) (8)

s
(sib)
ij,ik ≡ s

(sib)
ik,ij = Trilin(sib)(h(head)

i ,h
(dep)
j ,h

(dep)
k )

(9)

s
(cop)
ij,kj ≡ s

(cop)
kj,ij = Trilin(cop)(h(head)

i ,h
(dep)
j ,h(head)

k )

(10)

s
(gp)
ij,jk = Trilin(gp)(h(head)

i ,h
(head_dep)
j ,h

(dep)
k )

(11)

In Eq. 7,8, the tensor U in the biaffine function is
(d× 1× d)-dimensional and (d× c)-dimensional,

where c is the number of labels. We require j < k
in Eq. 9 and i < k in Eq. 10.

In the label-prediction module, s(label)
i,j is fed into

a softmax layer that outputs the probability of each
label for edge (i, j). In the edge-prediction mod-
ule, we can view computing the edge probabilities
as doing posterior inference on a Conditional Ran-
dom Field (CRF). Each Boolean variable Xij in
the CRF indicates whether the directed edge (i, j)
exists. We use Eq. 7 to define our unary potential
ψu representing scores of an edge and Eqs. (9-
11) to define our binary potential ψp. We define a
unary potential φu(Xij) for each variable Xij .

φu(Xij) =

{
exp(s

(edge)
ij ) Xij = 1

1 Xij = 0

For each pair of edges (i, j) and (k, l) that form a
second-order part of a specific type, we define a
binary potential φp(Xij , Xkl).

φp(Xij , Xkl) =

{
exp(s

(type)
ij,kl ) Xij = Xkl = 1

1 Otherwise

Exact inference on this CRF is intractable. We
use mean field variational inference to approxi-
mate a true posterior distribution with a factorized
variational distribution and tries to iteratively min-
imize their KL divergence. We can derive the fol-
lowing iterative update equations of distribution
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Qij(Xij) for each edge (i, j).

F (t−1)
ij =

∑

k 6=i,j

Q
(t−1)
ik (1)s

(sib)
ij,ik +Q

(t−1)
kj (1)s

(cop)
ij,kj

+Q
(t−1)
jk (1)s

(gp)
ij,jk +Q

(t−1)
ki (1)s

(gp)
ki,ij

(12)
Q

(t)
ij (0) ∝ 1

Q
(t)
ij (1) ∝ exp{s(edge)

ij + F (t−1)
ij }

The initial distributionQ(0)
ij (Xij) is set by normal-

izing the unary potential φu(Xij). We iteratively
update the distributions for T steps and then out-
put Q(T )

ij (Xij), where T is a hyperparameter. We
can then predict the parse graph by including ev-
ery edge y(edge)

ij such thatQ(T )
ij (1) > 0.5. The edge

labels y(label)
ij are predicted by maximizing the la-

bel probabilities computed by the label-prediction
module.

P (y
(edge)
ij |w) = softmax(Q(T )

ij (Xij))

P (y(label)
ij |w) = softmax(s(label)

ij )

Note that the iterative updates in mean-field
variational inference can be seen as a recurrent
neural network that is parameterized by the poten-
tial functions. Therefore, the whole edge predic-
tion module can be seen as an end-to-end neural
network.

3.4 Other Predictions
The shared task also requires prediction of com-
ponent pieces such as top nodes, node properties,
node anchoring and edge attributes. In this sec-
tion, we present our approaches to predicting these
components.

Top Nodes
We add an extra ROOT node for each sentence to
determine the top node through edge prediction for
DM and PSD. For the other frameworks, we use
the first predicted node as the top node.

Node Properties
Node properties vary among different frameworks.
For DM and PSD, we need to predict the POS and
frame for each node. As DM and PSD are bi-
lexical semantic graphs, we directly use the pre-
diction of XPOS from the official companion data.
We use a single layer MLP fed with word features
obtained in Eq. 1 for frame prediction. For EDS,
the properties only contain ‘carg’ and the corre-
sponding values are related to the surface string.

For example, the EDS sub-graph in Fig. 2 contains
a node with label ‘named’ which has property
‘carg’ with a corresponding value ‘Pierre’. The
anchor of this node matches the token ‘Pierre’ in
the sentence. We found that nodes with properties
have limited types of node labels. Therefore, we
exchange node labels and values for EDS nodes
containing properties during training. We combine
the node attributes and value predictions described
in Section 2.2 together as a multi-label prediction
task. We use a single layer MLP to predict node la-
bels specially for nodes with properties. For each
property value, we regard it as a node label and use
the extended pointer-generator network described
in Section 3.2 to predict it. Therefore, the proba-
bility of node property prediction is:

Pprop = softmax(Wpropr̃
′
t + bprop) (13)

Node Anchoring
As DM and PSD contain only token level depen-
dencies, we can decide a node anchor by the cor-
responding token. For the other frameworks, we
use two biaffine functions to predict the ‘start to-
ken’ and ‘end token’ for each node and the final
anchor range is decided by the start position of
‘start token’ and the end position of ‘end token’.
The biaffine function is fed by word features from
the encoder RNN and node features from decoder
RNN.

s(start/end)
ij = Biaff (start/end)(ri, z̃j)

Pstart/end,j = softmax([s1j , s2j , . . . , snj ]) (14)

where i ranges from 1 to n and j ranges from 1 to
m.

Edge Attributes
Only UCCA requires prediction of edge attributes,
which are the ‘remote’ attributes of edges. We
create new edge labels by combining the original
edge labels and edge attributes. In this way, edge
attribute prediction is done by edge label predic-
tion.

3.5 Learning
Given a gold graph y⋆, we use the cross entropy
loss as learning objective:

L(edge)(θ) = −
∑

i,j

log(Pθ(y
⋆(edge)
ij |w))

L(label)(θ) = −
∑

i,j

✶(y
⋆(edge)
ij ) log(Pθ(y

⋆(label)
ij |w))
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DM PSD EDS UCCA AMR
Ours-all 94.88 89.49 86.90 - 63.59
Best-all 95.50 91.28 94.47 81.67 73.38
Ours-lpps 94.28 85.22 87.49 - 66.82
Best-lpps 94.96 88.46 92.82 82.61 73.11

Table 1: Comparison of cross-framework F1 scores
achieved by our system and best scores of other teams
for each metric. all represents the F1 score over the
full test set for each framework. lpps represents a
100-sentence sample from the little prince containing
graphs over all the frameworks.

L(prop)(θ) = −
∑

i,k

log(Pθ(y
⋆(prop)
ik |w))

L(anchor)(θ) = −
∑

i

∑

j∈{start,end}
(log(Pθ(y

⋆(j)
i |w))

where θ is all the parameters of the model, ✶(X )
is an indicator function of whether X exists in the
graph, i, j range over all the nodes and k ranges
over all possible attributes in the graph. The total
loss is defined by:

L =λ1L(edge) + λ2L(label) + ✶(y⋆(prop))λ3L(prop)

+ ✶(y⋆(anchor))λ4L(anchor)

where λ1,...,4 are hyperparameters. For DM and
PSD, we tuned on λ1, λ2 and λ3. For other frame-
works, we set all of them to be 1.

4 Experiments and Results

4.1 Training
For DM, PSD and EDS, we used the same
dataset split as previous approaches (Martins and
Almeida, 2014; Du et al., 2015) with 33,964 sen-
tence in the training set and 1,692 sentences in
the development set. For each of the other frame-
works, we randomly chose 5% to 10% of the train-
ing set as the development set. We additionally re-
moved graphs with more than 60 nodes (or with
input sentences longer than 60 words for DM and
PSD). We trained our model for each framework
separately and used Adam (Kingma and Ba, 2015)
to optimize our system, annealing the learning rate
by 0.5 for 10,000 steps. We trained the model for
100,000 iterations with a batch size of 6,000 to-
kens and terminated with 10,000 iterations with-
out improvement on the development set.

4.2 Main Results
Due to an unexpected bug in UCCA anchor pre-
diction, we failed to submit our UCCA prediction.

Our results are still competitive to those of the
other teams and we get the 3rd place for the DM
framework in the official metrics. The main result
is shown in Table 1. Our system performs well
on the DM framework with an F1 score only 0.4
percent F1 below the best score on DM. Note that
our system does not learn to predict node labels
for DM and PSD and simply uses lemmas from
the companion data as node labels. We find that
compared to gold lemmas from the original SDP
dataset, lemmas from the companion data have
only 71.4% accuracy. We believe that it is the
main reason for the F1 score gap between our sys-
tem and the best one on DM and PSD. A detailed
comparison between each component will be dis-
cussed in Section 4.3. For PSD, EDS and AMR
graph, our system ranks 6th, 5th and 7th among 13
teams.

4.3 Analysis
DM and PSD
Table 2 and 3 show detailed comparison for each
evaluation component for DM and PSD. For DM,
our system outperforms systems of the other teams
on tops, properties and edges prediction and is
competitive on anchors. For PSD, our system is
also competitive on all the components except la-
bels. There is a large gap in the performance of
node label prediction between our system and the
best one on both DM and PSD, we believe adding
an MLP layer for label prediction would diminish
this gap.

Table 4 shows the performance comparison on
in-framework metrics for DM and PSD. For DM,
our system outperforms the best of the other sys-
tems by 0.5 and 0.8 F1 scores on all and lpps test
sets. For PSD, our system outperforms the best of
the other systems by 0.4 F1 score for lpps and only
0.05 F1 score below the best score for all.

AMR
For AMR graph prediction, our node prediction
module is based on Zhang et al. (2019), but our
edge prediction module is based on the second-
order method of Wang et al. (2019). To verify the
effectiveness of second-order edge prediction, we
compare the performances on the development set
of our model and Zhang et al. (2019). The result
is shown in Table 5. The result shows that our
second-order edge prediction is useful not only on
the SDP frameworks but also on the AMR frame-
work.
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tops labels properties anchors edges average
Ours-all 93.68 90.51 95.16 98.38 92.32 94.32
Best-all 93.23 96.34 94.93 98.74 92.08 94.76
Ours-lpps 99.00 87.26 94.53 99.36 93.92 94.03
Best-lpps 96.48 94.82 94.36 99.04 93.28 94.64

Table 2: Comparison of cross-framework F1 scores achieved by our system and best scores of the other teams for
each evaluation component on DM. average is the micro-average among all components.

tops labels properties anchors edges average
Ours-all 95.68 84.79 91.83 97.66 79.50 88.77
Best-all 95.83 94.68 92.38 98.35 79.44 90.76
Ours-lpps 96.00 76.72 84.73 97.61 79.80 85.22
Best-lpps 96.40 92.04 86.00 98.46 79.18 88.40

Table 3: Comparison of cross-framework F1 scores achieved by our system and best scores of the other teams for
each evaluation component on PSD.

DM PSD Avg
all lpps all lpps all lpps

Ours 92.98 94.46 81.61 81.91 87.30 88.19
Best 92.52 93.68 81.66 81.47 87.09 87.58

Table 4: Comparison of in-framework labeled F1
scores by our system and best scores over the other
teams. Note that the Best scores are not only from a
single system.

Model Smatch
Zhang et al. (2019) 69.1
Ours 69.3

Table 5: Smatch F1 score on AMR development set.
We compare the results without post-processing.

Set MRP Smatch
test 63.59 63.08
dev 72.03 71.55

Table 6: MRP and Smatch score on the development
set and the test set.

From the official results on the test sets, we
find it surprising that there is a huge gap between
the test and development results on both the MRP
and the Smatch (Cai and Knight, 2013) scores, as
shown in Table 6. In future work, we will figure
out the reason behind this problem.

EDS
For EDS, our parser ranks 5th. There are multi-
ple details of our parser that can be improved. For
example, our anchor prediction module described

in Eq. 14 (ranking 4th in the task) may occasion-
ally predict an end anchor positioned before a start
anchor, which would be rejected by the evaluation
system. This can be fixed by adding constraints.

UCCA

For UCCA, we failed to submit the result because
of the same reversed start-end anchor predictions,
which prevents us from obtaining an MRP score.

4.4 Ablation Study

BERT with Other Embeddings

We use BERT (Devlin et al., 2019) embedding in
our model. We compared the performance of DM
in the original SDP dataset with different subtoken
pooling methods, and we also explored whether
combining other embeddings such as pre-trained
word embedding Glove (Pennington et al., 2014)
and contextual embedding ELMo (Peters et al.,
2018) will further improve the performance. The
detailed results are shown in table 7. We found
that Glove, lemma and character embeddings are
helpful for DM and fine-tuning on the training set
slightly improves the performance. ELMo embed-
ding is also helpful but cannot outperform BERT
embedding. However, the performance dropped
when ELMo embedding and BERT embedding are
combined. We speculate that the drop is caused by
the conflict between the two types of contextual
information. For subtoken pooling, we compared
the performance of using first subtoken pooling
and average pooling as token embedding. We
found that average pooling is slightly better than
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LF1
Baseline 93.41
Base-fixed 94.17
Base-tuned 94.22
Base-fixed + Glove 94.45
Base-tuned + Glove 94.48
Large-fixed + Glove 94.62
Large-tuned + Glove 94.64
Large-fixed + Glove + Lemma 95.10
Large-fixed + Glove + Lemma + Char 95.22
ELMo + Large-fixed + Glove + Lemma 94.78
ELMo + Glove + Lemma + Char 95.06
BERT-First 95.22
BERT-Avg 95.28
BERT-Avg + dep-tree 95.30

Table 7: Comparing Labeled F1 scores of models with
different types of embedding combinations on the de-
velopment set of the gold DM dataset. Baseline rep-
resents the parser of Wang et al. (2019). Base repre-
sents the pre-trained BERT-Base uncased model and
Large represents the pre-trained BERT-Large uncased
model. fixed and tuned represents whether to fine-tune
the BERT model. BERT in the last block represents
the last embedding combination (Large-fixed + Glove
+ Lemma + Char) in the first block. First represents
first subtoken pooling, Avg represents average pooling
over subtokens. dep-tree represents adding dependency
information into embeddings. For each case, we report
the highest Labeled F1 score on the development set in
our experiments.

DM PSD
basic 96.01 90.80
+lemma 96.09 90.79
+ner 96.07 90.80
+lemma & ner 96.16 90.88

Table 8: F1 score averaged over the labeled F1 score
and the frame F1 score on the development sets of DM
and PSD. basic represents our model with embeddings
described in 3.1 except lemma and named entity em-
beddings.

first pooling. For syntactic information, we en-
code each head word and dependency label as
embeddings and concatenate them together with
other embeddings. The result shows that syntac-
tic information as embeddings is not very helpful
for the task. We will try other methods utilizing
syntactic information in future work.

Lemma and Named Entity Tags
Dozat and Manning (2018) found that gold lemma
embedding is helpful for semantic dependency
parsing. However, in section 4.2, we note that
the lemmas from the official companion data
have only 71.4% accuracy compared to lemmas
in gold SDP data, which makes lemma embed-
dings less helpful for parsing. We found that
one of the difference is about the lemma annota-
tions of entities, for example, lemmas of “Pierre
Vinken” are “Pierre” and “Vinken” in the com-
panion data while the lemmas are named-entity-
like tags “Pierre” and “_generic_proper_ne” in the
original SDP dataset. Based on this discovery,
we experimented on the influence of named en-
tity tags on parsing performance. We used Illinois
Named Entity Tagger (Ratinov and Roth, 2009) in
white list to predict named entity tags and com-
pared the performance on the development sets of
DM and PSD. The result is shown in table 8. We
tuned the hyperparameters for all the embedding
conditions in the table, and we found that adding
lemma or named entity embeddings results in a
slight improvement on DM but does not help on
PSD. With both lemma and named entity embed-
dings, there is a further improvement on both DM
and PSD, which shows the named entity tags are
helpful for semantic dependency parsing. As a re-
sult, we apply named entity information in parsing
other frameworks.

5 Conclusion

In this paper, we present our graph-based pars-
ing system for MRP 2019, which combines two
state-of-the-art methods for sequence to graph
node generation and second-order edge infer-
ence. The result shows that our system per-
forms well on the DM and PSD frameworks
and achieves the best scores on the in-framework
metrics. For future work, we will improve
our system to achieve better performance on all
these frameworks and explore cross-framework
multi-task learning. Our code for DM and
PSD is available at https://github.com/
wangxinyu0922/Second_Order_SDP.
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Abstract

We describe the Saarland University submis-
sion to the shared task on Cross-Framework
Meaning Representation Parsing (MRP) at the
2019 Conference on Computational Natural
Language Learning (CoNLL).

1 Introduction

In this paper, we describe the semantic parser sub-
mitted by Saarland University to the MRP shared
task (Oepen et al., 2019)1. This task consists in
learning to accurately map English sentences to
graph-based meaning representations across five
different graphbanks.

There has been substantial previous work on
graph parsing for each of the graphbanks in MRP,
including DM and PSD (Peng et al., 2017; Dozat
and Manning, 2018), EDS (Buys and Blunsom,
2017; Chen et al., 2018), AMR (Flanigan et al.,
2014; Buys and Blunsom, 2017; Lyu and Titov;
Zhang et al., 2019), and UCCA (Hershcovich et al.,
2017, 2018; Jiang et al., 2019). One advantage
of our parser is that it works accurately across all
graphbanks at the same time.

Instead of learning to map directly from sen-
tences to graphs, our parser learns to map sentences
to AM dependency trees. Each AM dependency
tree consists of a graph for the lexical meaning of
each token in the sentence, along with a depen-
dency tree that specifies the words that fill each
semantic role of a given predicate. An AM depen-
dency tree can be deterministically evaluated to a
graph via the AM Algebra (Groschwitz et al., 2017).
Thus, the parser compositionally maps sentences to
graphs, with the AM dependency trees describing
the compositional structure of the meaning repre-
sentation. We will sketch the background on AM
dependency trees in Section 2.

1http://mrp.nlpl.eu

In earlier work, we showed how to accurately
predict AM dependency trees for AMR using a neu-
ral dependency parser and supertagger (Groschwitz
et al., 2018). We extended this parser from AMR
to the DM, PAS, PSD, and EDS graphbanks and
obtained state-of-the-art results across all of these
graphbanks (Lindemann et al., 2019); we will call
this system the ACL-19 parser throughout this pa-
per. Earlier semantic parsers were only available
for one or two families of closely related graph-
banks; our system was the first to parse accurately
across a range of different graphbanks. We took
this parser as the starting point of our MRP sub-
mission; we explain the minor tweaks that were
needed for the MRP flavors of DM, PSD, EDS, and
AMR in Section 3.

The one MRP graphbank which was not di-
rectly supported by the ACL-19 parser is UCCA
(Abend and Rappoport, 2013). We thus imple-
mented heuristics for converting UCCA annota-
tions into AM dependency graphs. Certain design
decisions in UCCA made this more difficult than
for the other graphbanks; we worked around some
of these in preprocessing. We describe the details
in Section 4.

We present detailed evaluation results in Sec-
tion 5. We also describe a few post-deadline im-
provements, which bring our parser up to an MRP
f-score of 71.6 on AMR and 70.1 on UCCA.

2 AM dependency parsing

We start by describing the ACL-19 parser (Linde-
mann et al., 2019). This parser is trained to map
sentences into AM dependency trees, which are
then deterministically evaluated to graphs in the
AM algebra.

2.1 AM Algebra
The Apply-Modify Algebra (AM algebra;
Groschwitz et al. (2017)) builds graphs from graph
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Figure 1: As-graphs (= supertags) for the words in the
sentence “the tall giraffe wants to eat.”

fragments called annotated s-graphs, or as-graphs.
Figures 1a–1d show as-graphs from which the
AMR in Fig. 3c for the sentence “the tall giraffe
wants to eat” can be built. An as-graph is a labeled,
directed graph, some of whose nodes have been
marked as sources. Every as-graph used in AM
dependency parsing has one special root source
node, indicated with a bold outline. We mark the
other sources with red labels (e.g. S and O); these
are nodes at which the root source node of another
as-graph will be inserted.

The AM algebra defines two operations for com-
bining as-graphs: Apply, which combines a head
with a semantic argument, and Modify, which com-
bines a head with a modifier. Fig. 2a shows a term
using these operations that evaluates to the AMR
in Fig. 3c.

The result of the Apply-O operation
APPO (Gwant, Geat) is shown in Fig. 3a, where
the root of the argument Geat is inserted into the
O-source of the head Gwant. The annotation “[S]”
at this O-source means that the O-argument must
still have an S-source, as is the case for Geat. When
two graphs that share a source name are combined,
the shared sources automatically merge, creating
a re-entrancy. In our example this occurs for the
S-source, creating a shared subject slot for Gwant
and Geat.

Fig. 3b shows the result of the Modify-M oper-
ation MODM

(
Ggiraffe, Gtall

)
. The M-source of the

modifier Gtall is merged with the root of the head
Ggiraffe, which has the effect of adding the modifier
to Ggiraffe; the operation leaves the root of Ggiraffe
where it was. Modify is defined only when it adds
no new sources to the head.

Finally, the APPS operation at the root of the
term combines the two graphs we built so far, plug-
ging the graph for “tall giraffe” into the S source
of the combined want-eat graph. This yields the
full graph in Fig. 3c. From a linguistic perspective,
a term over the AM algebra serves as a composi-
tional derivation (Montague, 1973) of the graph to
which it evaluates.

For this last operation, too, a restriction applies:
if a source has no annotation, like the S-source
in Fig. 3a, the graph inserted there must have no
remaining non-root sources (as is the case here).
Thus, both Apply and Modify have restrictions
on when they can be used. A term over the AM
algebra that satisfies all these restrictions is called
well-typed.

2.2 AM Dependency Parsing
Note that in a term over the AM algebra, such as
in Fig. 2a, the root source of the resulting graph
is always inherited from the left child; i.e. the
left child is always the head. For example, after
APPO (Gwant, Geat), the head is still Gwant. We can
track the heads through the term, as indicated by
the colors in the example term. This allows us to
read terms over the AM algebra as AM dependency
trees in the following manner. Each operation be-
tween two graphs is encoded as a dependency edge
from the head to the argument (or modifier respec-
tively), and the edge is labeled with the relevant
operation. By aligning the graph fragments to the
words in the sentence, we get a dependency tree
over the sentence. As a result, the term in Fig. 2a
can be unambiguously encoded as the dependency
tree in Fig. 2b (Groschwitz et al., 2018).

We can now perform AM dependency parsing
by training models for the following two tasks:
(i) a supertagger to predict the as-graphs for the
individual word tokens (such as Gwant) and (ii) a
dependency parser to predict the dependency tree.
Together, these two components predict an AM
dependency tree, which then evaluates to a graph
in the AM algebra as explained above.

Both of these tasks can be performed by neural
models with high accuracy. We train a BiLSTM
to predict a supertag for each token and use the
dependency parser of Kiperwasser and Goldberg
(2016) to predict dependency trees. To ensure that
we obtain well-typed AM dependency trees, we
use the fixed-tree decoder algorithm of Groschwitz
et al. (2018).

2.3 Decomposition
To train the neural supertagging and dependency
models, we need AM dependency trees for the train-
ing set. However, the available graphbanks contain
only sentences with their graph annotations. Thus
we have to decompose the graphs in each graph-
bank into the corresponding AM dependency trees.
We do this with handwritten heuristics, which we
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Figure 2: Compositional derivation of the example AMR graph in Fig. 3c.
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Figure 3: As-graphs to which the AM term in Fig. 2a and some of its subterms evaluate.
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Figure 4: PSD graph (left) for The tall giraffe wants to eat and its AM dependency tree (right).
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Figure 5: EDS graph (left) for The tall giraffe wants to eat and its AM dependency tree (right).
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defined for AMR in Groschwitz et al. (2018) and
for DM, PAS, PSD, and EDS in Lindemann et al.
(2019). The decomposition heuristics perform the
following three steps:

1. align graph nodes to words (not necessary
for graphbanks with annotated alignments be-
tween tokens and nodes),

2. group edges with nodes, splitting the graph
into disjoint aligned fragments,

3. assign sources and type annotations to the ar-
gument/modification slots of each graph frag-
ment.

These steps define the supertags, and the depen-
dency edges follow from there. Empirically, given
an assignment of supertags to tokens, there is never
more than one dependency tree which evaluates to
the correct graph.

While the AM algebra was originally designed
for AMR, the ACL-19 parser extends it to DM,
PAS, PSD and EDS as well. In fact, as the AM
algebra adds a layer of abstraction on top of the
original graphs, using the same parser for all graph-
banks becomes easy. Conceptually, we only need a
different set of graph fragment supertags for each
graphbank.

The decomposition heuristics for PSD and EDS
are illustrated in Fig. 4 (PSD) and Fig. 5 (EDS),
both for the same sentence “the tall giraffe wants to
eat” whose AMR analysis we discussed in Fig. 2b.
The examples show that structural differences in
the graphbanks can lead to different AM dependen-
cies: for example, the article “the” is part of the
EDS graph but not of the PSD and AMR graphs.
Overall, however, the AM dependency trees are
much more uniform than the underlying graphs.

In Step 2, we group argument edges with the
relevant head and modifying edges with the modi-
fier. This yields consistent supertags: for example,
“giraffe” can be assigned the same supertag regard-
less of whether and how many times it is modified.
Our heuristics form these groups based only on the
edge labels. For example, in AMR, DM and EDS,
we group all ‘ARGx’ labels with their source node.
In AMR, we group ‘mod’ edges with their target
node (the modifier), and do the same with ‘RSTR’
edges in PSD.

The source names are loosely inspired by (deep)
syntactic relations; for example, we use the source
name S for the endpoints of ‘ARG0’ edges in AMR,

‘ACT-arg’ edges in PSD, and ‘ARG1’ edges in
EDS, because these edge labels all correspond to
“deep subjects”. We also add variants of source
assignments to account for e.g. passive. The source
annotations are obtained by matching certain pat-
terns in the final graph. For example, the [S] an-
notation in Gwant in Figure 3 is added because of
the triangle structure in the final graph. Details of
these heuristics can be found in Lindemann et al.
(2019).

3 Changes to the ACL-19 parser

For the DM, PSD, EDS, and AMR parts of the
shared task, we used the ACL-19 parser with the
following minor modifications.

3.1 Decomposition heuristics
We did not change any edge attachment or source
naming heuristics, but focused on complying with
the rules of the shared task and accommodating
changes in the graphbanks.

EDS While the ACL-19 parser only dealt with
connected EDS graphs, the training corpus of the
shared task also contains disconnected graphs. We
handle this in the same manner as we handle dis-
connected graphs in DM and PSD: by introducing
an additional node that has a child in each of the
disconnected components. This child is chosen as
the node being anchored in the highest node in a
UD dependency analysis. Along with this node,
we introduce a corresponding additional artificial
token to the end of the sentence.

Because our decomposition heuristics require a
full alignment between tokens and nodes, but the
EDS annotations can anchor arbitrary subgraphs
in arbitrary substrings, we have to translate EDS
anchorings into node-token alignments. We refine
our method from the ACL-19 paper in two ways.
First, we align implicit conjunctions to punctua-
tion in their anchoring span, instead of their left-
most child. Second, we include a special treatment
of comparisons in subordinated clauses, where a
subord node is grouped with a comp node, even
though they are not immediately connected. This is
illustrated in Fig. 6. The ACL-19 heuristic would
have tried to group hard a for and subord into
one supertag, which makes it impossible to de-
compose the EDS graph into an AM dependency
tree, because this supertag would have to have
two root sources: hard a for for the modification
with comp too, and subord for the application to
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Figure 6: Anchored EDS graph for “Friends told her
she was pushing too hard.”

tell v 1. The revised heuristic instead groups sub-
ord and comp too into one supertag, which then
contains a source node into which hard a for can
be inserted via Apply.

AMR The aligner we developed for the ACL-19
parser makes non-trivial use of WordNet in order
to link tokens to nodes with semantically related
labels. Since WordNet was not on the white list
of allowed resources, we had to replace it by Con-
ceptNet (Speer et al., 2017). We found that this
decreased the dev-set accuracy of our parser by
more than a point, possibly because ConceptNet
does not distinguish between word senses and thus
offers a much larger variety of “hypernyms” than
WordNet does.

3.2 Pre- and postprocessing

Unlike earlier versions of the graphbanks and their
evaluation metrics, the MRP shared task makes a
clear distinction between edges (which link two
nodes) and attributes (which attach an atomic value
to a node). For instance, information such as polar-
ity and the parts of a named entity are represented
as attributes in MRP-style AMR, and parsers are
penalized for confusing edges with attributes.

Because our parser uses as-graphs internally,
which have node and edge labels but no attributes,
we encode attributes into as-graphs. For most
graphbanks, we encode attribute information in the
node labels and unpack them again in postprocess-
ing. For AMR, we found a considerable amount
of noise in the distinction of edges and attributes

in the data. We therefore chose to read attributes
as edges and restore the distinction heuristically in
postprocessing (see appendix).

EDS Since EDS nodes can be anchored in en-
tire phrases but our parser only provides anchoring
for tokens to subgraphs, we applied our ACL-19
heuristics to restore such non-trivial anchorings.
Where this failed, we marked the node to be an-
chored in the entire sentence. The ACL-19 parser
deleted unanchored subgraphs for evaluation with
EDM (Dridan and Oepen, 2011).

AMR We fixed a postprocessing bug which oc-
casionally resulted in invalid labels in the graph,
originating from our procedure for handling rare
words.

4 UCCA

For the shared task, we extended the AM depen-
dency parser to UCCA. This was harder than ex-
pected. Unlike the other graphbanks, UCCA takes
a phrase-structure-like perspective on semantic
graphs, in which one terminal node can recursively
be the head of several non-terminal nodes (see
Fig. 7a). This introduces two challenges for our
decomposition heuristic.

First, semantic arguments and modifiers can at-
tach to nodes at any level of the “phrase structure”.
The graph in Fig. 7a predicates that “office” is an
(A)rgument of “success”; these nodes only come
together at the root of the UCCA graph. At the
same time, the (F)unction word “a” modifies “suc-
cess” at a lower level of the graph. The obvious
decomposition heuristic, which would put the “suc-
cess” leaf and all the nodes that dominate it into
the same supertag, would fail because both of these
nodes would have to be root sources, which is not
allowed.

Second, under such a decomposition heuristic,
the correct supertag for a given word depends on
the circumstances. The unmodified word “office”
should simply correspond to an as-graph with a
single node labeled “office”. However, in a sen-
tence where “office” is modified, the correct as-
graph consists of “office” with an extra parent node,
which is linked to the “office” leaf node with a
(C)enter edge (see Fig. 7a). Modifier edges can
then attach to this new parent node. This increases
lexical ambiguity for our parser, which now has
to predict the correct supertag for a word from a
larger class of possible supertags.
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Figure 7: Fragment of UCCA graph of the sentence A Few Good Men was released in 1992 and was a box office
success

We address these issues in preprocessing, which
we explain below. Edge attachment and source
naming heuristics are in the appendix.

4.1 C-edge contraction

We tackle the second problem by contracting C-
edges. Whenever we observe a C-edge in the train-
ing data, we delete the C-edge and replace its origin
node (a nonterminal node) with the node to which
the C-edge points (see Fig. 7b). As an exception,
we do not contract C-edges for the conjuncts of a
coordination, i.e. those C-edges that have a sister
C-edge. This decreases the number of nonterminals
in the UCCA graph, reduces lexical ambiguity, and
increases the proportion of UCCA training graphs
which we can decompose.

At test time, the parser predicts UCCA graphs
with contracted C-edges, as in Fig. 7b. We uncon-
tract these by creating an outgoing C-edge from
all non-leaf nodes that have node labels, changing
these nodes into nonterminal nodes. At uncontrac-
tion time, we keep the outgoing edges attached to
the nonterminal node.

4.2 Edge raising

C-edge contraction is insufficient to completely
solve the first problem. For instance, in Fig. 7b,
the as-graph for “success” still has two nodes at
which other graphs attach: the U and F edge attach
to the “success” node with Modify operations, and
the “was” node attaches to a non-terminal node
with Modify as well. As above, this means that
both “success” and this non-terminal node must be
root-sources, which is not allowed.

In order to ensure that only one root-source node
is required, we flatten the as-graph for “success” by
raising the edges out of the lower node to the upper
node, as illustrated in Fig. 7c. This means that all
modifiers attach to the same node, which becomes
the root-source. We train the semantic parser on
these flattened UCCA graphs, and then lower the

edges again in postprocessing.
Our objective when applying edge lowering on

the graph is to redistribute the edges we had pre-
viously raised as they were before pre-processing.
The initial idea was to make use of the edge labels
and only allow lowering an edge from an upper
to a lower node if they are connected by another
edge with a specific label; however, we found in-
stances where there were multiple outgoing edges
with the same label, which resulted in an ambiguity
regarding along which edge to lower. Thus, when
we raised an edge from the lower node to the upper
node, we also marked the edge that connects them
with “-r” (for “raised”), and then lowered along the
marked edge.

However, we encountered examples where edge
lowering was still ambiguous. We found this to
occur when edges were raised from multiple lower
nodes to the same upper node, resulting in multiple
outgoing edges of that upper node bearing the -r
mark. Consequently, we had no way of determining
which raised edge belonged to which lower node.
To remedy this problem, we added a subindex on
each of the raised edges indicating the edge over
which we had raised the node (see Figure 7c for
the subindices). This means for post-processing
only lower a given edge to a node through another
edge if the label of the former edge matched the
subindex of the latter edge. For example, in Fig. 7c,
we can only lower the edges with the labels U p and
F p through another edge with the label P, which
in this case implies that we can only lower these
edges to the node “success”. This procedure results
in unambiguous lowering in most cases.

The edge raising and lowering procedure was
not part of the submitted system. However, it is
part of the improved system.

4.3 H-edge removal

An H-edge represents a scene evoked by a Process
or State. These edges are normally outgoing edges
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of the top node in UCCA. If an H-edge appears in a
given graph, it is either unique or accompanied by
other H-edges representing multiple parallel scenes
and an L-edge to link these scenes, i.e. from the
top node there is a single outgoing H-edge in the
former case and multiple outgoing H-edges as well
as one or more L-edges in the latter. In order to
simplify our decomposition heuristics, we remove
the H-edge in former case and add it again in post-
processing, and only include heuristics for the latter
case, rather than distinguish between the two cases.

4.4 Remote edges

We found that removing remote edges drastically
helps decomposability. Since this gives us more
training data, we decided to remove them and
thereby improved decomposability from 34% to
47% in the submitted system.

4.5 Node-token alignments

The UCCA annotation aligns the leaf nodes of the
UCCA graph with the tokens in the string; our
parser requires an alignment of all nodes with their
corresponding tokens. We project the aligned to-
kens upwards from the leaf nodes using a simple set
of head percolation rules (see appendix for details).

4.6 Tops

We mark nodes with no incoming edges as top
nodes. In an improved version, when more than
one top is found, rather than include all of them,
we select an arbitrary one.

5 Evaluation

5.1 Experimental setup

We trained one single-task model per graphbank
and made use of a concatenation of BERT (Devlin
et al., 2019) and Elmo (Peters et al., 2018) embed-
dings, without any finetuning. We tweaked some
hyperparameters of the neural network compared
to the ACL-19 parser (see appendix for details).

For DM, PSD and EDS, we use the usual
train/dev split. We take a random sample of 3% of
all graphs as development data for AMR and 20%
for UCCA since there is much less training data.

During parsing, we use the fixed-tree decoder
described in Groschwitz et al. (2018) with the six
highest-scoring supertags per token. Because the
search for a well-typed AM dependency tree is
NP-complete, we set a timeout for each graphbank;
when the parsing time for a single sentence exceeds

a certain limit, we back off to a smaller number of
supertags per token and restart parsing. We used
a timeout of 30 minutes for DM, PSD and EDS, a
timeout of 5 minutes for UCCA and 15 minutes for
AMR. We ensured that every sentence was parsed
using at least the highest scoring supertag.

In the ACL-19 parser, we used named entity
tags as additional input to the neural network for
all graphbanks. Here, we only do so for AMR,
whose graphs contain very detailed named entity
information. We use the Illinois Named Entity
Tagger (Ratinov and Roth, 2009). We make use
of the tokenization, POS tags and lemmas pro-
vided in the MRP companion data. Our code is
publicly available at https://github.com/
coli-saar/am-parser.

5.2 Results

Table 1 (“submitted”) shows the official results of
our parser in the shared task. Our parser achieved
the highest accuracy on PSD and did very well on
DM and EDS. It did much worse on AMR than we
expected based on earlier results (Lindemann et al.,
2019).

Table 2 shows a more detailed evaluation of
the system on the development sets. First, we ob-
serve that not all graphs in the development sets
can be decomposed by the heuristics described
above. This is especially striking for EDS (which
frequently requires graphs with multiple sources,
see the discussion in Lindemann et al. (2019)) and
UCCA, where the edge contraction and raising
heuristics were still insufficient to decompose all
graphs. The distinction between decomposable and
non-decomposable graphs also has a clear effect
on development f-score: the f-scores on the decom-
posable subset of each devset are noticeably higher
than on the full devset.

Second, we report the accuracy of the two com-
ponent parts of our parser: dependency parsing
(reported as UAS and LAS) and supertagging (re-
ported as 1-best and 6-best supertagging accu-
racy). It is noticeable that the errors in some graph-
banks (e.g. PSD) are dominated by the supertagger,
whereas others are hard for the dependency parser
(e.g. UCCA). For most graphbanks, low supertag-
ging accuracy goes together with a large supertag
set, and low dependency accuracy with a large set
of edge labels. For UCCA, accuracy is low across
the board, which may be because the decomposable
part of the UCCA training set is so small (47%).
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DM PSD EDS UCCA AMR Average

Submitted 94.7 91.3 89.1 67.6 66.7 81.9
Improved 94.7 91.3 89.1 70.1 71.0 83.2
Improved + WordNet/Stanford 94.7 91.3 89.1 70.1 71.6 83.4

Table 1: Results of a single run on official test set (MRP cross-framework f-score).

DM PSD EDS UCCA AMR Average

F-score, complete 96.6 92.7 91.1 65.6 72.0 83.6
F-score, decomposable 96.9 92.8 92.0 74.6 73.5 86.0
Decomposability 93.2 97.2 82.0 48.6 91.3 82.5
UAS 95.4 95.7 94.6 74.7 75.2 87.1
LAS 94.6 91.8 93.4 68.1 69.2 83.4
Supertagging Accuracy (1-best) 96.6 88.6 93.9 74.5 75.2 85.8
Supertagging Accuracy (6-best) 99.8 98.8 99.2 94.2 94.2 97.2

Number supertags 424 1566 2739 298 4705 1946.4
Number edge labels 32 42 34 22 48 35.6

Table 2: Detailed dev set results of the submitted system. All rows except the first and third are based on the
decomposable subsets. The last section contains statistics about the decomposed training set.

5.3 Improvements

After the shared task submission deadline, we im-
plemented some further improvements.

AMR We fixed a bug in the post-processing of
named entities, which improved the MRP f-score
by 0.5 points on the dev set and by 4.3 points on
the test set (“improved” in table 1).

We also analyzed the impact of switching out
WordNet and the Stanford NER tagger for their
whitelisted replacements, ConceptNet and the Illi-
nois NER tagger. As Table 3 shows, the use of the
whitelisted resources decreased the AMR devset
accuracy by almost 1.5 points. This illustrates the
impact of these low-level resources on the evalu-
ation results. Interestingly, this translates only to
an improvement of 0.6 points on the test set (“Im-
proved + WordNet/Stanford” in table 1).

We leave an investigation why the magnitude of
these improvements differs so much between dev
set and test set for future work.

UCCA In contrast to the submitted version, we
employed edge raising and lowering and used the
improved version of the top handling (see 4.6).
We also fixed a bug in the node-token alignments.
Overall, this resulted in 85% of the training set
being decomposable as opposed to 47% in the sub-
mitted system. The results are reported in row two

Lexical database
WordNet ConceptNet

NER tool
Stanford 73.9 72.7
Illinois 73.7 72.5

Table 3: Comparison of MRP f-scores on our AMR de-
velopment set for different NE recognizers and lexical
databases, includes bugfix.

of table 1.

6 Conclusion

In this paper, we have described the Saarland Uni-
versity submission to the MRP shared task. Our
system is mostly based on our compositional neural
graph parser, which had already worked very well
across all MRP graphbanks except for UCCA.

We found that extending the parser to UCCA
was a challenge due to the radically different graph
structures that UCCA uses. We aim to improve the
accuracy of our parser on UCCA in future work.

One challenge our system faces is that nontrivial
quantities of training data cannot be decomposed
by the heuristics we used. It therefore wastes a
lot of training data, especially for UCCA. In fu-
ture work, we will look into better decomposition
heuristics, and also into variants of the AM algebra
which support multiple root-sources per as-graph.
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Abstract

This paper describes our system (HIT-SCIR)
for the CoNLL 2019 shared task: Cross-
Framework Meaning Representation Parsing.
We extended the basic transition-based parser
with two improvements: a) Efficient Train-
ing by realizing stack LSTM parallel training;
b) Effective Encoding via adopting deep con-
textualized word embeddings BERT (Devlin
et al., 2019). Generally, we proposed a uni-
fied pipeline to meaning representation pars-
ing, including framework-specific transition-
based parsers, BERT-enhanced word represen-
tation, and post-processing. In the final evalu-
ation, our system was ranked first according to
ALL-F1 (86.2%) and especially ranked first in
UCCA framework (81.67%).

1 Introduction

The goal of the CoNLL 2019 shared task (Oepen
et al., 2019) is to develop a unified parsing sys-
tem to process all five semantic graph banks.1 For
the first time, this task combines formally and lin-
guistically different approaches to meaning repre-
sentation in graph form in a uniform training and
evaluation setup.

Recently, a lot of semantic graphbanks arise,
which differ in the design of graphs (Kuhlmann
and Oepen, 2016), or semantic scheme (Abend
and Rappoport, 2017). More specifically, SDP
(Oepen et al., 2015), including DM, PSD and PAS,
treats the tokens as nodes and connect them with
semantic relations; EDS (Flickinger et al., 2017)
encodes MRS representations (Copestake et al.,
1999) as graphs with the many-to-many relations
between tokens and nodes; UCCA (Abend and
Rappoport, 2013) represents semantic structures
with the multi-layer framework; AMR (Banarescu

1See http://mrp.nlpl.eu/ for further technical
details, information on how to obtain the data, and official
results.

et al., 2013) represents the meaning of each word
using a concept graph. Koller et al. (2019) classi-
fies these frameworks into three flavors of seman-
tic graphs, based on the degree of alignment be-
tween the tokens and the graph nodes. In DM and
PSD, nodes are sub-set of surface tokens; in EDS
and UCCA, graph nodes are explicitly aligned
with the tokens; in AMR, the alignments are im-
plicit.

Most semantic parsers are only designed for one
or few specific graphbanks, due to the differences
in annotation schemes. For example, the cur-
rently best parser for SDP is graph-based (Dozat
and Manning, 2018), which assumes dependency
graphs but cannot be directly applied to UCCA,
EDS, and AMR, due the existence of concept
node. Hershcovich et al. (2018) parses across dif-
ferent semantic graphbanks (UCCA, DM, AMR),
but only works well on UCCA. The system of
Buys and Blunsom (2017) is a good data-driven
EDS parser, but does poorly on AMR. Lindemann
et al. (2019) sets a new SOTA in DM, PAS, PSD,
AMR and nearly SOTA in EDS, via represent-
ing each graph with the compositional tree struc-
ture (Groschwitz et al., 2017), but they do not ex-
pand this method to UCCA. Learning from mul-
tiple flavors of meaning representation in parallel
has hardly been explored, and notable exceptions
include the parsers of Peng et al. (2017, 2018);
Hershcovich et al. (2018).

Therefore, the main challenge in cross-
framework semantic parsing task is that diverse
framework differs in the mapping way between
surface string and graph nodes, which incurs
the incompatibility among framework-specific
parsers. To address that, we propose to use
transition-based parser as our basic parser, since
it’s more flexible to realize the mapping (node
generation and alignment) compared with graph-
based parser, and we improve it from the two as-
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Figure 1: A unified pipeline for meaning representation parsing, including transition-based parser, BERT-enhanced
word representation, and post-processing, along with the additional taggers for label the nodes with pos, frame and
lemma.

pects: 1) Efficient Training Aligning the homo-
geneous operation in stack LSTM within a batch
and then computing them simultaneously; 2) Ef-
fective Encoding Fine-tuning the parser with pre-
trained BERT (Devlin et al., 2019) embedding,
which enrich the context information to make ac-
curate local decisions, and global learning for ex-
act search. Together with the post-processing, we
developed a unified pipeline for meaning represen-
tation parsing.

Our contribution can be summarised as follows:

• We proposed a unified parsing framework for
cross-framework semantic parsing.

• We designed a simple but efficient method to
realize stack LSTM parallel training.

• We showed that semantic parsing task bene-
fits a lot from adopting BERT.

• Our system was ranked first in CoNLL 2019
shared task among 16 teams upon ALL-F1.

2 System Architecture

Our system architecture is shown in Figure 1. In
this section, we will first introduce the transition-
based parser in Section 2.1, which is the central
part of our system. Then, to speed up the train-
ing of stack LSTM at transition-based parser, we
propose a simple method to do batch-training in
Section 2.2. And we adopt BERT to extract the
contextualized word representation in Section 2.3.
At last, to label the nodes with pos, frame and
lemma, we use additional tagger models to pre-
dict these in Section 2.4. The framework-specific
transition system is presented in Section 3 and
post-processing for each framework is discussed
in Section 4.

2.1 Transition-based Parser
In order to design the unified transition-based
parser, we refer to the following framework-
specific parsers: Wang et al. (2018b) for DM and
PSD, Hershcovich et al. (2017) for UCCA, Buys
and Blunsom (2017) for EDS, Liu et al. (2018) for
AMR. Those parsers differ in the design of tran-
sition system to generate oracle action sequence,
but similar in modeling the parsing state.

A tuple (S,L,B,E, V ) is used to represent
parsing state, where S is a stack holding processed
words, L is a list holding words popped out of S
that will be pushed back in the future, and B is a
buffer holding unprocessed words. E is a set of la-
beled dependency arcs. V is a set of graph nodes
include concept nodes and surface tokens. The
initial state is ([0], [ ], [1, · · · , n], [ ], V ) , where
V only contains surface tokens since the concept
nodes would be generated during parsing. And the
terminal state is ([0], [ ], [ ], E, V

′
). We model the

S, L, B and action history with stack LSTM, which
supports PUSH and POP operation. 2

Transition classifier takes the parsing state from
multiple stack LSTM models as input at once, and
outputs a action that maximizes the score. The
score of a transition action a on state s is calcu-
lated as

p(a|s) = exp{ga · STACK LSTM(s) + ba}∑
a′ exp{ga′ · STACK LSTM(s) + ba′}

,

where STACK LSTM(s) encodes the state s into a
vector, ga and ba are embedding vector, bias vec-
tor of action a respectively. The oracle transition
action sequence is obtained through transition sys-
tem, proposed in in Section 3.

2We encourage the reader to read Dyer et al. (2015) for
more details.
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Figure 2: When some new INSERT operations come, the data to be inserted are pushed into corresponding buffers.
They will be merged into a batch once batch-processing is triggered. After that, new LSTM states will be pushed
to corresponding stacks.

2.2 Batch Training

Kiperwasser and Goldberg (2016) shows that
batch training increases the gradient stability and
speeds up the training. Delaying the backward to
simulate mini-batch update is a simple way to real-
ize batch training, but it fails to compute over data
in parallel. To solve this, we propose a method of
maintaining stack LSTM structure and using oper-
ation buffer.

stack LSTM The stack LSTM augments the
conventional LSTM with a ‘stack pointer’. And
it supports the operation including: a) INSERT

adds elements to the end of the sequence; b) POP

moves the stack pointer to the previous element; c)
QUERY returns the output vector where the stack
pointer points. Among these three operation, POP

and QUERY only manipulates the stack without
complex computing, but INSERT performs lots of
computing.

Batch Data in Operation-Level Like conven-
tional LSTM can’t form a batch inside a sequence
due to the characteristics of sequential processing,
stack LSTM can’t either. Thus, we collect under-
computed operations between different pieces of
data to form a batch. In other words, we construct
batch data on operation-level other than data-level
in tradition. After collecting a batch of operation,
we compute them simultaneously.

Operation Buffer To be more efficient, we
adopt a buffer to collect operations and let it trig-
ger the computing of those operations automat-
ically (batch-processing), as shown in Figure 2.
To ensure correctness, batch-processing will only
be triggered when satisfy some conditions. More
specifically, when a) operation INSERT comes and

there is already an INSERT in the buffer; b) oper-
ation POP or QUERY comes. To clarify, the depth
of buffer per data is 1.

2.3 BERT-Enhance Word Representation

2.3.1 Deep Contextualized Word
Representations

Neural parsers often use pretrained word em-
beddings as their primary input, i.e. word2vec
(Mikolov et al., 2013) and GloVe (Pennington
et al., 2014), which assign a single static repre-
sentation to each word so that they cannot capture
context-dependent meaning. By contrast, deep
contextualized word representations, i.e. ELMo
(Peters et al., 2018) and BERT (Devlin et al.,
2019), encode words with respect to the con-
text, which have been proven to be useful for
many NLP tasks, achieving state-of-the-art perfor-
mance in standard Natural Language Understand-
ing (NLU) benchmarks, such as GLUE (Wang
et al., 2018a). Che et al. (2018) adopted ELMo in
CoNLL 2018 shared task (Zeman et al., 2018) and
achieved first prize in terms of LAS metric. (Kon-
dratyuk and Straka, 2019) exceeds the state-of-
the-art in UD with fine-tuning model with BERT.

2.3.2 BERT
We adopt BERT in our model, which uses the
language-modeling objective and trained on unan-
notated text for getting deep contextualized em-
beddings. BERT differs from ELMo in that it em-
ploys a bidirectional Transformer (Vaswani et al.,
2017), which benefit from learning potential de-
pendencies between words directly. For a token
wk in sentence S, BERT splits it to several pieces
and use a sequence of WordPiece embedding (Wu
et al., 2016) sk,1, sk,2, ..., sk,piece numk

instead of

78



a single token embedding. Each sk,i is passed to
an L-layered BiTransformer, which is trained with
a masked language modeling objective (i.e. ran-
domly masking a percentage of input tokens and
only predicting these masked tokens).

To encode the whole sentence, we extract the
first piece sk,1 of each token wk, with applying a
scalar mix on all L layers of transformer, to repre-
sent the corresponding token wk.

2.4 Tagger

Semantic graphs in all frameworks can be bro-
ken down into ‘atomic’ component pieces, i.e. tu-
ples capturing (a) top nodes, (b) node labels, (c)
node properties, (d) node anchoring, (e) unlabeled
edges, (f) edge labels, and (g) edge attributes. Not
all tuple types apply to all frameworks, however.3

The released dataset and evaluation is annotated
by MRP, which consists of the tuple including the
graph component mentioned above.

Our transition-based parser can provide the
edge information, while the other node informa-
tion, such as pos, frame and lemma, require us to
use additional tagger models to label the sentence
sequence. The tagger we adopted is directly im-
ported from AllenNLP library, which only mod-
els the dependency between node and label (emis-
sion score), not models the dependency between
labels (transition score). The details about inte-
grating and converting system output into MRP
format will be introduced in Section 4.

3 Transition Systems

Building on previous work on parsing reentran-
cies, discontinuities, and non-terminal nodes, we
define an extended set of transitions and features
that supports the conjunction of these properties.
To solve cross-arc problem, we use list-based arc-
eager algorithm for DM, PSD, and EDS frame-
work as Choi and McCallum (2013); Nivre (2003,
2008); for UCCA framework, we employ SWAP

operation to generate cross-arc as Hershcovich
et al. (2017).4

3.1 DM and PSD

We follow the work of (Wang et al., 2018b) to de-
sign transition system for DM and PSD.

3For further explanation, please visit the official web-
site:http://mrp.nlpl.eu/index.php?page=5

4 The transition sets for each framework have been intro-
duced with table format in supplementary material.

• LEFT-EDGEX and RIGHT-EDGEX add an
arc with label X between wj and wi , where
wi is the top elements of stack and wj is the
top elements of buffer. They are performed
only when one of wi and wj is the head of
the other.

• SHIFT is performed when no dependency ex-
ists between wj and any word in S other than
wi, which pushes all words in list and wj into
stack S.

• REDUCE is performed only whenwi has head
and is not the head or child of any word in
buffer, which pops wi out of stack.

• PASS is performed when neither SHIFT nor
REDUCE can be performed, which moves wi
to the front of list.

• FINISH pops the root node and marks the
state as terminal.

3.2 UCCA

We follow the work of (Hershcovich et al., 2017)
to design transition system for UCCA.

• SHIFT and REDUCE operations are the same
as DM and PSD. REDUCE pops the stack, to
allow removing a node once all its edges have
been created.

• NODE transition creates new non-terminal
nodes. For every X ∈ L, NODEX creates
a new node on the buffer as a parent of the
first element on the stack, with an X-labeled
edge.

• LEFT-EDGEX and RIGHT-EDGEX create a
new primary X-labeled edge between the
first two elements on the stack, where the par-
ent is the left or the right node, respectively.

• LEFT-REMOTEX and RIGHT-REMOTEX do
not have this restriction, and the created edge
is additionally marked as remote.

• SWAP pops the second node on the stack and
adds it to the top of the buffer, as with the
similarly named transition in previous work
(Maier, 2015; Nivre, 2009).

• FINISH pops the root node and marks the
state as terminal.
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As a UCCA node may only have one incoming
primary edge, EDGE transitions are disallowed if
the child node already has an incoming primary
edge. To support the prediction of multiple par-
ents, node and edge transitions leave the stack un-
changed, as in other work on transition-based de-
pendency graph parsing (Sagae and Tsujii, 2008).

3.3 EDS
Based on the work of (Buys and Blunsom, 2017),
we extended NODE-STARTL and NODE-END ac-
tions for generating concept node and realizing
node alignment.

To clarify, wi is the top element in stack and wj
is the top element in buffer. Moreover, wi could
only be concept node (stack and list only contain
concept node), and wj could be concept node or
surface token.

• SHIFT and REDUCE operations are the same
as DM and PSD.

• LEFT-EDGEX and RIGHT-EDGEX add an
arc with label X between wj and wi. (wj is
the concept node)

• DROP pops wj . Then push all elements in list
into stack. (wj is the surface token).

• REDUCE is performed only whenwi has head
and is not the head or child of any node in
buffer B, which pops wi out of stack S.

• NODE-STARTX generates a new concept
node with labelX and set it’s alignment start-
ing from wj . (wj is the surface token)

• NODE-END set the alignment ofwi ending in
wj . (wj is the surface token)

• PASS is performed when neither SHIFT nor
REDUCEl can be performed, which moveswi
to the front of list .

• FINISH pops the root node and marks the
state as terminal.

3.4 AMR
We extend the basic transition set to obtain the
ability to generate graph nodes from the surface
string, following previous work (Liu et al., 2018).
There are 3 steps to parse graph nodes from the
surface string in general. (a) Many concepts ap-
pear as phrases rather than single words, so we
connect token spans on top of buffer to form

special single tokens if needed using operation
MERGE. (b) Then we use operation CONFIRM

to convert a single token on buffer to a graph
node(concept). In order to process entity concepts
like date-entity better, operation ENTITY is a spe-
cial form of CONFIRM which also generates prop-
erty nodes of the entity concept. (c) The other con-
cepts are not derived from surface string but previ-
ous concepts. If there is a concept node on top of
buffer, operation NEW can be performed to parse
this kind of concept nodes.

After solving the problem of parsing concept
nodes from surface string, the basic transition set
used in DM and PSD is able to predict edges be-
tween concept nodes.

• REDUCE and PASS operations are the same
as DM and PSD.

• SHIFT, LEFT-EDGEX and RIGHT-EDGEX
are similar to operations in DM and PSD, but
they can be performed only when the top of
buffer is a concept node.

• DROP operation pops the top of buffer when
it is a token.

• MERGE operation connect the top two tokens
in the buffer to a single token which is wait-
ing for being converted to a concept node.

• CONFIRMX operation convert top of buffer to
a concept node X if it is a token.

• ENTITYX operation does same things with
CONFIRMX and then adds internal attributes
of entity X , such as year, month and day of a
date-entity.

• NEWX operation create a concept node la-
beled with X and push it to the buffer.

• FINISH pops the root node and marks the
state as terminal.

4 Pre-processing and Post-processing

As discussed in 2.4, the official dataset is anno-
tated with MRP format, while our system’s input
is a set of the triple (incoming arc, outgoing arc,
arc label). Therefore, besides developing the tran-
sition system, we need to do: a) Pre-processing:
Before training, we need to construct the input for
our system based on MRP format graph; b) Post-
processing: After prediction, we need to convert
system’s output into MRP format graph.
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At first, all those framework construct triple in-
put is basically the same, which using directed
edges, edge labels and node id. About node
anchor, we directly derive the anchoring based
on segmentation from companion data alignment
with each sentence.5

While the other elements, such as top nodes, are
a bit different among the frameworks. We will in-
troduce these framework-specific work in the fol-
lowing.

4.1 DM and PSD

Node Properties Nodes in DM and PSD are la-
beled with lemmas and carry two additional prop-
erties that jointly determine the predicate sense,
viz. pos and frame. We use two taggers to handle
this problem.

Top Nodes At first, we construct an artifact node
called ROOT. Then we add an edge (node, ROOT,
ROOT) where the node is enumerated from top
nodes.

Node Label We copy the lemmas from addi-
tional companion data and set it as node labels.

4.2 UCCA

Top Nodes There is only one top node in
UCCA, which used to initialize the stack. Mean-
while, top node is the protect symbol of stack
(never be popped out).

Edge Properties UCCA is the only framework
with edge properties, used as a sign for remote
edges. We treat remote edges the same as primary
edge, except the edge label added with a special
symbol, i.e. star(*).

Node Anchoring Refer to the original UCCA
framework design, we link the the node in layer
0 to the surface token with edge label ’Terminal’.
In post-processing, we combine surface token and
layer 0 nodes via collapsing ‘Terminal’ edge to ex-
tract the alignment or anchor information.

4.3 EDS

Top Nodes The TOP operation will set the first
concept node in buffer as top nodes.

5Organizer released pre-tokenized, PoS-tagged, and lem-
matized form for training and evaluation data, besides a se-
quence of ’raw’ sentence string. You could download the
sample companion data from http://svn.nlpl.eu/
mrp/2019/public/companion.tgz

Node Labels We train a tagger to handle this.
Although there are many node labels exists, the
result shows our system performs well on this.

Node Properties The only framework-specific
property used on EDS nodes is carg (for constant
argument), a string-valued parameter that is used
with predicates(node label) like named or dofw,
for proper names and the days of the week, respec-
tively.

We write some rules to convert the surface
token into properties value, such as converting
million(token) to 1000000(value) when card(node
label).

Node Anchoring We obtain alignment informa-
tion through NODE START and NODE END oper-
ation,

4.4 AMR
Alignment There is no anchor between tokens
from surface string and nodes from AMR graph.
So we have to know which token aligns to which
node, or we cannot train our model. Actually,
finding alignment is a quite hard problem so that
we could only get approximate solutions through
heuristic searching. Although basic alignments
have been contained in the companion data, we de-
cide to use an enhanced rule-based aligner TAMR
(Liu et al., 2018).

TAMR recalls more alignments by matching
words and concepts from the view of semantic and
morphological. (a) semantic match: Glove em-
bedding represents words in some vector space.
Considering a word and a concept striping off
trailing number, we think them matching if their
cosine similarity is small enough. (b) morphologi-
cal match: Morphosemantic database in the Word-
Net project provides links connecting noun and
verb senses, which helps match words and con-
cepts.

Top Nodes There is exact one top node in AMR.
For the convenience of processing, we add a guard
element to the stack and use operation LEFT-
EDGEROOT between guard element and concept
nodes to predict top nodes.

Node Labels Node label appears as the name of
each concept which is parameter of operation EN-
TITY, CONFIRM and NEW.

Node Properties This is the main part of post-
processing. Since our model predicts everything
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System DM PSD EDS UCCA AMR ALL-F1
HIT-SCIR 95.08 (2) 90.55(4) 90.75(2) 81.67 (1) 72.94 (2) 86.2
SJTU-NICT 95.50 (1) 91.19 (3) 89.90 (3) 77.80 (3) 71.97 (3) 85.3
Suda-Alibaba 92.26 (7) 85.56 (8) 91.85 (1) 78.43 (2) 71.72 (5) 84.0
Saarland 94.69 (4) 91.28 (1) 89.10 (4) 67.55 (6) 66.72 (6) 81.9
Hitachi 91.02 (8) 91.21 (2) 83.74 (6) 70.36 (5) 43.86 (8) 76.0
Amazon 93.26 (6) 89.98 (5) - - 73.38 (1) -

Table 1: The top 5 evaluation results upon cross-framework metric ALL-F1. 95.08 (2) indicates HIT-SCIR system
scores 95.08 F1 in DM framework, and it ranks 2nd in DM. Amazon achieves 1st in AMR. We only list the involved
results they submitted.

DM PSD UCCA EDS AMR
Feature LF1 MRP LF1 MRP LF1 MRP EDM MRP SMATCH MRP

GloVe 87.1 87.3 74.1 73.7 56.3 87.5 82.5 88.2 64.8 65.3
BERT(base) 94.3 90.5 83.6 76.7 64.3 92.8 87.6 91.5 71.0 71.4

Table 2: HIT-SCIR parser results on MRP split dataset with GloVe or BERT as pretrained word representation.
MRP stands for cross-framework evaluation metric. LF1 stands for SDP Labeled F1 (Oepen et al., 2014) in
DM/PSD, UCCA Labeled Dependency F1 (Hershcovich et al., 2019) in UCCA. And EDM (Dridan and Oepen,
2011) stands for Elementary Dependency Match in EDS. SMATCH (Cai and Knight, 2013) is an evaluation metric
for semantic feature structures in AMR.

as nodes and edges, we need an extra procedure
to recognize which nodes should be properties in
the final result. Once recognized, node along with
the corresponding edge will be converted to the
property of its parent node, edge label for the key,
and node label for the value.

We write some rules to perform the recogniz-
ing procedure. Rules come from 2 basic facts. (a)
attribute node: Numbers, URLs, and other special
tokens like ‘-’(value of ‘polarity’) should be values
of properties. (b) constant relation: When an edge
has a label like ‘value’, ‘quant’, ‘opx’ and so on, it
is usually a key to property. We treat it as property
if there is an edge of constant relation connecting
to an attribute node.

5 Experiments

In this section, we will show the basic model setup
including BERT fine-tuning, and results including
overall evaluation, training speed. More details
about training, including model selection, hyper-
parameters and so on, are contained in supplemen-
tary material.

5.1 Model Setup

Our work uses the AllenNLP library built for the
PyTorch framework. We split parameters into
two groups, i.e., BERT parameters and the other
parameters (base parameters). The two parameter

groups differ in learning rate. For training we
use Adam (Kingma and Ba, 2015). Code for
our parser and model weights are available at
https://github.com/DreamerDeo/
HIT-SCIR-CoNLL2019.

Fine-Tuning BERT with Parser Based on De-
vlin et al. (2019), fine-tuning BERT with super-
vised downstream task will receive the most ben-
efit. So we choose to fine-tune BERT model to-
gether with the original parser. In our prelimi-
nary study, gradual unfreezing and slanted trian-
gular learning rate scheduler is essential for BERT
fine-tuning model. More details are discussed in
supplementary material.

5.2 Results

Overall Evaluation We list the evaluation re-
sults on Table 1, which is ranked by the cross-
framework metric, named ALL-F1, attached with
the result of specific framework. 6 In final submis-
sion, we only use the single model for prediction.
In the follow-up experiments, we get further im-
provement via the ensemble model. The related
results is listed in supplementary material.

Training Speed To explore the effect of batch-
training methods which proposed in Section 2.2

6Evaluation results of CoNLL 2019 shared task are avail-
able at http://bit.ly/cfmrp19.
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DM PAS PSD
Parser Feature id F ood F id F ood F id F ood F

Wang et al. (2018b) T word2vec 89.3 83.2 91.4 87.2 76.1 73.2
Dozat and Manning (2018) G GloVe+char 92.7 87.8 94.0 90.6 80.5 78.6

HIT-SCIR T GloVe+char 86.1 79.2 89.8 85.2 72.8 68.5
AllenNLP G GloVe+char 91.6 86.1 93.1 89.6 77.4 73.0

HIT-SCIR T BERT 92.9 89.2 94.4 92.4 81.6 81.0
AllenNLP G BERT 94.1 90.8 94.8 92.9 80.7 79.5

Table 3: Semantic parsing accuracies (id = in domain test set; ood = out of domain test set). G and T stand for
graph-based parser and transition-based parser. We adopted BERT (base+cased) model here. AllenNLP refers to
the graph-based parser (Dozat and Manning, 2018) re-implemented by AllenNLP.

in training process, we conduct several experi-
ments through adjusting the batch-size. Since
we have adopted two different ways to address
the cross-arc problem: list-based (DM, PSD,
EDS, AMR) and SWAP operation (UCCA), we
try batch-training experiments on DM and UCCA
respectively. The result is shown in Figure 3.
5.3x on DM and 2.7x on UCCA speedup could
be reached approximately while increasing batch
size. We use GloVe pretrained embedding instead
of BERT to reduce memory cost and support a
larger batch size in the speed test.

Figure 3: The training time per epoch, under different
batch-size experiment setting, which indicates the effi-
cient of batch-training methods we proposed in 2.2.

Improvement through BERT Our parser ben-
efits a lot from BERT compared with GloVe as
shown in Table 2. The improvement is more obvi-
ous in the out-of-domain evaluations, illustrating
BERT’s ability to transfer across domains.

6 Discussion

In recent years, graph-based parser holds the state-
of-the-art in dependency parsing area due to its
ability in the global decision, compared with
transition-based parser. However, when we con-
catenated those models with BERT, we receive

the similar performance, which shows that power-
ful representation could eliminate the gap between
structure or parsing strategy.

Kulmizev et al. (2019) proposes that deep con-
textualized word representations are more effec-
tive at reducing errors in transition-based parsing
than in graph-based parsing. Their experiments
were all about dependency parsing (tree structure),
and we found similar results in meaning represen-
tation parsing (graph structure), as shown in Table
3. It remains the future work to study this phe-
nomenon with the theoretical analysis.

7 Conclusion and Future Work

Our system extends the basic transition-based
parser with the following improvements: 1) adopt-
ing BERT for better word representation; 2) re-
alizing batch-training for stack LSTM to speed
up the training process. And we proposed a uni-
fied pipeline for meaning representation parsing,
suitable for main stream graphbanks. In the final
evaluation, we were ranked first place in CoNLL
2019 shared task according to ALL-F1 (86.2%)
and especially ranked first in UCCA framework
(81.67%).
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Abstract

This paper describes the system of our team
SJTU for our participation in the CoNLL 2019
Shared Task: Cross-Framework Meaning Rep-
resentation Parsing. The goal of the task
is to advance data-driven parsing into graph-
structured representations of sentence mean-
ing. This task includes five meaning represen-
tation frameworks: DM, PSD, EDS, UCCA,
and AMR. These frameworks have different
properties and structures. To tackle all the
frameworks in one model, it is needed to find
out the commonality of them. In our work, we
define a set of the transition actions to once-
for-all tackle all the frameworks and train a
transition-based model to parse the meaning
representation. The adopted multi-task model
also can allow learning for one framework to
benefit the others. In the final official evalu-
ation of the shared task, our system achieves
42% F1 unified MRP metric score.

1 Introduction

Semantic understanding of texts is very important
in Natural Language Processing (NLP), in which,
Meaning Representation Parsing (MRP) attracts
attentions of many researchers. This task is to en-
code a sentence into a semantic graph, which usu-
ally is directed. Compared with dependency pars-
ing (Ma and Zhao, 2012; Li et al., 2018a; Zhou
and Zhao, 2019) or semantic role labeling (Zhao
et al., 2009a,b; Li et al., 2018b; Guan et al., 2019),
this task is much harder since its representation is a
graph which may incorporate both syntactical and
semantic information. These general graphs are
more expressive and arguably more adequate tar-
get structures for sentence-level analysis beyond

∗Corresponding author. This paper was partially sup-
ported by National Key Research and Development Program
of China (No. 2017YFB0304100) and Key Projects of Na-
tional Natural Science Foundation of China (No. U1836222
and No. 61733011).

shallow syntax and in particular for representa-
tions of the semantic structure. Many works have
shown that these meaning representations are ben-
eficial to other tasks such as machine translation
and abstractive summarization. However, there
are several types of meaning representations with
different definitions, structures, and abstractions,
which hinder the applications.

The CoNLL 2019 Shared Task (Oepen et al.,
2019) combines formally and linguistically dif-
ferent meaning representation in graph form on
a uniform training and evaluation setup for the
first time. This task includes five MRP frame-
works: DM, PSD, EDS, UCCA, and AMR. These
frameworks have different anchoring types, i.e.,
the tightness of correspondence between graph
nodes and sentence tokens with different abstrac-
tions. The nodes in DM and PSD are all the sur-
face tokens in the sentences. In EDS and UCCA,
the anchoring is flexible so that arbitrary parts of
the sentence (e.g. sub-token or multi-token se-
quences) may be node anchors, as well as mul-
tiple nodes anchored to overlapping sub-strings.
Further, AMR has even no anchoring but with the
strongest expressive ability.

For each of these frameworks, the common
methods for their parsing are transition-based
method and graph-based method. The former
parses sentences by making a sequence of transi-
tion actions according to the present state which
usually consists of a stack, a buffer, and a pro-
cessed edge set, while the latter gets nodes first
and predicts the edges between these nodes.

In our system, we use the transition-based
model to do the cross-framework meaning rep-
resentation parsing, since we can define a set of
transition actions and incorporate all the frame-
works into our system, and the shared part of
the model can learn from all the data from dif-
ferent frameworks. Our model is modified from
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TUPA (Transition-based UCCA Parser) (Hersh-
covich et al., 2017, 2018) in terms of neural
networks, which is powerful in a lot of NLP
tasks (Cai and Zhao, 2016; Zhang et al., 2016; Qin
et al., 2016; Vaswani et al., 2017; Cai et al., 2017;
Wang et al., 2017; Qin et al., 2017; Bai and Zhao,
2018; He et al., 2018; Cai et al., 2018; Zhang
and Zhao, 2018; Zhang et al., 2018a,b; Zhu et al.,
2018; Huang and Zhao, 2018; Li et al., 2018c; Wu
et al., 2018; Zhang et al., 2019; Xiao et al., 2019).
Neural networks can encode the texts into a dense
representation. We put the parsing job of all the
frameworks to one model and use a multi-task set-
ting to jointly train the system. In the final official
evaluation of the shared task, our system achieves
42%F1 unified MRP metric score.

The rest of this paper is organized as follows.
Section 2 introduces these frameworks. Section 3
shows our model. Section 4 gives the settings of
our model and test results.

2 Framework Schemes

This shared task considers five meaning represen-
tation frameworks. In this section, we briefly in-
troduce these frameworks and figure out the traits
of these frameworks.

2.1 DM and PSD

DELPH-IN MRS Bi-Lexical Dependen-
cies (DM) (Ivanova et al., 2012) and Prague
Semantic Dependencies (PSD) (Hajič et al.,
2012; Miyao et al., 2014) use bi-lexical semantic
dependencies to represent the meaning with
different annotations. Graph nodes in DM and
PSD correspond to surface tokens, and graphs are
neither fully connected nor rooted trees, that is,
some tokens from the underlying sentence remain
structurally isolated, and for some nodes, there
are multiple incoming edges.

2.2 EDS

Elementary Dependency Structures (EDS) (Oepen
and Lønning, 2006) is a variable-free semantic de-
pendency graph, where graph nodes correspond to
logical predictions and edges to labeled argument
positions. The variable-free feature makes these
graphs quite similar to Abstract Meaning Repre-
sentation (AMR). Nodes in EDS are in principle
independent of surface lexical units, but for each
node, there is an explicit and many-to-many an-
choring onto sub-strings of the underlying sen-

tence.

2.3 UCCA

Universal Conceptual Cognitive Annota-
tion (UCCA) (Abend and Rappoport, 2013)
targets to a more semantic way rather than only
syntactically and can be extended to cross-
linguistic settings. UCCA representations are
directed acyclic graphs (DAGs), where termi-
nal nodes correspond to the text tokens and
non-terminal nodes to semantic units with more
abstract meanings. Edges are labeled, indicating
the role of a child in the relation. UCCA enable
reentrancy to allow a node to participate in several
semantic relations.

2.4 AMR

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) tries to abstract out all the se-
mantic information from the sentences. The AMR
graphs are rooted directed graphs, in which both
nodes and edges are labeled, and reentrancy is also
allowed. AMR declines to make explicit how el-
ements of the graph correspond to the surface ut-
terance and the nodes are abstract. So similar to
EDS, it is also needed to generate nodes from se-
mantic information, but AMR is harder since even
no anchor is available. AMR graphs quite gener-
ally appear to be more abstractive compared to the
other frameworks.

2.5 Framework Summary

DM PSD EDS UCCA AMR
Node Labels • • • - •

Node Properties • • • - •
Node Anchoring • • • • -
Generated Node - - • ◦ •
Edge Attributes - - - • -

Table 1: Framework properties. Generated node means
the nodes in the graph are not the superficial tokens and
◦ means in UCCA they are empty non-terminal nodes.

These frameworks have different structures and
different complexity. The graphs of these frame-
works all have a top node or root node, and edges
are all directed and labeled. Other properties are
summarized in Table 1. By analyzing these prop-
erties, we can design a transition set to accommo-
date all these frameworks.
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Action Current State Resulting State Description
1 Drop [σ|s0, b0|β,A] [σ|s0, β, A] drop the word that does not convey any

semantics (the first element of the buffer)
2 New(c) [σ|s0, b0|β,A] [σ|s0, c|b0|β,A] generate a new node c and push it into the

buffer
3 Add [σ|s0, b0|β,A] [σ|s0, o|b0|β,A] generate a non-terminal node for UCCA

and push it into the buffer
4 Left(r) [σ|s0, b0|β,A] [σ|s0, b0|β,A ∪ s0 r←− b0] make left-arc with label r (edge label)
5 Right(r) [σ|s0, b0|β,A] [σ|s0, b0|β,A ∪ s0 r−→ b0] make right-arc with label r (edge label)
6 Swap [σ|s1|s0, β, A] [σ|s0, s1|β,A] swap the top two nodes in stack and then

put the top one in the buffer
7 Shift [σ|s0, b0|β,A] [σ|s0|b0, β, A] shift the first node of the buffer to the

stack
8 Reduce [σ|s0, b0|β,A] [σ, b0|β,A] if the top node of the stack is processed,

pop it from stack

Table 2: The transition system. σ is the stack and s0 is the top element of the stack. β is the buffer and b0 is the
first element of the buffer. A is the set containing all processed edges. The [σ|s0, b0|β,A] denotes one state of the
transition procedure. For initialization, the σ and A are empty and β contains all tokens in the sentence (for AMR,
only words that can be aligned to the graph are kept).

3 Model Description

For the joint learning task, we select a multi-task
transition-based model. Following we will de-
scribe the transition set, the model, and the train-
ing/inference.

3.1 Transition Set

For a transition-based system, a transition action
set is needed, and an oracle is also needed to gen-
erate gold-standard actions during training. We
define the transition set to cover all meaning rep-
resentation frameworks then these tasks can be
learned consistently. Our transition system has
a stack, a buffer, and a set of processed edges.
Given a sentence consisting of a sequence of to-
kens t0, t1, · · · , tn, we put all these tokens to the
buffer as initialization. During training, an oracle
will generate a gold-standard action sequence, and
during inference, the model will predict the action
sequence and recover it to a graph. Table 2 sum-
marizes all the actions. In these actions, actions 4,
5, 6, 7, 8 are used by all the frameworks, actions 1,
2 are used by EDS and AMR, action 3 is used by
UCCA. If one action is not used by the framework,
then the oracle will not generate this action for it,
and during inference, the action is only selected
from the legal actions for task-specified classifiers.

3.2 Model

Figure 1 depicts our model. x1, x2, · · · , xi de-
notes the input tokens. Our model architecture

X1

Shared	BiLSTM Specific	BiLSTM

X2 X3 X4 X5 X6 X7

Classifier State

Figure 1: Model overview.

follows TUPA. The model uses a bi-directional
LSTM (Hochreiter and Schmidhuber, 1997) to
encode the sentence and a multi-layer percep-
tron (MLP) with a softmax layer for classification.
Following Hershcovich et al. (2018), in the model,
we have shared embedding components and a
shared LSTM module, and for each framework,
we have a task-specified LSTM module and a cor-
responding classifier. For each framework, the
outputs of shared LSTM and task-specified LSTM
are concatenated and fed into the task-specified
classifier for action prediction. For the word em-
beddings, we use the pre-trained GloVe embed-
dings (Pennington et al., 2014) and the pre-trained
BERT (Devlin et al., 2019). For each token, there
are also embeddings for lemma, POS tag, and syn-
tactic dependency label. These embeddings to-
gether with token embeddings and BERT outputs
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are concatenated and sent to the BiLSTMs as in-
put. These embeddings and pre-trained models are
tuned during training.

Besides the neural model, we also add hand-
made features to the classifier. We use features
representing the existing node labels related to the
top four stack elements and the first three buffer el-
ements. We also use the last three actions taken by
the parser, and if there are less than three actions
before, use zero embeddings instead. For all these
features, we use vector embeddings to represent
them, that is, node labels and transition actions are
embedded to vectors. All these embeddings are
initialized randomly. These features embeddings
are concatenated as a feature vector for the state.

The final hidden state vectors of shared and spe-
cific BiLSTMs and the feature vector of the state
are concatenated and fed as input to the action
classifiers. The training is done with an oracle that
yields the set of all optimal transitions at a given
state. The actual transition performed in training
is the one with the highest score given by the clas-
sifier, which is trained to maximize the sum of log-
likelihoods of all optimal transitions at each step.

In addition to the main model, we also apply
two classifiers for property prediction of DM and
PSD. The classifier is an MLP and the input is the
concatenated output vectors of each token from
shared and specific BiLSTM since the nodes are
one-to-one corresponding to the tokens in the sen-
tence.

3.3 Training and Inference Procedures

The training and test data have companion data
processed by UDPipe (Straka, 2018). For all the
input sentences, we use the tokenization, lemma,
POS tagging, dependency parsing, and anchor in-
formation results from UDPipe data. Then the an-
chors of the output graphs are directly obtained
from the UDPipe data. For EDS and AMR, the an-
chors are derived from the first token in the buffer.

Since AMR has no anchoring between nodes
and texts, so we use the alignments generated from
JAMR (Flanigan et al., 2014) and the tokens and
nodes which have no alignments are discarded.
Then the oracle can generate an action sequence
for AMR during training. We also do pre-process
on AMR and EDS graphs by expanding the node
properties of graphs in the two frameworks, that is,
the property key is seen as edge label and property
value is seen as node label. We collect these edge

labels and convert these nodes and edges to prop-
erties. For DM and PSD, the pos node property is
from XPOS in UDPipe data, and the frame prop-
erty are predicted by additional classifiers. UCCA
has edge attribute remote to reflect the reentrancy
and we neglect the edge attribute in our transition
system for convenience. So we add the attribute
remote to the later predicted edges that link the
used nodes. For node labels, we use the lemma
corresponding to the token in the sentences as
node label for DM and PSD, and we generate node
label for EDS and AMR in the New action.

During training, an oracle is used to generate
action sequences. We use a dynamic oracle which
outputs a set of optimal transitions from a given
state, and from the resulting state, the gold stan-
dard graph is still reachable. For example, for EDS
and AMR, if the first element of the buffer is a to-
ken and it has aligned unprocessed nodes, then a
node with small id is generated by the New and
put to the buffer. For UCCA, if the top node in
the stack connects to a non-terminal node which is
not generated yet, then the Add this non-terminal
node. If this token has no aligned nodes remain-
ing, then the Drop is applied. If the top element
of the stack and the first element of the buffer are
nodes and the node in the buffer is the child of an
unprocessed edge, then the Right action is applied.
Similarly, we have the Left action. If the top ele-
ment of the stack has no unprocessed edges, then
the Reduce is applied. If the stack is empty and the
buffer has elements, then the Shift is applied. If no
other actions can be found, then we do the Swap
action.

For inference, after the action sequence is pre-
dicted, we can generate a graph from this se-
quence. However, this graph may not conform
to the graph rules of the respective framework.
So we prune the generated graph. The pruning
method includes: deleting the repeated nodes and
edges, deleting the nodes containing empty labels
of EDS and AMR, deleting the edges attached to
the deleted nodes.

4 Experiments and Results

4.1 Data settings

Our system is trained and evaluated on the data
provided by the shared task. The data size is
shown in Table 5. We randomly sample out 3%
of the training data in each framework as the de-
velopment set. After the hyperparameters are de-
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tops labels properties anchors edges attributes all rank base all
all MRP 52.7 42.8 32.1 54.7 29.5 0.2 43.0 10 45.3

lpps MRP 60.2 44.3 24.9 56.0 30.8 0.1 45.1 10 50.6
all MRP DM 47.8 56.5 34.7 70.2 31.4 0.0 43.2 11 42.7

lpps MRP DM 61.2 55.8 33.1 70.4 27.9 0.0 41.9 11 39.5
all MRP PSD 48.4 60.7 39.0 72.8 23.4 0.0 47.6 11 52.7

lpps MRP PSD 53.3 60.6 40.5 72.7 24.8 0.0 48.8 11 54.5
all MRP EDS 32.6 53.1 52.8 64.8 40.5 0.0 53.2 8 74.0

lpps MRP EDS 43.2 53.6 40.0 67.8 43.2 0.0 55.3 8 74.8
all MRP UCCA 81.8 0.0 0.0 66.0 19.4 0.8 32.7 9 23.7

lpps MRP UCCA 75.6 0.0 0.0 69.3 23.4 0.7 35.3 9 41.0
all MRP AMR 53.2 43.8 34.1 0.0 33.0 0.0 38.5 9 33.8

lpps MRP AMR 67.7 51.4 10.8 0.0 34.8 0.0 44.1 9 43.4

Table 3: Test results.F1(%) scores for tops, labels, properties, anchors, edges, attributes, and all unified score.
MRP is the results of all frameworks and others are for specific frameworks. For the test data, “all” denotes all test
data and “lpps” denotes the 100 sentences in The Little Prince. base denotes the results of TUPA baseline.

labeled F labeled M labeled rank unlabeled F unlabeled M unlabeled rank
all DM 37.9 (56.2) 1.7 (7.2) 11 41.6 (64.3) 1.8 (8.5) 12

lpps DM 33.5 (55.7) 0.0 (14.0) 11 37.8 (64.7) 0.0 (17.0) 12
all PSD 34.0 (50.1) 2.2 (8.6) 12 45.9 (66.0) 4.1 (22.0) 12

lpps PSD 35.9 (55.3) 0.0 (15.0) 12 45.7 (68.8) 0.0 (27.0) 12

Table 4: SDP results for DM and PSD. F denotes F1(%) score and M denotes exact match score(%). The scores
in the brackets are from TUPA baseline.

termined, we train our system on all the training
data. The shared task also evaluates the system on
the 100 annotated sentences from The Little Prince
which denote as “lpps” in the Results section.

Training Test
DM 35,656 3359
PSD 35,656 3359
EDS 35,656 3359

UCCA 6,572 1131
AMR 56,240 1998

Table 5: Number of sentences of each framework in
training set and test set.

4.2 Model Settings

We implement our model with PyTorch1 and tuned
on the development set. During inference, we use
greedy decoding to get the action sequence. Ta-
ble 6 shows the hyperparameter settings. The op-
timizer is Adam (Kingma and Ba, 2015). The
dropout is applied to the embeddings, the outputs
of BiLSTMs, and the outputs of the first MLP lay-

1https://pytorch.org/

ers. If the length of one sentence is larger than
the max length, then the exceeding tokens are dis-
carded. Other features denote the node labels in
the stack and buffer, and the previous actions in-
troduced in Section 3.2.

4.3 Results

The evaluation is blindly conducted. The MRP
score results are shown in Table 3. For framework
specified metric, the SDP results for DM and PSD
are reported in Table 4, the EDM results for EDS
are reported in Table 7, and the SMATCH results
for AMR are reported in Table 9. Table 3 also con-
tains the comparison results with the TUPA base-
line (Hershcovich and Arviv, 2019). For some of
the frameworks, our model is better than the TUPA
baseline.

4.4 Analysis

Though following the same model architecture
and dynamic oracle of TUPA, we adopt a different
transition set with a different feature set and set-
ting. For example, UCCA only generates a node
when an unprocessed edge is met and the node is
on it, and UCCA has separate actions to predict
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Hyperparameter Value
Max sentence length 100

GloVe embedding dim 300
BERT output dim 1024

Lemma embedding dim 200
POS-tag embedding dim 20

Dependency embedding dim 20
Other feature dim 10
BiLSTM layers 2
BiLSTM dim 300
MLP layers 2
MLP dim 50
Dropout 0.2

Optimizer Adam
Learning rate 0.001

Adam β1 0.9
Adam β2 0.999

Table 6: Model hyperparameters.

all lpps
tops 28.8 40.5

names 50.6 52.8
arguments 34.7 35.5
properties 53.5 40.0

all 43.5 (65.6) 44.9 (66.0)
rank 8 8

Table 7: EDM F1(%) results for EDS. The scores in
the brackets are from TUPA baseline.

node label, edge label, node property, and edge
attribute. Whereas we have actions to generate
nodes (New and Add) and the node or edge label is
predicted when the node or the edge is generated.
However, our set does not have actions for node
properties and edge attributes, which has been in-
troduced in Section 3.3. The motivation for de-
signing our transition set is to use fewer actions to
parse a sentence.

For the results, we find the MRP metric may
be imperfect for every framework. For example,
the MRP results for UCCA of ours and the base-
line are comparative, whereas, for the UCCA task-
specific metric, ours (Table 8) are much lower than
TUPA. That is, a better MRP result may not reflect
a better task-specific result. This is due to some
items calculated by MRP that are not in UCCA
graphs such as labels and properties, and the edge
overlapping search methods are different. The gap
comes from our transition set, which is not well
suitable for UCCA, and this is mainly due to that

all lpps
labeled primary 4.7 5.6
labeled remote 0.6 1.6

labeled all 4.5 (22.4) 5.5 (28.4)
labeled rank 9 9

unlabeled primary 6.5 7.7
unlabeled remote 1.1 3.3

unlabeled all 6.3 (27.1) 7.5 (33.1)
unlabeled rank 9 9

Table 8: UCCA F1(%) results. The scores in the brack-
ets are from TUPA baseline.

all lpps
F1 37.3 (32.8) 41.1 (41.1)

rank 9 9

Table 9: SMATCH F1(%) results for AMR. SMATCH
is the specific evaluation metric for AMR. The scores
in the brackets are from TUPA baseline.

Ours TUPA
P R F P R F

MRP 46.0 43.0 43.0 39.0 57.0 45.3
DM 36.0 53.0 43.2 31.0 69.0 42.7
PSD 48.0 48.0 47.6 45.0 63.0 52.7
EDS 75.0 41.0 53.2 74.0 74.0 74.0

UCCA 31.0 35.0 32.7 17.0 38.0 23.7
AMR 40.0 37.0 38.5 29.0 41.0 33.8

Table 10: Precision, Recall, and F1 score comparisons
on all MRP results.

we generate non-terminal node separately whereas
TUPA directly generates edges attached to the
non-terminal nodes, and our method may even il-
legally connect two terminal nodes. Other frame-
works have the same issue such as DM. These
task-specific metrics pay more attention to edges
and have a different overlapping search method
compared with MRP metric, which is more sim-
ilar to the AMR specific metric SMATCH.

Only for AMR, our MRP results and SMATCH
results are both better, which may be due to the
separate New action and expanding the properties
as nodes.

In Table 10, we compare the precision, recall,
and F1 results for MRP metric, and we can find
that though the F1 scores are comparative, our pre-
cision scores are much higher than TUPA, whereas
recall scores are much lower. That is, we can pre-
dict the elements in the graph more accurately, but
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our model misses too much nodes and edges. This
is due to that the new node action and the separate
property classifiers can bring better element pre-
diction. Fewer actions also make the prediction
more accurate. However, the design of the oracle
and the training may have flaws, so some tokens
are dropped and some edges are not predicted out,
which makes the low recall. Our parser tends to
predict a smaller graph, so for some frameworks
which tend to have bigger graphs, such as PSD and
EDS, the MRP results of our parser are worse.

5 Conclusion

In this paper, we describe our transition-based
multi-task parsing system for the CoNLL 2019
Shared Task: Cross-Framework Meaning Repre-
sentation Parsing. In our system, we integrate all
the frameworks into one transition-based neural
model using shared features, and we focus more
on unified overall MRP metric results. The results
of the blind test show that our system achieves
42% F1 unified MRP metric score. Compared
with baseline TUPA, our parser has higher preci-
sion but lower recall, for future work, we will op-
timize our transition set and oracle for better per-
formance.
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Abstract

This paper describes Jeonbuk National Uni-
versity (JBNU)’s system for the 2019 shared
task on Cross-Framework Meaning Represen-
tation Parsing (MRP 2019) at the Conference
on Computational Natural Language Learn-
ing. Of the five frameworks, we address
only the DELPH-IN MRS Bi-Lexical Depen-
dencies (DP), Prague Semantic Dependencies
(PSD), and Universal Conceptual Cognitive
Annotation (UCCA) frameworks. We propose
a unified parsing model using biaffine atten-
tion (Dozat and Manning, 2017), consisting of
1) a BERT-BiLSTM encoder and 2) a biaffine
attention decoder. First, the BERT-BiLSTM
for sentence encoder uses BERT to compose
a sentence’s wordpieces into word-level em-
beddings and subsequently applies BiLSTM
to word-level representations. Second, the bi-
affine attention decoder determines the scores
for an edge’s existence and its labels based
on biaffine attention functions between role-
dependent representations. We also present
multi-level biaffine attention models by com-
bining all the role-dependent representations
that appear at multiple intermediate layers.

1 Introduction

Recent studies on meaning representation pars-
ing (MRP) have focused on different semantic
graph frameworks such as bilexical semantic de-
pendency graphs (Peng et al., 2017; Wang et al.,
2018; Peng et al., 2018; Dozat and Manning,
2018), universal conceptual cognitive annotation
(Hershcovich et al., 2017, 2018), and abstract
meaning representation (Wang and Xue; Guo and
Lu; Song et al., 2019; Zhang et al., 2019). To
jointly address various semantic graphs, the aim
of the Cross-Framework MRP task (MRP 2019)
at the 2019 Conference on Computational Nat-
ural Language Learning (CoNLL) is to develop
semantic graph parsing across the following five

frameworks (Oepen et al., 2019): 1) DM: DELPH-
IN MRS Bi-Lexical Dependencies (Ivanova et al.,
2012), 2) PSD: Prague Semantic Dependencies
(Hajič et al., 2012; Miyao et al., 2014), 3) EDS:
Elementary Dependency Structures (Oepen and
Lønning, 2006), 4) UCCA: Universal Concep-
tual Cognitive Annotation (Abend and Rappoport,
2013), and 5) AMR: Abstract Meaning Represen-
tation (Banarescu et al., 2013).

One of the main aims of MRP 2019 is to ind-
duce a unified parsing model for different seman-
tic frameworks such that parsing models can be
trained using multi-task learning or transfer learn-
ing. To enable multi-task learning, we explic-
itly make shared common components in a neural
network architecture across different frameworks.
For MRP 2019, we propose a unified neural model
for the DM/PSD/UCCA frameworks based on the
biaffine attention used in (Dozat and Manning,
2017, 2018; Zhang et al., 2019) by deploying the
sentence encoder part as a “shared” component
across these three frameworks. Our system con-
sists of two main components:

1. BERT-BiLSTM sentence encoder (shared
across frameworks): Given a sentence, the
BERT encoder (Devlin et al., 2019) encodes
to its wordpieces and the encoded word
piece-level represenations are composed into
word-level embeddings based on BiLSTM.
Another BiLSTM layer is then applied to the
resulting word-level embeddings to create the
final sentence representations. We refer to
this neural layer for encoding sentences as the
BERT-BiLSTM sentence encoder. For multi-
task learning, the BERT-BiLSTM sentence
encoder is shared across all target frame-
works.

2. Biaffine attention decoder (framework-
specific): Role-dependent representations
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for each word are first induced from the
sentence-level embeddings of the BERT-
BiLSTM encoder using simple feed-forward
layers. Biaffine attention is then performed
on the resulting role-dependent representa-
tions to predict the existence of an edge and
its labels. However, the biaffine attention de-
coder is not shared but separately trained for
each framework. Thus, we have three differ-
ent biaffine decoders corresponding to DM,
PSD, and UCCA.

In addition, our system handles the following
specific issues for UCCA parsing and node prop-
erty prediction:

1. UCCA parsing using biaffine attention To
handle UCCA formats using a biaffine at-
tention model, we convert a UCCA graph
to a bilexical framework using the semstr
tool, which is based on the head rules of
UCCA in (Hershcovich et al., 2017). 1 Af-
ter the biaffine attention is performed, the
parsed bilexical graph is converted back to
the UCCA format.

2. BiLSTM neural models for node property
prediction: In addition to predicting the ex-
istence and labels of an edge, the system is
required to predict node properties (for DM
and PSD). To handle node properties, we
further develop property-specific BiLSTM-
based neural models.2 These property-
specific neural components are designed in
a framework-specific manner and are not
shared across frameworks.

Furthermore, we present multi-level biaffine at-
tention models, motivated by the multi-level archi-
tecture of FusionNet in the machine reading com-
prehension task (Huang et al., 2018).

The preliminary unofficial experiments using
our own development seting show that multi-task
learning is helpful in improving UCCA’s perfor-
mance, but it does not lead to improvement in per-
formances on the DM and PSD frameworks.

1 We first converted a UCCA MRP format
to its xml format and then applied the converter
(semstr/convert.py) in semstr to obtain its
CoNLL format: https://github.com/danielhers/semstr

2The node properties required for DM and PSD are a POS
tag and a frame. We prepared a BiLSTM neural model for
predicting the frame information of a node only, whereas we
used the companion data of MRP 2019 to predict POS tags.

Figure 1: Biaffine attention for bilexical semantic de-
pendency parsing based on word representation using
BERT, Glove and POS embeddings.

The remainder of this paper is organized as fol-
lows: Section 2 presents our system architecture
with details, Section 3 describes the detailed pro-
cess for training biaffine attention models. Section
4 and 5 provide the preliminary experiment results
and the official results at MRP 2019, respectively,
and our concluding remarks and a description of
future work are given in Section 6.

2 Model

Figure 1 shows the neural architecture based on bi-
affine attention for bilexical semantic dependency
parsing. The neural architecture consists of two
components: 1) the BERT-BiLSTM encoder and
2) the biaffine attention decoder. 1) In BERT-
BiLSTM encoder, an input sentence is fed to a
word representation layer using BERT, resulting
in a sequence of word embedding vectors, which
are then given to the BiLSTM layer to produce a
sentence representation. 2) In biaffine attention,
additional feed-forward layers are applied to ob-
tain role-dependent representations for head and
dependent roles, which are then forwarded to the
biaffine attention.

2.1 Encoder: BERT-BiLSTM
2.1.1 Word representation layer using BERT
The word representation using BERT uses BiL-
STM for composing to word-level embeddings
from wordpiece-level embeddings, similar to
(Zhang et al., 2019), which used the average pool-
ing for composition. Specifically, suppose that an
input sentence consists of n words, i.e., x1 · · ·xn.
To obtain the word representation xi for xi, we use
BERT from (Devlin et al., 2019), as shown in Fig-
ure 2. An input sentence is segmented into word-
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Figure 2: BERT Word embedding using Bi-LSTM.

pieces and they are fed to the BERT encoder. The
resulting output from BERT, which consists of the
word pieces in the i-th word are aggregated using
BiLSTM, producing wbert

i , named BERT word-
level embedding.3

The BERT word-level embedding is further
combined with the pretrained GloVe word em-
bedding of (Pennington et al., 2014) and part-of-
speech (POS) tag embedding to produce the final
word representation, as follows:

xi =
[
wbert
i ; eglovei ; ePOSi

]

where eglovei and ePOSi denote the pretrained
GloVe word embedding and the POS tag embed-
ding for the i-th word, respectively.

2.1.2 BiLSTM sentence encoding layer
Once word representations are obtained, we fur-
ther apply BiLSTM to x1 · · ·xn to obtain the fol-
lowing initial hidden representation of the i-th
word:

ri = BiLSTMi (x1 · · ·xn)
where BiLSTMi refers to the i-th hidden repre-
sentation obtained by applying BiLSTM to a given
sequence.

2.2 Decoder: Biaffine attention
To formulate a decoder using biaffine attention, let
BiAff(x, y) be a biaffine function using the no-
tations of (Dozat and Manning, 2018) and (Socher

3 This aggregation is similar to the BiLSTM-based com-
position in (Ballesteros et al., 2015; Na et al., 2018) which
uses characters as subtokens, whereas our aggregation uses
word pieces as subtokens.

et al., 2013) as follows:

BiAffm(x,y) = xTU[1:m]y +V

[
x
y

]
+ b

where U[1:k] ∈ Rd×d×m is a tensor, xTU[1:m]y
produces vector r ∈ Rk, V ∈ Rm×d is a matrix
and b ∈ Rm is a vector for the bias term.

Our biaffine attention decoder is similar to that
of (Dozat and Manning, 2018) and is formulated
as follows:

FFN (x) = f (Ax+ b)

h
(head)
i = FFN (head) (ri)

h
(dep)
i = FFN (dep) (ri)

h
(l-head)
i = FFN (l-head) (ri)

h
(l-dep)
i = FFN (l-dep) (ri)

s
(edge)
i,j = BiAff

(edge)
1

(
h
(dep)
i ,h

(head)
j

)

s
(label)
i,j = BiAff

(label)
k

(
h
(l-dep)
i ,h

(l-head)
j

)

s
(top)
i = FFN (top) (ri) (1)

where k is the number of node labels, and f is the
activation function used in the feed-forward layer
FFN .4

In contrast to the setting of (Dozat and Man-
ning, 2018), the top score s(top)i is newly intro-
duced in our model, where we exploit a simple
feed-forward layer for predicting top nodes in-
stead of using an attention method.

Using the score functions of Eq. (1), the pre-
diction results for arcs, labels, and top nodes are
formulated as follows:

y
(edge)
i,j = I

(
sedgei,j ≥ 0

)

y
(label)
i,j = argmax

{
s
(label)
i,j

}

y
(top)
i = I

(
s
(top)
i ≥ 0

)
(2)

where I(expr) is an indicator function which
gives 1 if expr is true and 0 otherwise.

2.3 Multi-level Biaffine attention

We also investigated a multi-level biaffine atten-
tion, whose information flow is described in Fig-
ure 3. Motivated by (Huang et al., 2018), we
assume that multi-layer encoders gradually trans-
form from a low-level word representation into a

4In our submission, we used the identity function for f .
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Figure 3: The neural architecture of multi-level biaffine
attention. The hidden representations at three levels
h
(dep)
i,k and h

(head)
j,k are composed to the final hidden

representation z
(dep)
i and z

(head)
j , respectively.

more abstract high-level representation. In the task
of semantic graph parsing, predicting an arc and a
label may be resolved not just by single-level rep-
resentation but by the combination of various lev-
els of representations; For example, predicting an
arc between two deep semantic subgraphs (with
high depths) may require more abstract represen-
tations for those graphs than the case of predicting
an arc between two shallow semantic subgraphs
(with low depths).

The multi-level biaffine attention is based on
the fusion of all the role-dependent representations
across levels.5 This type of multi-level attention
is different from deep biaffine attention of (Dozat
and Manning, 2018), which uses only single role-
dependent hidden representation at the final level.

To formulate the multi-level biaffine attention,
we first apply deep BiLSTM encoder of L-levels
to a list of word embeddings x1, · · · ,xn as fol-
lows.

ri,0 = xi

ri,l = BiLSTMi (r1,l−1 · · · rn,l−1)
where ri,l is the hidden representation of the BiL-
STM at the l-th layer.

The role-dependent representation for each l-th
layer is formulated as follows:

h
(head)
i,l = FFN (head) (ri,l)

h
(dep)
i,l = FFN (dep) (ri,l)

5A pair of syntactic roles in role-dependent representa-
tions are considered – head-dependent roles (or predicate-
argument roles).

To aggregate all the role-dependent represen-
tations, we use the fusion function, denoted as
o = fusion(x,y), as defined in (Hu et al., 2018):

x̃ = gleu (Wr [x;y;x� y;x− y])

g = σ (Wg [x;y;x� y;x− y])

o = g � x̃+ (1− g)� x

where � is element-wise multiplication. For no-
tational simplicity, we further define sfu(x,y, z),
the fusion function that takes three arguments, as
follows:

sfu (x,y, z) = fusion (fusion (x,y) , z)

Applying the sfu function results in the compo-
sitional role-dependent representations z(head)i and
z
(dep)
i at the i-th position. The multi-level biaffine

attention is then defined on z
(head)
i and z

(dep)
i as

follows:

z
(head)
i = sfu(head)

(
h
(head)
i,1 ,h

(head)
i,2 ,h

(head)
i,3

)

z
(dep)
i = sfu(dep)

(
h
(dep)
i,1 ,h

(dep)
i,2 ,h

(dep)
i,3

)

s
(edge′)
i,j = BiAff

(edge′)
1

(
z
(dep)
i , z

(head)
j

)
(3)

Similar to the arc scores in Eq. (3), we straight-
forwardly define multi-level terms related to la-
bel scores such as h(l-dep)

i,k , h(l-head)
i,k , z(l-head)i , and

z
(l-dep)
i .

2.4 Property prediction based on BiLSTM

To predict frame information, which is one of the
node properties in DM and PSD, we use a simple
BiLSTM architecture with a single output layer
that generates a node property for each word.6

Different from the biaffine attention model, the
property predictor does not use BERT but a simple
word representation that consists of the pretrained
GloVe and the POS tag embedding as follows:

x
(prop)
i =

[
eglovei ; ePOSi

]

For encoding a sentence, another BiLSTM is
then applied to the sequence of word representa-
tions, as follows:

r
(prop)
i = BiLSTM

(prop)
i (x1 · · ·xn)

6Here, words (or tokens) correspond to nodes in a seman-
tic graph.
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The output layer uses the following simple
affine transformation:

s
(prop)
i = FFN (prop)

(
r
(prop)
i

)
(4)

The loss function uses the cross entropy, which
is formulated given a single training sentence as
follows:

L(prop) =
∑

i

log softmaxg(i)

(
s
(prop)
i

)
(5)

where g(i) is the gold property value of the i-th
word and softmaxk is the function of k-th ele-
ment of softmax values.7

3 Training

3.1 Preprocessing

We use word tokens and their POS tags in the com-
panion dataset provided by MRP 2019. To per-
form UCCA parsing using biaffine attention, con-
version between UCCA and bilexical formats is
required. For the conversion, we use the semstr
tool, which is based on the head rules defined in
(Hershcovich et al., 2017).

3.2 Multi-task learning on a single
framework

In each semantic graph framework, the biaffine at-
tention models consist of three subtasks – edge
detection, edge labeling, and top node predic-
tion. We jointly train the neural components of all
the subtasks for each framework in the multi-task
learning setting using the following combined loss
function:

L = λ1L
(edge) + λ2L

(label) + λ3L
(top) (6)

where L(edge), L(label), and L(top) are the loss
functions for edge detection, edge labeling, and
top node prediction, respectively, and λi is the
weight for each loss function.

However, the property predictor of Section 2.4
is not jointly trained on a single framework be-
cause its neural components can be shared in any
component in the biaffine attention models.

7We allow a NULL value to be a gold property value.
Given this setting, the values of g(i) are mostly NULL in
the frame property of PSD.

GloVe
source 840B

dim 300
BERT layer

source BERT-Base-cased
dim 784

Word embedding layer: BiLSTM
hidden size 384
num layers 1

Sentence encoder: BiLSTM
hidden size 600
num layers 3

(Multi-level) Biaffine decoder
hidden size 600

Property predictor
BiLSTM hidden size 600
BiLSTM num layers 3

output vocab size(DM) 474
output vocab size(PSD) 5474
Adam optimizer

learning rate 0.001
weight decay rate 3e-9

Adam β1 0.0
Adam β2 0.95

BERT Adam optimizer
learning rate 2e-5

weight decay rate 0.01
Adam β1 0.9
Adam β2 0.999

Loss for multi-task learning of Eq. (6)
λ1 0.025
λ2 0.975
λ3 1.0

batch size 16

Table 1: Hyper-parameter settings

3.3 Multi-task learning across frameworks

To enable multi-task learning across frameworks,
we share the BERT-BiLSTM encoder as a com-
mon neural component across three frameworks
and use framework-specific models for the biaffine
attention decoder. Our approach to multi-task
learning is similar to that of SHARED1 of (Peng
et al., 2017).

In multi-task learning, we alternate training ex-
amples for each framework using the framework-
specific loss function of Eq. (6) such that, over
each epoch, all the training examples across the
three frameworks are fairly fed without bias to a
specific framework.

3.4 Hyperparameters

We used Adam optimizer (Kingma and Ba, 2015)
to train our biaffine attention models. Table 1
summarizes the hyper-parameters used for train-
ing these models
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Framework Train Dev
DM 32091 3565
PSD 32091 3565

UCCA 5915 656

Table 2: Statistics of dataset used in the preliminary
experiment

4 Unofficial Results: Preliminary
Experiment

In this section, we present the preliminary exper-
imental results, which compare variants of our
models. To perform the preliminary experiment,
we randomly split the MRP 2019 dataset into
training and development sets. Table 2 shows the
statistics of training and development sets for the
three frameworks.

The evaluation measures are unlabeled depen-
dency F1 scores (UF), labeled dependency F1
scores (LF), and top node prediction accuracy
(Top). We report the evaluation metrics for the
development sets.

4.1 Experimental results

We evaluated the following four biaffine attention
methods:

1. Biaffine: This model is the baseline biaffine
attention model based on the BiLSTM sen-
tence encoder without using BERT.

2. BERT+Biaffine: This model uses the BERT-
BiLSTM encoder of Section 2.1 and the bi-
affine attention model of Section 2.2.

3. BERT+Multi-level Biaffine: This model
uses BERT-BiLSTM encoder of Section 2.1
and uses the multi-level attention method of
Section 2.3.

4. BERT+Biaffine+MTL: This model is the
same as BERT+Biaffine but uses the multi-
task learning across frameworks described in
Section 3.3.

Table 3 shows the UF, LF, and Top on the
three semantic graph frameworks, comparing
the four variants of biaffine attention models.
BERT+Biaffine performs better than Biaffine, in
particular, obtaining the increases of about 5% for
UF and LF on the UCCA framework. However,
BERT+Multi-level Biaffine does not achieve any

further improvements with respect to Biaffine, of-
ten yielding weak performances similar to that of
the BERT-Biaffine model on the PSD and UCCA
frameworks.

BERT+Biaffine+MTL only achieves small im-
provements on UCCA framework whereas no
improvements on DM and PSD frameworks
can be observed. A statistically insignifi-
cant improvement for multi-task learning in
BERT+Biaffine+MTL was similarly reported in
the results of SHARED1 in (Peng et al., 2017).
These results imply that instead of naively using
the shared encoder only, other advanced multi-task
learning approaches such as placing task-specific
encoding, as detailed in (Peng et al., 2017), need
to be considered.

5 Official Results

Given the preliminary results, we chose the ba-
sic biaffine model “BERT+Biaffine” of Table 3
for the final submission to MRP 2019. The of-
ficial results using BERT+Biaffine are summa-
rized in Tables 4 and 5, which compare the
results of ERG (Oepen and Flickinger, 2019)
and TUPA (Hershcovich and Arviv, 2019) which
were provided by the task organizer. Table
4 shows the performances of the MRP met-
rics on the three frameworks, whereas Table 5
presents the performances of task-specific met-
rics using the SDM metrics (Oepen et al., 2014)
and UCCA metric (Hershcovich et al., 2019).
The SDM metrics use the unlabeled dependency
precision/recall/F1 (UP/UR/UF), the labeled de-
pendency precision/recall/F1 (LP/LR/LF), and the
unlabeled/labeled exact matches (UM/LM). The
UCCA metrics use the unlabeled and labeled arc
precision/recall/F1 for primary, remote and all
types of arcs.8

Overall, our system shows better performances
over the baseline TUPA’s system, except for the re-
sults of UCCA metrics. Comparing to ERG which
is the top-performing system in MRP metric on
DM, our biaffine system shows slightly improved
performance over ERG in terms of UF of the SDP
metric. Comparing to the published MRP metrics
of the best system (i.e. MRP all metric), the per-
formances of our system are about 1.5 percentage
point (p.p.) lower on DM framework, about 3.4

8Our system ranked fifth for framework-specific LF on
DM and PSD, ranked eighth on UCCA, first for framework-
specific UF using the 100-sentence LPPS sub-set, and second
for LF on the PSD framework.
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method
DM PSD UCCA

Top UF LF Top UF LF Top UF LF
Biaffine 93.67 92.08 90.86 95.97 90.50 78.21 72.60 69.67 65.17

BERT+Biaffine 95.06 93.85 93.00 96.89 92.30 80.24 77.09 74.85 70.15
BERT+Multi-level Biaffine 95.09 93.86 93.02 96.76 91.95 79.76 78.12 74.42 69.81

BERT+Biaffine+MTL N/A 93.66 92.73 N/A 92.13 79.63 N/A 75.40 70.59

Table 3: Unofficial results of Top, UF, and LF metrics on the three frameworks (DM, PSD, and UCCA), comparing
variants of biaffine attention models.

p.p. lower on PSD framework, and about 31 p.p.
lower on UCCA framework.

6 Summary and Conclusion

In this paper, we presented the Jeonbuk National
University’s system based on unified biaffine at-
tention models for DM, PSD, and UCCA frame-
works for the MRP 2019 task. We investigated the
extensions of the original biaffine models using
multi-level biaffine attention and multi-task learn-
ing. The preliminary experiment results show that
the use of multi-level models and multi-task learn-
ing had no effect on MRP performances under our
current settings. The statistically insignificant re-
sults of multi-task learning imply that there may
be some necessary conditions beyond the default
setting to meet before multi-task learning with pa-
rameter sharing is effective. In this direction, we
plan to explore why multi-task learning is not ef-
fective in our current experiment, try to postulate
reasonable hypothesis that will help clarifying the
effect of multi-task learning, and further examine
other advanced multi-task learning including the
approaches of (Peng et al., 2017). In addition, we
would like to examine alternative fusion functions
for multi-level affine attention.
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method tops labels properties anchors edges all
P R F P R F P R F P R F P R F P R F

ERG all 0.92 0.92 0.92 0.99 0.99 0.99 0.96 0.96 0.96 0.99 0.99 0.99 0.91 0.91 0.91 0.96 0.96 0.9608
lpps 0.95 0.95 0.95 0.99 0.99 0.99 0.98 0.98 0.98 0.99 1.00 0.99 0.93 0.93 0.93 0.97 0.97 0.9731

TUPA all 0.53 0.51 0.52 0.40 0.75 0.52 0.22 0.66 0.33 0.85 0.83 0.84 0.24 0.54 0.33 0.31 0.69 0.4270
lpps 0.74 0.67 0.71 0.35 0.73 0.48 0.19 0.64 0.29 0.85 0.84 0.85 0.21 0.56 0.31 0.28 0.68 0.3946

BERT+Biaffine all 0.92 0.92 0.92 0.91 0.90 0.90 0.91 0.95 0.94 0.95 0.99 0.98 0.99 0.92 0.91 0.94 0.94 0.9401
lpps 0.96 0.96 0.96 0.88 0.88 0.88 0.91 0.92 0.91 0.98 0.98 0.98 0.93 0.92 0.92 0.92 0.92 0.9240

(a) The official results of MRP metrics on the DM framework

method tops labels properties anchors edges all
P R F P R F P R F P R F P R F P R F

TUPA all 0.58 0.46 0.51 0.56 0.77 0.65 0.34 0.57 0.42 0.82 0.80 0.80 0.27 0.39 0.32 0.45 0.63 0.5265
lpps 0.62 0.53 0.57 0.58 0.77 0.66 0.31 0.60 0.41 0.82 0.81 0.81 0.30 0.42 0.35 0.47 0.65 0.5453

BERT+Biaffine all 0.96 0.96 0.96 0.86 0.85 0.86 0.88 0.88 0.88 0.99 0.98 0.99 0.79 0.78 0.78 0.88 0.88 0.88
lpps 0.96 0.96 0.96 0.77 0.77 0.77 0.78 0.95 0.86 0.98 0.98 0.98 0.79 0.79 0.79 0.84 0.88 0.8568

(b) The official results of MRP metrics on the PSD framework

method tops anchors edges attributes all
P R F P R F P R F P R F P R F

TUPA all 0.87 0.83 0.8492 0.90 0.52 0.6574 0.08 0.29 0.1299 0.10 0.08 0.0907 0.17 0.38 0.2365
lpps 0.90 0.88 0.8889 0.93 0.67 0.7776 0.19 0.42 0.2645 0.28 0.14 0.1832 0.34 0.52 0.4104

BERT+Biaffine all 0.91 0.91 0.9142 0.77 0.80 0.7833 0.33 0.28 0.3026 0.19 0.11 0.1405 0.53 0.49 0.5069
lpps 0.91 0.91 0.9100 0.90 0.92 0.9126 0.47 0.42 0.4411 0.13 0.07 0.0882 0.66 0.62 0.6365

(c) The official results of MRP metrics on the UCCA framework

Table 4: The official results of MRP metrics on the three frameworks (DM, PSD, and UCCA), comparing ERG
(Oepen and Flickinger, 2019), TUPA (Hershcovich and Arviv, 2019), and our system (BERT+Biaffine).

method labeled unlabeled
LP LR LF LM UP UR UF UM

ERG all 0.91 0.91 0.9121 0.5144 0.92 0.92 0.9204 0.5374
lpps 0.93 0.93 0.9295 0.6900 0.93 0.94 0.9348 0.7200

TUPA all 0.51 0.62 0.5623 0.0723 0.63 0.66 0.6430 0.0848
lpps 0.50 0.63 0.5571 0.1400 0.62 0.67 0.6468 0.1700

BERT+Biaffine all 0.92 0.90 0.9119 0.3998 0.93 0.92 0.9233 0.4329
lpps 0.93 0.92 0.9265 0.5700 0.95 0.94 0.9413 0.6100

(a) The official results of SDP metrics on the DM framework

method labeled unlabeled
LP LR LF LM UP UR UF UM

TUPA all 0.47 0.53 0.5012 0.0863 0.65 0.67 0.6599 0.2200
lpps 0.52 0.59 0.5533 0.1500 0.67 0.71 0.6876 0.2700

BERT+Biaffine all 0.80 0.80 0.7998 0.1920 0.92 0.91 0.9164 0.4519
lpps 0.82 0.81 0.8147 0.2800 0.93 0.93 0.9272 0.5500

(b) The official results of SDP metrics on the PSD framework

method
labeled unlabeled

primary remote all primary remote all
P R F P R F P R F P R F P R F P R F

TUPA all 0.30 0.19 0.23 0.08 0.06 0.07 0.28 0.19 0.22 0.37 0.23 0.28 0.09 0.06 0.07 0.35 0.22 0.27
lpps 0.33 0.26 0.29 0.21 0.10 0.14 0.32 0.25 0.28 0.38 0.31 0.34 0.23 0.10 0.14 0.38 0.30 0.33

BERT+Biaffine all 0.19 0.17 0.18 0.13 0.08 0.10 0.19 0.17 0.18 0.23 0.20 0.21 0.13 0.08 0.10 0.22 0.20 0.21
lpps 0.35 0.32 0.34 0.04 0.02 0.03 0.34 0.31 0.33 0.41 0.39 0.40 0.04 0.02 0.03 0.40 0.37 0.38

(c) The official results of UCCA metrics on the UCCA framework

Table 5: The official results of task-specific metrics on the three frameworks, comparing ERG (Oepen and
Flickinger, 2019), TUPA (Hershcovich and Arviv, 2019), and our system (BERT+Biaffine).
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Abstract

This paper describes our system (RE-
SOLVER) submitted to the CoNLL 2019
shared task on Cross-Framework Meaning
Representation Parsing (MRP). Our system
implements a transition-based parser with
a directed acyclic graph (DAG) to tree
preprocessor and a novel cross-framework
variable-arity resolve action that generalizes
over five different representations. Although
we ranked low in the competition, we have
shown the current limitations and potentials
of including variable-arity action in MRP and
concluded with directions for improvements
in the future.

1 Introduction

This paper describes our submission1 to the
CoNLL 2019 shared task on Cross-Framework
Meaning Representation Parsing (Oepen et al.,
2019). The task requires participants to de-
velop a unified system for parsing sentences un-
der five different meaning representation frame-
works, which are DELPH-IN MRS (DM; (Ivanova
et al., 2012)), Prague Semantic Dependencies
(PSD; (Hajic et al., 2012; Miyao et al., 2014)),
Elementary Dependency Structures (EDS; (Oepen
and Lønning, 2006)), Universal Conceptual Cog-
nitive Annotation (UCCA; (Abend and Rap-
poport, 2013)) and Abstract Meaning Represen-
tation (AMR; (Banarescu et al., 2013)). Given
a sentence together with its companion data
(e.g. morpho-syntactic parse results) as input, the
parser system should generate five graphs accord-
ing to each frameworks’ rules.

Transition-based approaches have been shown
useful in parsing a spectrum of semantic graphs,
including bi-lexical dependency graphs (flavor 0,

1Our submission is open-sourced in GitHub:
https://github.com/Yermouth/mrp2019

e.g. DM, PSD), general anchored semantic graphs
(flavor 1, e.g. EDS, UCCA), and unanchored se-
mantic graphs (flavor 2, e.g. AMR). Previous
transition-based parsing systems define a set of
constant-arity transition actions2 and these sys-
tems learn to select the best action at each state.
Constant-arity parser actions work well for tack-
ling individual tasks, but may not generalize well
across representations because:

• The graph representation details are differ-
ent across frameworks. i.e. the edge direc-
tions and labels are different when compar-
ing figure 2a and 2c but they describe the
same dependency in terms of semantics. The
parser will have to learn two actions sepa-
rately (LEFT-EDGE and RIGHT-EDGE) as the
actions have different semantics depending
on the framework used.

• Parsing actions can be unique for specific
frameworks defined by different authors (Ta-
ble 1). i.e. Action NODE(X) in UCCA cre-
ates a new node without node label, which
may not be a suitable action for other frame-
works.

As the primary focus of the task is about de-
veloping a robust model that unifies the learn-
ing process across different semantic graph banks,
we develop our system following the tradi-
tional transition-based approach, while adding a
DAG-to-Tree preprocessor and a set of cross-
representation variable-arity actions in an attempt
to tackle these two generalization problems. By
converting graphs of all five frameworks to a com-
mon tree structure using the DAG-to-Tree prepro-

2For instance, in basic arc-standard transition system
(Nivre, 2008), SHIFT takes one node as argument and RE-
DUCE takes two. The number of arguments (arity) for the
action is constant and will not change depending on the word
being parsed.
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MRP F Actions Author

PSD 0 LEFT-REDUCE(L), RIGHT-SHIFT(L), NO-SHIFT,
NO-REDUCE, LEFT-PASS(L), RIGHT-PASS(L), NO-PASS

(Wang et al., 2018)

UCCA 1 SHIFT, REDUCE, NODE(X), LEFT-EDGE(X), RIGHT-EDGE(X),
LEFT-REMOTE(X), RIGHT-REMOTE(X), SWAP, FINISH

(Hershcovich et al., 2017)

AMR 2 SHIFT, REDUCE, RIGHT-LABEL(R), LEFT-LABEL(R),
SWAP, MERGE, PRED(N), ENTITY(L), GEN(N) (Guo and Lu, 2018)

* * SHIFT, IGNORE, RESOLVE This paper

Table 1: Transition-based parsing actions defined by different authors.

Figure 1: System pipeline diagram.

cessor, we can describe the tree generation process
using three common high-level actions — SHIFT,
IGNORE and RESOLVE.

The three actions in our system are most
similar to the actions defined in the non-
binary bottom-up shift-reduce constituent pars-
ing strategy of Fernández-González and Gómez-
Rodrı́guez (2018). SHIFT and IGNORE both have
an arity of one. Unlike standard binary RE-
DUCE action which handles the relationship be-
tween two nodes at a time, RESOLVE is a cross-
framework variable-arity action that can reduce
multiple nodes and resolve their dependency si-
multaneously. We introduce the RESOLVE ac-
tion so that there is no need to include additional
binarization of the dependencies and reduce the
number of transitions as mentioned by Fernández-
González and Gómez-Rodrı́guez. It is also more
natural to consider the dependency of multiple
nodes jointly as meaning representations like se-
mantic frames usually involve multiple arguments.

The main difference between RESOLVER and

the strategy of Fernández-González and Gómez-
Rodrı́guez is that their strategy handles only con-
stituent parsing problem while RESOLVER can
handle cross-framework parsing problem. Our
cross-framework RESOLVE action can be cus-
tomized by generating framework-specific sub-
graphs.

Our submission ranked 13th overall in the post-
evaluation period of the shared task. Although
we ranked low in the task, we have experimented
with adding variable-arity actions to the transition-
based parsing approach and investigated its down-
sides. We studied why variable-arity transition ac-
tions are hard to learn and propose future direc-
tions for improving the system to predict variable-
arity transition actions more accurately.

The rest of the paper is organized as follows:
Section 2 describes the our system architecture.
Section 3 details the model training steps. We an-
alyze and discuss the result in Section 4 and con-
clude our work in Section 5.
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2 System Architecture

Our system pipeline (Figure 1) is divided into
three main components — DAG-to-Tree prepro-
cessor, transition action simulator, and transition
action predictor. First, we preprocess the mean-
ing representation data and align it with the com-
panion syntactic parse data to generate a top-node
oriented tree structure. Then, we generate the tran-
sition actions required to reproduce the tree struc-
ture and extract the features involved in each ac-
tion state. Finally, we train the neural network
model to predict the correct actions.

2.1 DAG-to-Tree Preprocessor

Although the five frameworks differ in terms of the
nodes and edges used, they are essentially convey-
ing similar semantic messages. In an attempt to
tackle the first generalization problem, our DAG-
to-Tree preprocessor focuses on transforming the
five frameworks into a common tree representa-
tion.

Our preprocessor converts directed acyclic
graphs (DAGs) to top-node oriented tree struc-
tures. As the top-node of a sentence represents the
most important message or word, they are similar
amongst the five representations for the same sen-
tence. Therefore, we can transform the five rep-
resentations to a similar tree structure, where the
root of the tree is the top-node.

As there are mature and standardized systems
and algorithms for tackling tree-structured syntac-
tic parsing, tree approximations schemes for trans-
forming semantic dependency graphs to trees have
been proposed (Schluter et al., 2014; Agić et al.,
2015). While most of the proposed schemes are
lossy, heuristics are applied to reduce informa-
tion loss. For instance, the graph packing scheme
(Schluter et al., 2014) use a set of 99.6%-reversible
graph transformations to secure graph informa-
tion, and the graph deletion scheme (Agić et al.,
2015) remove minimum number of edges (worst
case 5.7%) from undirected cycles in digraph to
generate tree approximation.

2.1.1 Tree Approximation
Following the deletion scheme, we run an algo-
rithm based on Kruskal’s spanning tree algorithm
(Kruskal, 1956) to select the edges for forming an
undirected tree, and determine the edge direction
of the edges in the tree by traversing the graph
from top-node to every child recursively. The lat-

ter part is intuitive as the edge direction is unique
(anti-arborescence) once the root of the undirected
tree is fixed. As for graphs with more than one top
node, we find the common ancestor of these top
nodes and keep the graph if the ancestor is the root
of the tree.

As for the undirected tree generation process,
we first sort the nodes according to their appear-
ance in the sentence, and assign the nodes with its
appearance index in ascending order (i.e. Node
anchored to the first word in the sentence have ap-
pearance index 1).

Then we extract the appearance index of the
source node and the target node for each edge, and
sort the edge in ascending order first by the max-
imum appearance index involved, and then by the
minimum appearance index regardless of the edge
direction (i.e. An edge with appearance indexes 1
and 3 will be placed in front of an edge with in-
dexes 1 and 5).

Finally, we initialize meaning representation
nodes as forest in a graph, and add the sorted edge
one by one to the graph if the edge connects to two
different trees. After traversing the resulting graph
from top-node, a set of edges accompanied with its
direction is obtained and we refer to these edges
as major edges (e.g. primary edges in UCCA).
Other edges not in the major edge set are con-
sidered as minor edges. Minor edges can exist in
PSD and UCCA, where one node can have mul-
tiple parents. For instance, nodes in UCCA can
have a non-remote edge (major edge) with label
“C” and a remote edge with label “A”. For EDS
specifically, edges that involve quantifiers are con-
sidered as minor edges at the moment to facilitate
alignment.

In figure 2, 2a, 2c and 2e are the original mean-
ing representation graphs and 2b, 2d, 2f are the
top-node oriented trees created by using only the
major edges after preprocessing. All three frame-
works have the same top-node “ cost v 1”.

Edge directions between the node “page” and
its children are changed in figure 2b as “cost” is
the top-node and traverse to node “page” before
reaching nodes “a”, “full”, “color” and “in”.

Figure 2d is the same as 2c as the original graph
is a tree and the edges’ direction follow the traver-
sal order from top-node.

As for figure 2f, minor edges including the
edge with label “BV” from node “udef q” to node
“ dollar n 1” are dropped in the current prepro-
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(a) Meaning representation graph of DM

(b) Top-node oriented tree of DM

(c) Meaning representation graph of PSD (d) Top-node oriented tree of PSD

(e) Meaning representation graph of EDS

(f) Top-node oriented tree of EDS

Figure 2: Meaning representation graphs of DM, PSD and EDS frameworks, accompanied with their top-node
oriented tree after applying the DAG-to-Tree preprocessor for the sentence “A full, four-color page in Newsweek
will cost $100,980.”.

cessing procedures.

After these conversions, by comparing figure
2a, 2c, 2e with 2b, 2d, 2f, we can easily observe
that the dependencies for the top-node oriented
trees for are more unified as they are aligned with
the top-node and its dependencies from the tree
root. Despite the difference between DM, PSD
and EDS in handling specific words (i.e. “a” is
kept in DM and dropped in PSD), the general de-
pendency structure is now more similar (i.e. all
framework express that node “page” and “$” are
necessary for resolving the complete semantics of

the top-node “cost”).

2.1.2 Limitation

Limitations of the top-node oriented tree repre-
sentation are apparent. The current representation
sacrifices minor edges to retain the cross frame-
work tree structure using the major edges. In
this paper, we adopt the graph deletion scheme
and mainly focus on tackling major edges that are
common amongst the five frameworks. We leave
minor edges and the use of graph packing scheme
as future work.
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2.2 Transition Action Simulator
To solve the second generalization problem, we
define three actions: SHIFT, IGNORE and RE-
SOLVE as the high-level actions in our action set
which is common amongst the five frameworks.
The tokenized nodes provided by the morpho-
syntactic parse tree are the basic units for apply-
ing the actions. We initialize the parser state with
a queue that stores all the tokenized nodes and an
empty stack that stores the processed tokenized
nodes.

2.2.1 Shift and Ignore
SHIFT and IGNORE are two constant-arity actions
identical for all representations, and both apply di-
rectly to the first tokenized nodes in the queue.
While both actions pop the first tokenized node
from the token queue, SHIFT pushes the popped
node to the stack and sets its state to unresolved,
while IGNORE omits the popped node and move
on to the next tokenized node in the queue. This
action is required as the tokenization method of the
syntactic parse is different from that of the MRP.
Tokenized nodes in the syntactic parse can be ig-
nored by the representation, for instance, verbs
like “is” are omitted by DM, while it is preserved
in PSD. From our observation, whether the word
is ignored or not depends on only itself but not
its neighbor nodes, so we can apply the action di-
rectly to the queue without considering the state of
the stack.

2.2.2 Resolve
RESOLVE is a variable-arity and representation-
customizable action. This action is similar to
LEFT-REDUCE and RIGHT-REDUCE, but instead
of reducing only 2 nodes at each time, RESOLVE

can reduce an arbitrary number of nodes in one
single action. We required our system to learn the
dependencies of multiple nodes jointly in order to
determine frame information in a holistic manner.

This action is mainly parameterized by n (ar-
ity), the number of nodes from the top of the stack
to be reduced (n is a strictly positive integer). The
first n nodes must include one and only one un-
resolved node (i.e. the most recently pushed un-
resolved node in the stack). After an unresolved
node is resolved, it is pushed into the stack. As
we have obtained a top-node oriented tree repre-
sentation from the DAG-to-Tree preprocessor, the
dependencies of each node of the tree are defined
explicitly and RESOLVE is applied when an un-

resolved node’s children are all resolved. For in-
stance, in Figure 2(b), the top-node of the graph
is “cost” and its dependencies is “page” and “$”.
To RESOLVE the node “cost”, we need to first RE-
SOLVE both “page” and “$”, which further de-
pends on their own children. The number of re-
duced node n in this case is 3 (2 resolved nodes
“page” and “$” plus 1 unresolved node “cost”).3

If a node is a leaf node, n in this case would be 1
as only one node is involved.

After selecting n nodes from the stack, the RE-
SOLVE action build the edges between the resolved
nodes and the unresolved ones, and give node label
and properties for the unresolved node. Finally,
the resolved node is pushed back to the stack.

2.3 Alignment

Aligning a sentence S to a graph G = 〈V,E〉 of
meaning representation gives a mapping between
the tokens of S and V . Formally, given a parse
tree of S with tokenized nodes 〈N0, N1, . . . , Nn〉,
with each Ni containing 〈astart, aend〉 of S: pair
of from-to sub-string indices, pos: part of speech
tag, and lemma: lemmatized form, we aim to
produce an alignment V = 〈M0,M1, . . . ,Mm〉,
where each node objectMi contains 〈astart, aend〉:
pair of from-to sub-string indices to S, pos: part
of speech tag, frame: semantic frame (optional)
and label: node label (Figure 3).

As the alignment of the tokenized nodes in the
companion parse to the nodes in the meaning rep-
resentation graph is not given, we devised align-
ment strategies for the respective framework us-
ing anchors and parse information. For DM and
PSD, an oracle look-ahead algorithm is designed,
where the alignment is conducted as guided by a
set of heuristic rules manually derived from the
train data. For each sentence, the alignment pro-
cess proceeds by scanning tokenized nodes of the
parse tree from left to right, one at a time. Each
node is either ignored or aligned to one node of
the meaning representations.

For DM, as white-listed resources are provided,
we allow more aggressive grouping and predic-
tion on semantic frames. Generally, Mj .pos and
Mj .label will be copied directly from the cor-
responding Ni.pos and Ni.lemma respectively,
with a few exceptions handled the other ways; and
Mj .frame are predicted using a simple count-
based approach with train data. Multi-word ex-

3This corresponds to the last RESOLVE action in Table 1
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Action n Stack Tokenized Node Queue RESOLVE Details
[] [A, full, ...]

SHIFT [A] [full, , ...]
RESOLVE 1 [a] [full, , ...] Leaf node
SHIFT [a, full] [,, four-color, ...]
RESOLVE 1 [a, full] [,, four-color, ...] Leaf node
IGNORE [a, full] [four-color, page, ...]
SHIFT [a, full, four-color] [page, in, ...]
RESOLVE 1 [a, full, color] [page, in, ...] Leaf node
SHIFT [a, full, color, page] [in, Newsweek, ...]
SHIFT [a, full, color, page, in] [Newsweek, will, ...]
SHIFT [a, full, color, page, in, Newsweek] [will, cost, ...]
RESOLVE 1 [a, full, color, page, in, Newsweek] [will, cost, ...] Leaf node

RESOLVE 2 [a, full, color, page, in] [will, cost, ...] in ARG2−−−→ Newsweek

RESOLVE 5 [page] [will, cost, ...] page BV−→ a, page ARG1−−−→ full

page compound−−−−−→ color, page ARG1−−−→ in
IGNORE [page] [cost, $, ...]
SHIFT [page, cost] [$, 100,980]
SHIFT [page, cost, $] [100,980]
SHIFT [page, cost, $, 100,980] []
RESOLVE 1 [page, cost, $, 100,980] [] Leaf node
RESOLVE 2 [page, cost, $] [] $ ARG1−−−→ 100,980
RESOLVE 3 [cost] [] cost ARG1−−−→ page, cost ARG2−−−→ $

Initial tokenized nodes queue: [A, full, ,, four-color, page, in, Newsweek, will, cost, $, 100,980]

Table 2: Actions required to generate the Figure 2(b) graph for the sentence “A full, four-color page in Newsweek
will cost $100,980.”. The column n indicates the number of nodes to be resolved. When n = 1, the resolved
node is a leaf node. When n > 1, the column RESOLVE details shows the edge involved in the RESOLVE process.
Resolved nodes are in normal font. Unresolved nodes are underlined, and the nodes to be resolved in each action
are denoted in boldface. The number of RESOLVE in the actions is the same as the number of nodes in the top-node
oriented tree. The two IGNORE actions ignore the tokenized nodes “,” and “will” respectively.

Figure 3: Example of alignment of nodes of DM meaning representation.

pressions (MWE) are also accounted for during
the alignment through a greedy look-ahead mech-
anism, i.e. searching for MWE in S that appeared
in train data or the SDP 2016 data (Oepen et al.,
2016), which is one of the white-listed resources
for the task. Figure 3 illustrates the alignment
process from tokenized nodes to nodes of DM
representation: MWE “such as” is handled with
heuristics to produce two nodes; “crops” is lem-
matized as the label of the produced node; Frames
are copied except for punctuation “,”, which is ig-
nored. Details of the alignment process are pro-
vided in the supplementary material.

For PSD, only frames that appeared in train data
were inferred. Similar to the approach for DM,
alignment is generally done by copying Mj .pos
and Mj .label from the corresponding Ni.pos and
Ni.lemma respectively; and Mj .frame are pre-
dicted only for verbs using the same count-based
approach as for DM. Multi-word expressions are
also accounted for during the alignment process
through a greedy look-ahead mechanism. PSD
also includes the use of non-lexical nodes for ab-
stract concepts (e.g. #perspron for personal pro-
noun), and they are aligned to Ni first, if possible,
followed by lexical nodes.
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(a) Original sentence with current node, nodes before the current node (previous) and nodes after the current node (Next)
annotated.

(b) Node prediction.

Figure 4: Neural network architecture diagram of Action type prediction.

For both DM and PSD, given the tokens, frame
predictions are done by a simple count-based
method, i.e. we choose the most-occurred frame
as in the train data given each token; if no such
token is found in train data, we choose the first
frame from the frame inventories of DM and PSD
(white-listed resources) for the corresponding to-
ken or lemma. More robust statistical methods for
frame prediction are left for future work.

For EDS and UCCA, we use exact matching
policy to match the anchors of the tokenized with
the graph nodes. If one tokenized node is mapped
to multiple graph nodes, we drop the whole graph
in the current system. For AMR, we use the JAMR
(Flanigan et al., 2014) alignment provided in the
companion data to align the unanchored nodes to
the tokenized nodes.

2.4 Neural Network Model

To determine the correct action for a particular
parser state, we use two neural network models to
first decide what action should be taken, and de-
termine the framework details if the action is RE-
SOLVE.

2.4.1 Action Type Prediction
Figure 4 describes the neural network architec-
ture for predicting the actions. The nodes in the

parser stack and tokenized node queue are first
mapped to feature embeddings. The feature em-
bedding of each node is created by concatenating
the GloVe (Pennington et al., 2014) word embed-
ding together with three randomly initialized em-
beddings for the features word lemma, upos and
xpos provided by the syntactic parse. Then, we use
LSTM (Hochreiter and Schmidhuber, 1997) lay-
ers to encode three nodes sequences: (1) nodes in
the parser stack, (2) nodes before the current node
and (3) nodes after the current node. For sequence
(2) and (3) we limit the size of the sequence to
be 5. We concatenate the hidden state at the last
time step of the three sequences with the current
node’s feature embedding and feed it to a multi-
layer perceptron (MLP) to predict the action type.
As we need n, the number of nodes to be reduced
for the reduce action, we use the hidden states for
every time step of sequence (1) and pass them to
the same MLP, and then the softmax layer to pre-
dict the value of n. We choose the action type
and n with the greatest probability to execute. If
RESOLVE is to be executed, we extract the first n
nodes from the parser stack, and proceed with the
RESOLVE prediction.
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(a) Edge predictions when n > 1.

(b) Node prediction.

Figure 5: Neural network architecture diagram of RE-
SOLVE prediction.

2.4.2 Resolve Prediction
Figure 5 pictures the neural network architecture
for predicting the label and properties of the nodes
and edges in the RESOLVE process. If a leaf node
is to be resolved (n = 1), then no edge is in-
volved. we use the feature embedding of the unre-
solved node as input, and pass it to feature specific
MLP for predicting the node label and properties.
If more than one node is involved (n > 1), then
we, in addition, predict the edge information by
passing the feature embedding to an LSTM layer,
followed by feature-specific MLPs for predicting
edge label and directions.

2.4.3 Multi-Task Learning
To enable multi-task learning, we use the same
neural network model for parsing all five frame-
works. We shared the parameters of word embed-
dings and LSTM layers across frameworks, and
separate the MLP parameters for each framework.

3 Training

3.1 Data

We use the official dataset as the development set
to train our system. We use the DAG-to-Tree pre-
processor and action simulator to generate action

snapshots of the parser state features (parser stack
and tokenized node queue) and action labels for
each action applied, acting as the data instances
for training the neural network model. A total
of 169,780 MRP-parse data pairs are given, for
which we generate 2,434,026 action snapshots as
training data instances. Our system is required to
predict the MRP graphs for 13,206 unseen sen-
tences.

3.2 Implementation Details

Our system is packaged as an AllenNLP library
(Gardner et al., 2017), which comprises DAG-to-
Tree preprocessors, dataset readers, training in-
stance iterators, neural network models and MRP
graph predictors. The neural network model is im-
plemented using Pytorch and support training with
either CPU or single GPU setting. Time required
for each procedure is summarized in table 3.

Procedures Required Time
(hour)

Run DAG-to-Tree preprocessor and
action simulator using training data 10

Use AllenNLP data reader to read
data instances 1.5

Train the neural network model
(single GPU setting)

30 in total
(2 per epoch)

Predict the MRP graph of testing data 8
Total 49.5

Table 3: Running time for each procedure.

3.3 Batch training

As each graph is broken down into training in-
stances for each action and the size of the instances
is large, batch training is necessary to speed up
the training process. We group the data instance
into mini-batch of size 100 by their prediction type
(whether it is action type prediction or resolve pre-
diction), meaning representation framework, and
the length of the stack and queue to facilitate batch
training. Both training batches and training in-
stances in the same framework batch are shuffled
in each epoch.

4 Results and Discussion

4.1 Official Results

According to the results announced, we ranked
13th overall in the post-evaluation period of the
shared task. We compared the results of our sys-
tem with a similar transition-based parser TUPA
(Hershcovich and Arviv, 2019) in Table 4. Our
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Submissions tops labels properties anchors edges
P R F P R F P R F P R F P R F

TUPA(multi) 0.67 0.57 0.616 0.40 0.55 0.457 0.29 0.42 0.327 0.68 0.60 0.626 0.30 0.45 0.347
RESOLVER 0.51 0.50 0.502 0.34 0.40 0.365 0.29 0.35 0.317 0.55 0.59 0.568 0.10 0.10 0.095

Submissions attributes all
P R F P R F

TUPA(multi) 0.06 0.03 0.037 0.39 0.57 0.453
RESOLVER 0.00 0.00 0.00 0.36 0.41 0.378

Table 4: Final results of our system compared with the transition based parser TUPA. All scores are calculated
according to the MRP metric.

system performs slightly worse than TUPA in gen-
eral, while we performed much worse in the edges
component.

4.2 Discussion
We analyze our system and investigate three rea-
sons for causing the low performance.

• Variable-arity actions are hard to learn. Our
system predicts the action type with accu-
racy around 0.8 across frameworks, but can-
not predict the number of nodes, i.e. n, to be
reduced well (less than 0.35). As the num-
ber of training instances with n = 1 is much
larger than that of n > 1, we believe the
unbalanced number of training examples can
be a hindrance for learning to predict n cor-
rectly.

• Information loss happens when converting
graphs to tree structures. As we are using the
DAG-to-Tree preprocessor to convert graphs
to top-node oriented trees using major edges,
we ignore minor edges in the current model
and loss features for predicting the action
and chances for predicting them. Moreover,
we cannot find direct and empirical proof of
why this top-node oriented tree conversion
can help the parsing process.

• Model design can still be improved. There
are numerous variations including neural net-
work architecture, hyperparameters, action
set, feature set, etc, that our team can exper-
iment with under the variable-arity transition
action and top-node oriented tree paradigm.
More time is required to test if this is a valid
approach to tackle the parsing problem in
general.

5 Conclusion

We present RESOLVER, the first transition-based
parser with top-node oriented DAG-to-Tree pre-

processor and variable-arity actions to the best
of our knowledge. We aim to create a general-
ized representation and parsing steps of the five
graphs. We discuss the benefits and limitations of
adding variable-arity actions, and we will continue
to work on our system to show the practical useful-
ness of allowing variable-arity transition actions in
transition-based meaning representation parsers.
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Abstract

This paper describes the proposed system of
the Hitachi team for the Cross-Framework
Meaning Representation Parsing (MRP 2019)
shared task. In this shared task, the partici-
pating systems were asked to predict nodes,
edges and their attributes for five frame-
works, each with different order of “abstrac-
tion” from input tokens. We proposed a uni-
fied encoder-to-biaffine network for all five
frameworks, which effectively incorporates a
shared encoder to extract rich input features,
decoder networks to generate anchorless nodes
in UCCA and AMR, and biaffine networks to
predict edges. Our system was ranked fifth
with the macro-averaged MRP F1 score of
0.7604, and outperformed the baseline uni-
fied transition-based MRP. Furthermore, post-
evaluation experiments showed that we can
boost the performance of the proposed system
by incorporating multi-task learning, whereas
the baseline could not. These imply efficacy
of incorporating the biaffine network to the
shared architecture for MRP and that learn-
ing heterogeneous meaning representations at
once can boost the system performance.

1 Introduction

This paper describes the proposed system of
the Hitachi team for the CoNLL 2019 Cross-
Framework Meaning Representation Parsing
(MRP 2019) shared task. The goal of the task was
to design a system that predicts sentence-level
graph-based meaning representations in five
frameworks, each with its specific linguistic as-
sumptions. The task was formulated as prediction
of nodes, edges and their attributes from an input
sentence (see Oepen et al. (2019) for details).
The target frameworks were (1) DELPH-IN MRS
Bi-Lexical Dependencies (DM; Flickinger, 2000;

∗ Contributed equally.

Ivanova et al., 2012), (2) Prague Semantic De-
pendencies (PSD; Hajič et al., 2012; Miyao et al.,
2014), (3) Elementary Dependency Structures
(EDS; Oepen and Lønning, 2006), (4) Universal
Conceptual Cognitive Annotation framework
(UCCA; Abend and Rappoport, 2013; Hersh-
covich et al., 2017), and (5) Abstract Meaning
Representation (AMR; Banarescu et al., 2013).

In this work, we propose to unify graph predic-
tions in all frameworks with a single encoder-to-
biaffine network. This objective was derived from
our expectation that it would be advantageous if a
single neural network can deal with all the frame-
works, because it allows all frameworks to benefit
from architectural enhancements and it opens up
possibility to perform multi-task learning to boost
overall system performance. We argue that it is
non-trivial to formulate different kinds of graph
predictions as a single machine learning problem,
since each framework has different order of “ab-
straction” from input tokens. Moreover, such for-
mulation has hardly been explored, with few ex-
ceptions including unified transition-based MRP
(Hershcovich et al., 2018), to which we empir-
ically show the superiority of our system (Sec-
tion 9). We also present a multi-task variant of
such system, which did not make it to the task
deadline.

Our non-multi-task system obtained the fifth
position in the formal evaluation. We also eval-
uated the multi-task setup after the formal run,
showing multi-task learning can yield an improve-
ment in the performance. This result implies
learning heterogeneous meaning representations
at once can boost the system performance.

2 Overview of the Proposed System

The key challenge in unifying graph predictions
with a single encoder-to-biaffine network lays in
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Figure 1: The overview of the proposed unified encoder-to-biaffine network for cross-framework meaning repre-
sentation parsing.

complementation of nodes, because the biaffine
network can narrow down the node candidates
but cannot generate new ones. Our strategy is
that we start from input tokens, generate miss-
ing nodes (nodes that do not have anchors to the
input tokens) and finally predict edges with the
biaffine network (Figure 1). More concretely,
the shared encoder (Section 3.2) fuses together
rich input features for each token including fea-
tures extracted from pretrained language models,
which are then fed to bidirectional long short-term
memories (biLSTMs; Hochreiter and Schmidhu-
ber, 1997; Schuster and Paliwal, 1997) to obtain
task-independent contextualized token representa-
tions. The contextualized representations are fed
to biaffine networks (Dozat and Manning, 2018)
to predict graphs for each framework along with
the following framework-specific procedures:

DM and PSD Contextualized representations are
fed to biaffine network to predict edges and their
labels. They are also used to predict the node
property frame (Section 4).

EDS The predicted DM graphs are converted to
nodes and edges of EDS graphs. Contextualized
representations are used to predict node anchors
(Section 5).

UCCA Nodes in training data are serialized and
aligned with input tokens. Contextualized rep-
resentations are fed to a pointer network to gen-

erate non-terminal nodes, and to a biaffine net-
work to predict edges and labels (Section 6).

AMR Contextualized representations are fed to
pointer-generator network to generate nodes.
Hidden states of the network are fed to a biaffine
network to predict edges and their labels (Sec-
tion 7).
All models are trained end-to-end using mini-

batch stochastic gradient decent with backpropa-
gation (see Appendix A.1 for the details).

3 Shared Encoder

3.1 Feature Extraction

Following work by Dozat and Manning (2018) and
Zhang et al. (2019), we propose to incorporate
multiple types of token representations to provide
rich input features for each token. Specifically, the
proposed system combines surface, lemma, part-
of-speech (POS) tags, named entity label, GloVe
(Pennington et al., 2014) embedding, ELMo (Pe-
ters et al., 2018) embedding and BERT (Devlin
et al., 2019) embedding as input features . The fol-
lowing descriptions explain how we acquire each
input representations:
Surface and lemma We use the lower-cased

node labels and the lemma properties from
the companion data, respectively. Surfaces and
lemmas that appear less than four times are re-
placed by a special <UNK> token. We also map
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numerical expressions1 to a special <NUM> to-
ken.

POS tags We use Universal POS tags and English
specific POS tags from node properties upos
and xpos in the companion data, respectively.

Named entity label Named entity (NE) recogni-
tion is applied to the input text (see Section 7.1).

GloVe We use 300-dimensional GloVe (Penning-
ton et al., 2014) pretrained on Common Crawl2

which are kept fixed during the training. Sur-
faces that do not appear in the pretrained GloVe
are mapped to a special <UNK> token which is
set to a vector whose values are randomly drawn
from normal distribution with standard devia-
tion of 1/

√
dimension of a GloVe vector.

ELMo We use the pretrained “original” ELMo3.
Following Peters et al. (2018), we “mix” differ-
ent layers of ELMo for each token;

s̃j = softmax
j

(sj) =
exp(sj)∑
k exp(sk)

,

hELMo =
NELMo−1∑

j=0

s̃jh
ELMo
j ,

where hELMo
j (0 ≤ j < NELMo) is the hidden

state of the j-th layer of ELMo, hELMo
0 is the

features from character-level CNN of ELMo,
and sj are trainable parameters. hELMo

j are
fixed in the training by truncating backpropaga-
tion to hELMo

j .
BERT We use the pretrained BERT-Large, Un-

cased (Original)4. Since BERT takes subword
units as input, a BERT embedding for a token is
generated as the average of its subword BERT
embeddings as in Zhang et al. (2019).
The surface, lemma, POS tags and NE label of

a token are each embedded as a vector. The vec-
tors are randomly initialized and updated during
training. To allow prediction of the top nodes for
DM, PSD and UCCA, a special <ROOT> token

1Surfaces or lemmas that can successfully be converted to
numerics with float operation on Python 3.6

2http://nlp.stanford.edu/data/glove.
840B.300d.zip

3https://s3-us-west-2.amazonaws.com/
allennlp/models/elmo/2x4096_512_2048cnn_
2xhighway/elmo_2x4096_512_2048cnn_
2xhighway_weights.hdf5 and elmo_2x4096_
512_2048cnn_2xhighway_options.json.

4https://s3.amazonaws.com/
models.huggingface.co/bert/
bert-large-uncased-pytorch_model.bin,
which is converted from the whitelisted BERT model in
https://github.com/google-research/bert

is prepended to each input sequence. For GloVe,
ELMo and BERT, the <ROOT> is also embed-
ded in the similar manner as other tokens with
<ROOT> as the surface for the token. A multi-
layered perceptron (MLP) is applied to each of
GloVe, ELMo and BERT embeddings.

To prevent the model from overrelying only
on certain types of features, we randomly drop a
group of features, where the groups are (i) lemma,
(ii) POS tags and (iii) the rest. All features in the
same group are randomly dropped simultaneously
but independently from other groups.

All seven features are then concatenated to form
input token representation h0

i (where 0 ≤ i < Lin
is the index of the token).

3.2 Obtaining Contextualized Token
Representation

The input token representations h0
i are fed to the

multi-layered biLSTM with N layers to obtain the
contextualized token representations.

−→
h l
i =
−−−−→
LSTM(hl−1i ,

−→
h l
i−1,
−→c li−1),

←−
h l
i =
←−−−−
LSTM(hl−1i ,

←−
h l
i+1,
←−c li+1),

hli =
[−→
h l
i;
←−
h l
i

]
,

where hli and cli (0 < l ≤ N ) are the hidden states
and the cell states of the l-th layer LSTM for i-th
token.

4 DM and PSD-specific Procedures

4.1 Biaffine Classifier

DM and PSD are Flavor (0) frameworks whose
nodes have one-to-one correspondence to tokens.
We utilize biaffine networks to filter nodes, and to
predict edges, edge labels and node attributes. For
each framework fw ∈ {dm, psd}, probability that
there exists an edge (i, j) from the i-th node to the
j-th node yedge

fw,i,j is calculated for all pairs of nodes
(0 ≤ i, j < Lin).

h
edge from
fw,i = MLPedge from(hNi ),

h
edge to
fw,i = MLPedge to(hNi ),

y
edge
fw,i,j = σ

(
Biaffedge

fw

(
h

edge from
fw,i ,h

edge to
fw,j

))
,

(1)
where σ is an element-wise sigmoid function. Bi-
affine operation Biaffedge is defined as:

Biaffedge
fw (x,y) = x>Uedge

fw y+W
edge
fw [x;y]+b

edge
fw ,
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where U
edge
fw , Wedge

fw and bedge
fw are model param-

eters. Probability of an edge (i, j) being the c-
th edge label ylabel

fw,i,j,c is calculated for all pairs of
nodes.

hlabel from
fw,i = MLPlabel from(hNi ),

hlabel to
fw,i = MLPlabel to(hNi ),

tlabel
fw,i,j,c = Biafflabel

fw,c
(
hlabel from

fw,i ,hlabel to
fw,j

)
,

ylabel
fw,i,j,c = softmax

c

(
tlabel
fw,i,j,c

)
.

(2)

Another form of biaffine operation for the edge la-
bel prediction Biafflabel

fw,c is defined as:

Biafflabel
fw,c (x,y) = x>Ulabel

fw,cy +Wlabel
fw,cy,

where Ulabel
fw,c and Wlabel

fw,c are model parameters.
A candidate edge (i, j) whose edge probabil-

ity yedge
fw,i,j (0 < i, j) exceeds 0.5 is adopted as a

valid edge. Edge label with the highest probabil-
ity argmaxc yfw,i,j,c is selected for each valid edge
(i, j). A candidate top node j whose edge proba-
bility yedge

fw,0,j (0 < j) exceeds 0.5 is adopted as a
top node, allowing multiple tops. Non-top nodes
with no incoming or outgoing edge are discarded
and remaining nodes are adopted as the predicted
nodes.

4.2 DM Frame Classifier
A DM node property frame consists of a frame
type and frame arguments; e.g. named:x-c in-
dicates the frame type is “named entity” with two
possible arguments x and c. The proposed system
utilizes the contextualized features to predict the
frame types and arguments separately.

Probability of the i-th node being c-th frame
type yframe type

dm,i,c is predicted by applying MLP to
the contextualized features:

t
frame type
dm,i,c = MLPframe type

c (hNi ),

y
frame type
dm,i,c = softmax

c

(
t
frame type
dm,i,c

)
.

The number of arguments for a frame is not fixed
and the first argument can be trivially inferred
from the frame type. Thus, we predict from the
second to the fifth arguments for each node. Prob-
ability of j-th argument being c-th frame type
y

frame arg
dm,i,j,c is also predicted by applying MLP to the

contextualized features:

t
frame arg
dm,i,j,c = MLPframe arg

j,c (hNi ),

y
frame arg
dm,i,j,c = softmax

c

(
t
frame arg, j
dm,i,j,c

)
.

4.3 Training Objective

DM and PSD are trained jointly in a multi-
task learning setting but independently from other
frameworks. The loss for the edge prediction
`

edge
fw is cross entropy between the predicted edge
y

edge
i,j and the corresponding ground truth label.

A top node j is treated as an edge (0, j) and is
trained along with the edge prediction. The loss
for the edge label prediction `label

fw is cross en-
tropy between the predicted edge label ylabel

i,j,c and
ground truth label. The loss for the frame pre-
diction `frame

dm is the sum of the frame type predic-
tion loss `frame type

dm and the frame arguments pre-
diction loss `frame arg

dm , both of which are cross en-
tropy loss between the prediction and the corre-
sponding ground truth label. Final multi-task loss
is defined as:

`sdp =λlabel (`label
dm + `label

psd + λframe`frame
dm

)

+
(
1− λlabel) (`edge

dm + `
edge
psd

)
.

(3)

4.4 Postprocessing

We reconstruct node property frame from the
predicted frame types and arguments using exter-
nal resources. For DM, we filter out pairs of pre-
dicted frame type and arguments that do not ap-
pear in ERG SEM-I5 or the training dataset (e.g. a
word “parse” has only two possible frames n:x
and v:e-i-p). Then, we select a frame with
the highest empirically scaled likelihood which is
calculated by scaling predicted joint probability
y

frame type
dm,i,c

∏
j y

frame arg
dm,i,j,c′ proportionally to the frame

frequency in the corpus.
For PSD, we use CzEngVallex6, which con-

tains frequency and the required arguments of
each frame, to reconstruct frames. We identify
the frame type of a token from its lemma and
POS tag. Then, candidate frames are filtered us-
ing the required arguments (extracted by stripping
-suffix from connected edges) and the most
frequent frame is chosen as the node frame.

Token lemma is used for the node label, ex-
cept for the special node labels in PSD (e.g.
#Bracket and #PersPron) that are looked-up
from a hand-crafted dictionary using the surface
and POS tag as a key.

5http://svn.delph-in.net/erg/tags/
1214/etc

6http://hdl.handle.net/11234/1-1512
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Figure 2: Generation of abstract nodes and their edges
from I like chicken, pork and beef.

5 EDS-specific Procedure

DM graphs are constructed by lossy conversion
from EDS graphs, both of which are derived from
English Resource Semantics (ERS; Flickinger
et al., 2014). Making use of such relationship, we
developed heuristic inverse conversion from DM
to EDS graphs by carefully studying EDS-to-DM
conversion rules described in the ERG SEM-I cor-
pus. Specifically, our system generates EDS in
three steps; the system (i) convert all DM nodes
to EDS surface nodes7 with simple rules, (ii) gen-
erate abstract nodes, and (iii) predict anchors for
the abstract nodes.

We explain the generation of abstract nodes (ii)
in details using an example in Figure 2:
1. Some abstract nodes (e.g. and c) and their

node labels are generated with rules.
2. Presence of an abstract node on a node or

an edge is detected with rules (e.g. and c
implies presence of q node) or with bi-
nary logistic regression (e.g. udef q on
chicken n 1).

3. The system predicts labels of the nodes gener-
ated in 2 using multi-class logistic regression.

4. The system predicts labels of edges from/to the
generated nodes using multi-class logistic re-
gression.

POS tags, predicted DM frames and edge labels of
adjacent nodes are used as features for the logistic
regression.

We employ another neural network that uti-
lize the contextualized features from the encoder
to predict the anchors for the generated abstract
nodes (iii). For each abstract node (indexed i), let
Ti be a subset of token indices S ≡ {0, . . . , Lin −
1} each of which is selected as a DM node and
the corresponding EDS surface node has the ab-
stract node i as an ancestor. First, we create an

7For ease of explanation, we adopt a definition that “the
EDS surface nodes are the nodes that appear in DM and the
abstract nodes are those that do not” which results in slight
inconsistence with the original definition.
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Figure 3: Illustration of UCCA parsing with pointer
network and biaffine classifier.

input feature xeds
i,j (j ∈ S) which is set as the label

of node i if j ∈ Ti or <UNK> otherwise. Then,
we embed xeds

i,j to obtain trainable vector eeds
i,j and

feed them to a biLSTM to obtain a contextualized
representation heds

i,j . Finally, we predict a span in
input tokens [argmaxjy

eds from
i,j , argmaxjy

eds to
i,j ] for

the i-th abstract node,

yeds from
i,j = softmax

j

(
(heds

i,j )
> ·MLPeds from(hNj )

)
,

yeds to
i,j = softmax

j

(
(heds

i,j )
> ·MLPeds to(hNj )

)
.

The loss for the anchor prediction `eds is the
sum of cross entropy between the predicted span
(yeds from
i,j , yeds to

i,j ) and the corresponding ground
truth span.

6 UCCA-specific Procedure

A UCCA graph consists of terminal nodes which
represent words, non-terminal nodes which repre-
sent internal structure, and labeled edges (e.g., par-
ticipant (A), center (C), linker (L), process (P) and
punctuation (U)) which represent connections be-
tween the nodes. Motivated by the recent advances
in constituency parsing, we predict spans of each
terminal nodes at once without using any compli-
cated mechanism as seen in transition-based (Her-
shcovich and Arviv, 2019) and greedy bottom-
up (Yu and Sagae, 2019) systems. Our proposed
UCCA parser (Figure 3) consists of (i) a pointer
network (Vinyals et al., 2015) which generates
non-terminal nodes from the contextualized token
representations of the encoder, (ii) an additional
biLSTM that encodes context of both the termi-
nal and generated non-terminal nodes, and (iii) a
biaffine network which predicts edges.
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6.1 Preprocessing
We treat the generation of non-terminal nodes as
a “pointing” problem. Specifically, the system has
to point the starting position of a span which has
terminal or non-terminal children. For example,
upper part of Figure 3 shows a graph with two non-
terminal nodes •. The right non-terminal node
has a span of gave everything up, and our system
points at the starting position of the span gave. By
taking such strategy, we can serialize the graph in
a consistent, straightforward manner; i.e. by in-
serting the non-terminal nodes to the left of the
corresponding span.

The system also has to predict an anchor of a
proper noun or a compound expression to merge
constituent tokens into a single node. For exam-
ple, no feathers in stock!!!! is tokenized as “(no),
(feathers), (in), (stock), (!), (!), (!), (!)” accord-
ing to the companion data, but the UCCA parser is
expected to output “(no), (feathers), (in), (stock),
(!!!!)”. To solve the problem, we formulate the
mergence of tokens as edge prediction; e.g. we
assume that there exist virtual edges CT from left-
most constituent token to each subsequent token
within a compound expression:

and CT is predicted by the system along with
the other edges. There still exists tokenization
discrepancy between the companion data and the
graphs from EWT and Wiki. The graphs with such
discrepancy are simply discarded from the training
data.

6.2 Generating Non-terminal Nodes with
Pointer Network

Our system generates non-terminal nodes by
pointing where to insert non-terminal nodes as de-
scribed in Section 6.1. To point a terminal node,
we employ a pointer network, which is a decoder
that uses attention mechanism to produce prob-
ability distribution over the input tokens. Given
hidden states of the encoder hNj , hidden states of
the decoder are initialized by the last states of the
shared encoder:

hucca dec
−1 =

[−→
hN−K:N
Lin

;
←−
hN−K:N

0

]
,

cucca dec
−1 =

[−→c N−K:N
Lin

;←−c N−K:N
0

]
,

where K is the stacking number of the biLSTMs
in the shared encoder. We then obtain the hidden

states of the decoder hucca dec
i as:

hucca dec
i = LSTMdec(x

ucca dec
i ,hucca dec

i−1 , cucca dec
i−1 ).

Attention distribution ãi,j over the input tokens is
calculated as:

ai,j = v> tanh
(
Wucca dec[hucca dec

i ;hNj ]
)
,

ãi,j = softmax
j

(ai,j),

where Wucca dec and v are parameters of the
pointer network. The successive input to the de-
coder xucca dec

i+1 is the encoder states of the pointed
token hNargmaxj ãi,j

. xucca dec
i is chosen from the gold

ãi,j when training.
The decoder terminates its generation when it

finally points the <ROOT>. We obtain new hid-
den states h

ucca ptr
i (0 ≤ i ≤ Lucca) by inserting

pointer representations h• before the pointed to-
ken. For example, John gave everything up (dis-
cussed above) will have hidden states
(
hN<ROOT>,h

•,hNJohn,h
•,hNgave,h

N
everything,h

N
up
)
.

The pointer representation is defined as h• =
MLP•(r), where r is a randomly initialized con-
stant vector.

We note that the generated non-terminal nodes
h• lack positional information because all h• have
the same values. To remedy this problem, a posi-
tional encoding Vaswani et al. (2017) is concate-
nated to each of hucca ptr

i to obtain position-aware
h

ucca ptr’
i . Furthermore, we feed h

ucca ptr’
i to an ad-

ditional biLSTM and obtain hucca
i in order to fur-

ther encode the order information.

6.3 Edge Prediction with Biaffine Network
Now that we have contextualized representations
for all candidate terminal and non-terminal nodes,
the system can simply predict the edges and their
labels in the exact same way as Flavor (0) graphs
(Section 4.1). Following Equation (1) and Equa-
tion (2), we obtain probabilities if there exists an
edge (i, j), yedge

ucca,i,j , and its label being c, ylabel
ucca,i,j,c,

with the input being hucca
i instead of hNi . We treat

the remote edges8 independently but in the same
way as the primary edges to predict yremote

ucca,i,j .

The loss for the edge prediction `edge
ucca , the edge

label prediction `label
ucca , the remote edge prediction

8Edges for implicit relations and arguments. They were
annotated as unlabeled edges each with an attribute remote
in MRP.
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`remote
ucca and the pointer prediction `dec

ucca are defined
as cross entropy between the prediction y

edge
ucca,i,j ,

ylabel
ucca,i,j,c, y

remote
ucca,i,j and ãi,j with the corresponding

ground truth labels, respectively. Thus, we arrive
at the multi-task objective defined as:

`ucca =λ
edge
ucca`

edge
ucca + λlabel

ucca `
label
ucca

+ λremote
ucca `remote

ucca + λdec
ucca`

dec
ucca.

7 AMR-specific Procedures

Because AMR graphs do not have clear alignment
between input tokens and nodes, the nodes have to
be identified in prior to predicting edges. Follow-
ing Zhang et al. (2019), we incorporate a pointer-
generator network (i.e. a decoder with copy mech-
anisms) for the node generation and a biaffine
network for the edge prediction. There are two
key preconditions in using a pointer-generator net-
work; i.e. (i) node labels and input tokens share
fair amount of vocabulary to allow copying a node
from input tokens, and (ii) graphs are serialized in
a consistent, straightforward manner for it to be
easily predicted by sequence generation. To this
end, we apply preprocessing to raw AMR graphs,
train model to generate preprocessed graphs, and
reconstruct final AMR graphs with postprocess-
ing.

7.1 Preprocessing

We modify the input tokens and the node labels to
account for the precondition (i). A node labeled
with .*-entity or a subgraph connected with
name edge is replaced with a node whose label
is an anonymized entity label such as PERSON.0
(Konstas et al., 2017). Then, for each entity node,
a corresponding span of tokens is identified by
rules similar to Flanigan et al. (2014); i.e. a span
of tokens with the longest common prefix between
the token surfaces and the node attribute (e.g. for
date-entitywhose attribute month is 11, we
search for “November” and “Nov” in the token
surfaces). Unlike Zhang et al. (2019) which has
replaced input token surfaces with anonymized en-
tity labels, we add them as an additional input
feature as described in Section 3.1 to avoid hurt-
ing the performance of other frameworks. At the
prediction, we first identify NE tags in input to-
kens with Illinois NER tagger (Ratinov and Roth,
2009). Then we map them to anonymized entity
labels with frequency-based mapping constructed
from the training dataset.

For non-entity nodes, we strip sense indices
(e.g. -01) from node labels (Lyu and Titov,
2018), which will then share fair amount of vo-
cabulary with the input token lemmas. Nodes with
labels that still do not appear as lemmas after pre-
processing are subject to normal generation from
decoder vocabulary.

Directly serializing an AMR graph, which is
a directed acyclic graph (DAG), may result in a
complex conversion, which do not fulfill the pre-
condition (ii). Therefore, we convert DAG to a
spanning tree by replicating nodes with reentran-
cies (i.e. nodes with more than one incoming
edge) for each incoming edge and serialize the
graph with simple pre-order traversal over the tree.

7.2 Extended Pointer-Generator Network
We employ an extended pointer-generator net-
work. It automatically switches between three
generation strategies; i.e. (1) source-side copy,
(2) decoder-side copy that copies nodes that have
been already generated, and (3) normal genera-
tion from decoder vocabulary. More formally, it
uses attention mechanism to calculate probabil-
ity distribution pi over input tokens, generated
nodes and node vocabulary. Given contextual-
ized token representation of the encoder Henc

l =
{hl0, . . . ,hlLin−1}, we obtain hidden states of the
decoder hamr

i and pi as:

hamr
i ,pi = Decoderamr(h

enc’
i ,hamr

i−1,pi−1, H
enc
N ),

henc’
i = Encoderamr(pi,h

amr
0 . . .hamr

i−1, H
enc
0 ),

henc’
0 ,hamr

−1 =

MLPamr

([−→
hN
Lin

;
←−
hN

0 ;−→c NLin
;←−c N0

])
.

Encoderamr treats a node as if it is a token, and uti-
lizes the encoder (Section 3) with shared model
parameters to obtain representation of (i − 1)-
th generated nodes henc’

i . Concretely, Encoderamr
combines lemma (corresponds to the node label),
POS tags (only when copied from a token) and
GloVe (from the node label) of a node, embeds
each of them to a feature vector using the encoder
and concatenates feature vectors to obtain henc’

i .

7.3 Edge Prediction with Biaffine Network
Now that we have representations hamr

i for all
nodes, the system can simply predict the edges and
their labels in the same way as Flavor (0) graphs
(Section 4.1). Following Equation (1) and Equa-
tion (2), we obtain probabilities that there exists an
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Table 1: MRP F1 scores for the formal run (shown as
“score/rank”)
Team Mean DM PSD EDS UCCA AMR
HIT-SCIR .8620/1 .9508/2 .9055/4 .9075/2 .8167/1 .7294/2
SJTU-NICT .8527/2 .9550/1 .9119/3 .8990/3 .7780/3 .7197/3
SUDA-Alibaba .8396/3 .9226/7 .8556/8 .9185/1 .7843/2 .7172/5
Saarland .8187/4 .9469/4 .9128/1 .8910/4 .6755/6 .6672/6
Hitachi (ours) .7604/5 .9102/8 .9121/2 .8374/6 .7036/5 .4386/8
ÚFAL MRPipe .7474/6 .8495/9 .7627/9 .6745/7 .7322/4 .7183/4
ShanghaiTech .6697/7 .9488/3 .8949/6 .8690/5 - .6359/7
Amazon .5132/8 .9326/6 .8998/5 - - .7338/1
JBNU .4652/9 .9401/5 .8788/7 - .5069/7 -
SJTU .4303/10 .4315/11 .4761/11 .5321/8 .3266/9 .3851/9
ÚFAL-Oslo .3442/11 .8051/10 .6092/10 .3064/9 - -
HKUST .2450/12 .3699/12 .3529/12 - .5021/8 -
Bocharov .0655/13 - - - - .3273/10
TUPA† single .5770 .5554 .5176 .8100 .2756 .4473
TUPA† multi .4534 .4270 .5265 .7395 .2365 .3375
† baseline (Hershcovich and Arviv, 2019)

edge (i, j), yedge
amr,i,j , and its label being c, ylabel

amr,i,j,c,
with the input being hamr

i instead of hNi . Note that
we do not predict the top nodes for AMR, because
the first generated node is always the top node in
our formalism.

The loss for the edge prediction `edge
amr , the edge

label prediction `label
amr , and the decoder predic-

tion `dec
amr are cross entropy between the prediction

y
edge
amr,i,j , y

label
amr,i,j,c and pi with the corresponding

ground truth labels, respectively. Thus, we arrive
at the multi-task loss for AMR defined as:

`amr =λ
biaf
amr
(
λlabel

amr `
label
amr + (1− λlabel

amr )`
edge
amr
)

+ λcov
amr`

cov
amr + (1− λbiaf

amr − λcov
amr)`

dec
amr,

where `cov
amr is coverage loss (Zhang et al., 2019).

For node prediction, we adopt beam search with
search width of five. For edge prediction, we apply
Chu-Liu-Edmonds algorithm to find the maximum
spanning tree. Postprocessing, which includes in-
verse transformation of the preprocessing, is ap-
plied to reconstruct final AMR graphs.

8 Multi-task Variant

We developed multi-task variant after the formal
run. Multi-task variant is trained to minimize fol-
lowing multi-task loss,

`mt =λ
biaf
(
λlabel

(∑

fw

`label
fw + λframe`frame

dm

)

+
(
1− λlabel)∑

fw

`
edge
fw

)
+ λcov

amr`
cov
amr

+
∑

fw∈{ucca,amr}
λdec

fw `
dec
fw + λremote

ucca `remote
ucca .

(4)
All training data is simply merged and losses for
frameworks that are missing in an input data are

set to zero. For example, if an input sentence has
reference graphs for DM, PSD and AMR, losses
for UCCA (`label

ucca , `edge
ucca , `dec

ucca and `remote
ucca ) are set to

zero and sum of other losses are used to update the
model parameters. Then, the training data (sen-
tences) are shuffled at the start of each epoch and
are fed sequentially to update the model parame-
ters as in normal mini-batch training. No under-
/over-sampling was done to scale the losses of
frameworks, each with different number of refer-
ence graphs, but we instead applied early stopping
for each framework separately (see Appendix A
for the details). For EDS, we do not train EDS
anchor prediction jointly even in multi-task set-
ting but apply transfer learning; the encoder of the
EDS anchor prediction network is initialized from
trained multi-task model.

We also experimented with a fine-tuned multi-
task variant. For each target framework, we
take the multi-task variant as a pretrained model
(whose training data also includes the target
framework) and train the model on the target
framework independently to the other frameworks
(except for DM and PSD, which are always trained
together).

9 Experiments

9.1 Method

Experiments were carried out on the evaluation
split of the dataset. We applied hyperparameter
tuning and ensembling to our system, which are
detailed in Appendix A along with other training
details. BERT was excluded for the formal run
since it did not make it to the task deadline.

We experimented with enhanced models with
BERT after the formal run. For these models, we
adopted the best hyperparameters chosen by the
submitted model without re-running the hyperpa-
rameter tuning.

All models were implemented using Chainer
(Tokui et al., 2015; Akiba et al., 2017).

9.2 Results

The official results are shown in Table 1 and Ta-
ble 2. Our system obtained macro-averaged MRP
F1 score of 0.7604 and was ranked fifth amongst
all submissions. Our system outperformed con-
ventional unified architecture for MRP (TUPA
baselines; Hershcovich and Arviv, 2019) in all
frameworks but AMR. This indicates the efficacy
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Table 2: MRP and framework specific scores (shown as “score/rank”). Gray background indicates that it is the
score on LPPS subset.

MRP Framework
Framework Tops Labels Properties Anchors Edges Attributes All specific†

All 0.8929/3 0.6409/6 0.5186/9 0.7547/5 0.6958/5 0.0418/7 0.7604/5 -
0.9167/3 0.6238/6 0.3743/9 0.7602/6 0.7025/5 0.0340/7 0.7618/5 -

DM 0.9219/6 0.9107/6 0.8649/9 0.9909/4 0.9190/5 - 0.9102/9 0.9189/5
0.9505/5 0.8818/8 0.8367/10 0.9862/6 0.9245/5 - 0.8939/9 0.9272/4

PSD 0.9538/5 0.9494/3 0.9118/7 0.9896/5 0.7948/5 - 0.9121/2 0.8085/4
0.9515/5 0.9204/2 0.8366/8 0.9820/6 0.7846/4 - 0.8840/2 0.8075/4

EDS 0.7319/9 0.8225/7 0.5851/7 0.8694/6 0.8497/7 - 0.8374/7 0.7826/7
0.8515/7 0.7763/7 0.0670/9 0.8737/7 0.8427/7 - 0.8110/7 0.7571/7

UCCA 0.9965/2 - - 0.9238/6 0.5588/6 0.2092/7 0.7036/6 0.4277/6
0.9900/2 - - 0.9593/7 0.6050/6 0.1698/7 0.7498/6 0.5024/6

AMR 0.8604/3 0.5221/8 0.2314/9 - 0.3568/8 - 0.4386/8 0.4254/8
0.8400/4 0.5404/8 0.1311/9 - 0.3558/8 - 0.4701/8 0.4530/8

† DM/PSD: SDP labeled F1, EDS: EDM all F1, UCCA:UCCA labeled all F1, AMR: SMATCH F1

Table 3: MRP F1 scores for the variants of the proposed system (shown as “score/rank” where the rank is calculated
by assuming that it was the submitted model).

Variant Average DM PSD EDS UCCA AMR
SFL 0.7575/5 0.9071/9 0.9064/3 0.8339/7 0.7014/6 0.4386/8
SFL(ensemble)† 0.7604/5 0.9102/9 0.9121/2 0.8374/7 0.7036/6 0.4386/8
BERT+SFL(NT) 0.7450/6 0.9038/9 0.9069/3 0.8301/7 0.6945/6 0.3896/8
BERT+MTL(NT) 0.7144/6 0.8726/9 0.8791/7 0.7987/7 0.6422/6 0.3794/9
BERT+MTL+FT(NT) 0.7507/5 0.9045/9 0.9054/4 0.8304/7 0.7126/6 0.4008/8
SFL: single-framework learning, MTL: multi-task learning, FT: fine-tuning, ensemble: with ensembles,
NT: random seed is not tuned, † formal run

of using the biaffine network as a shared architec-
ture for MRP.

Our system obtained relatively better (second)
position in PSD. This was due to relatively good
performance on the node label prediction where
we carefully constructed postprocessing rule for
special nodes’ labels (Section 4.4) instead of just
using lemmas.

Our system obtained significantly worse result
in AMR (difference of 0.2952 MRP F1 score to
the best performing system), even though our sys-
tem incorporates the state-of-the-art AMR parser
(Zhang et al., 2019). One reason is that Zhang
et al. (2019) was obtaining a large score boost
from the Wikification task, which was not part of
the MRP 2019 shared task. Another reason could
be that we may have missed out important im-
plementation details for the pointer-generator net-
work, since the implementation of Zhang et al.
(2019) was not yet released at the time of our sys-
tem development.

Table 3 shows the performance of other vari-
ants of the proposed system. The single-
framework learning variant (SFL) without BERT
(SFL) performed better than SFL with BERT
(BERT+SFL(NT)), which suggests that impact of
hyperparameter tuning was larger than that of in-
corporating BERT. The multi-task learning variant
(MTL) with fine-tuning (BERT+MTL+FT(NT))
outperformed the SFL in the comparable condition
(BERT+SFL(NT)). This result implies learning

heterogeneous meaning representations at once
can boost the system performance.

10 Conclusions

In this paper, we described our proposed system
for the CoNLL 2019 Cross-Framework Meaning
Representation Parsing (MRP 2019) shared task.
Our system was the unified encoder-to-biaffine
network for all five frameworks. The system
was ranked fifth in the formal run of the task,
and outperformed the baseline unified transition-
based MRP. Furthermore, post-evaluation experi-
ments showed that we can boost the performance
of the proposed system by incorporating multi-
task learning. These imply efficacy of incorporat-
ing the biaffine network to the shared architecture
for MRP and that learning heterogeneous meaning
representations at once can boost the system per-
formance.

While our architecture successfully unified
graph predictions in the five frameworks, it is non-
trivial to extend the architecture to another frame-
work. It is because there could be a more suitable
node generation scheme for a different framework
and naively applying the pointer network for par-
tial nodes complementation (or extended pointer-
generator network for full nodes generation) may
result in a poor performance. Thus, it is our fu-
ture work to design a more universal method for
the node generation.
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A Training Details

We split dataset into training dataset which was
used to update model parameters, validation
dataset (i) which was used for early stopping, and
validation dataset (ii) which was used for hyper-
parameter tuning and construction of ensembles.
For AMR and UCCA, we selected sentences that
appear in more than one framework to populate
the training dataset, and extracted 500 (300) and
1500 (700) data from the rest as validation dataset
(i) and (ii) for AMR (UCCA), respectively. For
DM, PSD and EDS, we selected data that appear
in AMR or UCCA to populate the training dataset,
and extracted 500 and 1500 data from the rest as
validation dataset (i) and (ii), respectively.

A.1 Model Training

All models are trained using mini-batch stochas-
tic gradient decent with backpropagation. We use
Adam optimizer (Kingma and Ba, 2014) with gra-
dient clipping.

For the non-multi-task variant, early stopping is
applied for each framework with SDP labeled de-
pendency F1 score (Oepen et al., 2014) (for DM,
PSD and UCCA) or validation loss (for EDS and
AMR) as the objective. Note that early stopping
is applied separately to each framework for the
joint training of DM and PSD. Concretely, for
the joint training of DM and PSD, we train the
model with respect to the joint loss `sdp in Equa-
tion (3) but we use a model at a training epoch
whose DM-specific (or PSD-specific) SDP labeled
dependency F1 score is highest for DM (or PSD)
prediction.

For the multi-task variants, we employ a slightly
different strategy for early stopping. For the multi-
task variant without fine-tuning, we apply early
stopping separately to each framework with re-
spect to the framework-specific validation loss.
For example, we train the multi-task model with
respect to `mtl in Equation (4) but we use a model
at a training epoch whose PSD-specific valida-
tion loss λlabel`label

psd +
(
1− λlabel

)
`

edge
psd is lowest

for PSD prediction. For each framework in the
fine-tuned multi-task variant, we adopt the multi-
task pretrained model at a training epoch whose
framework-specific validation loss is lowest and
fine-tune on the model in the same manner as the
non-multi-task variant. Note that, for DM and
PSD, which are fine-tuned together even in the
fine-tuned multi-task variant, we adopt the multi-

task pretrained model at a training epoch whose
multi-task validation loss `mtl is lowest.

Dropout (Srivastava et al., 2014) is applied to
(a) the input to each layer of the shared encoder,
(b) the input to the biaffine networks, and (c) the
input to each layer of the UCCA and AMR de-
coders.

A.2 Hyperparameter Tuning
We random searched subset of hyperparameters
for DM, PSD, UCCA and AMR. See Table 4 for
hyperparameter search space and the list of hyper-
parameters chosen by the best performing model
in each framework. We tried 20 hyperparameter
sets for DM/PSD, 50 for UCCA, and 25 for AMR.

We did not tune the hyperparameters of the
multi-task variants. We adopted the best hyper-
parameters chosen in the non-multi-task variants
(Table 4) and hand-tuned the hyperparameters by
examining learning curves over few runs. For the
fine-tuning, we adopted the best hyperparameters
chosen in the non-multi-task variants (Table 4).
See Table 5 for the list of hyperparameters used
in the multi-task variants.

A.3 Ensembling
We formed ensembles from the models trained
in the hyperparameter tuning. Models are added
to the ensemble in descending order of MRP F1
score on validation dataset (II) until MRP F1 score
of the ensemble no longer improves.

For DM and PSD, we simply averaged edge pre-
dictions yedge

fw,i,j and label predictions ylabel
fw,i,j,c, re-

spectively. On the other hand, the simple average
ensembling cannot be applied to UCCA, because
number of nodes maybe distinct to each model
due to the non-terminal node generation. Hence,
we propose to use a two-step voting ensemble for
UCCA; for each input sentence, (1) the most pop-
ular pointer sequence is chosen, and (2) edge and
label predictions from the models that outputted
the chosen sequence are averaged in the same way
as DM and PSD.

For EDS, we do not explicitly use ensemble
learning, but utilize DM graphs from ensembled
DM models to reconstruct EDS graphs. For AMR,
we do not use ensembles.
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Table 4: List of hyperparameters. Multiple values in-
dicates that the hyperparameter was tuned within that
values. Subscript d (DM), p (PSD), u (UCCA) and a
(AMR) denotes the hyperparameter chosen by the best
performing model on validation dataset. U(a, b) is a
uniform distribution in [a, b].
Hyperparameter Value or search space
Common

Word embedding dimension 100
Lemma embedding dimension 100
POS embedding dimension 100
NE embedding dimension 100
GloVe MLP hidden size 125
ELMo MLP hidden size 512
Word drop probability 0.1dpua, 0.2, 0.4
POS drop probability 0.1du, 0.2a, 0.4p
Lemma drop probability 0.1p, 0.2da, 0.4u
# of layers in encoder 2pu, 3da
Encoder LSTM hidden size 256, 512dpua
Encoder dropout rate 0.1a, 0.25d, 0.5pu
Biaffine input dropout 0.2pua, 0.45d
Edge prediction dropout 0.25dpua, 0.4
Learning rate 10U(−3.32,−2.92)

→ 0.000858d, 0.000675p,
0.00117u, 0.00059a

Adam (β1, β2)† (0.9, 0.999)dp, (0, 0.95)ua
DM/PSD

Edge MLP hidden size 600
Edge label MLP hidden size 600
Frame prediction MLP hidden size 600
Frame prediction dropout 0.2, 0.55dp
Edge label prediction dropout 0.33d, 0.5p
Loss coefficient λlabel

fw U(0.02, 0.03)
→ 0.0210d, 0.0242p

Loss coefficient λframe
fw 0.5

# of epochs 50
Batch size 64

UCCA
Edge MLP hidden size 400, 500u, 600
Edge label MLP hidden size 400u, 500, 600
Edge label prediction dropout 0.25u, 0.33
Decoder dropout 0.5
Loss coefficient λedge

ucca 0.3
Loss coefficient λlabel

ucca 0.3
Loss coefficient λremote

ucca 0.2
Loss coefficient λdec

ucca 0.2
# of epochs 40
Batch size 100

AMR
Edge MLP hidden size 600
Edge label MLP hidden size 600
Edge label prediction dropout 0.33a, 0.5
Decoder type‡ deep smalla, shallow wide
Decoder dropout 0.25, 0.33a, 0.5
Loss coefficient λlabel

amr U(0.1, 0.5)→ 0.395a
Loss coefficient λcov

amr U(0.2, 0.4)→ 0.339a
Loss coefficient λgen

amr U(0.2, 0.4)→ 0.271a
# of epochs 50
Batch size 64

† Commonly used setting and the setting used in Dozat and Manning (2018).
‡“deep small” is three-layered LSTM with hidden size of 512 and “shallow wide” is two-
layered LSTM with hidden size of 1024.

Table 5: Hyperparameters for the multi-task variants
Hyperparameter Value
Model architecture

Word embedding dimension 100
Lemma embedding dimension 100
POS embedding dimension 100
NE embedding dimension 100
GloVe MLP hidden size 125
ELMo MLP hidden size 512
# of layers in encoder 3
Encoder LSTM hidden size 512
Edge MLP hidden size 600
Edge label MLP hidden size 600
Frame prediction MLP hidden size 600
AMR decoder type† deep small

Training conditions
Multi-task (pre)training
Word drop probability 0.2
POS drop probability 0.2
Lemma drop probability 0.2
Encoder dropout rate 0.5
Biaffine input dropout 0.45
Edge prediction dropout 0.25
Edge label prediction dropout 0.33
Learning rate 0.00006
Adam (β1, β2)† (0.9, 0.999)
Loss coefficient λbiaf 1.0
Loss coefficient λlabel 0.15
Loss coefficient λframe 0.5
Loss coefficient λremote

ucca 0.5
Loss coefficient λdec

ucca 0.08
Loss coefficient λdec

amr 1.2
Loss coefficient λcov

amr 1.0
# of epochs 60
Batch size 128

DM/PSD fine-tuning
Word drop probability 0.1
POS drop probability 0.2
Lemma drop probability 0.2
Encoder dropout rate 0.25
Biaffine input dropout 0.45
Edge prediction dropout 0.25
Learning rate 0.001‡

Adam (β1, β2)† (0, 0.95)‡
Frame prediction dropout 0.55
Edge label prediction dropout 0.33
Loss coefficient λlabel

fw 0.025
Loss coefficient λframe

fw 0.5
# of epochs 50
Batch size 64

UCCA fine-tuning
Word drop probability 0.1
POS drop probability 0.1
Lemma drop probability 0.4
Encoder dropout rate 0.5
Biaffine input dropout 0.2
Edge prediction dropout 0.25
Learning rate 0.00117
Adam (β1, β2)† (0, 0.95)
Edge label prediction dropout 0.25
Decoder dropout 0.5
Loss coefficient λedge

ucca 0.3
Loss coefficient λlabel

ucca 0.3
Loss coefficient λremote

ucca 0.2
Loss coefficient λdec

ucca 0.2
# of epochs 40
Batch size 100

AMR fine-tuning
Word drop probability 0.1
POS drop probability 0.2
Lemma drop probability 0.2
Encoder dropout rate 0.1
Biaffine input dropout 0.2
Edge prediction dropout 0.25
Learning rate 0.00059
Adam (β1, β2)† (0, 0.95)
Edge label prediction dropout 0.33
Decoder dropout 0.33
Loss coefficient λlabel

amr 0.395
Loss coefficient λcov

amr 0.339
Loss coefficient λgen

amr 0.271
# of epochs 50
Batch size 64

† See Table 4.
‡ These are bugs. They should have been different values according to Table 4.
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Abstract

We present a system description of our contri-
bution to the CoNLL 2019 shared task, Cross-
Framework Meaning Representation Pars-
ing (MRP 2019). The proposed architecture
is our first attempt towards a semantic parsing
extension of the UDPipe 2.0, a lemmatization,
POS tagging and dependency parsing pipeline.

For the MRP 2019, which features five for-
mally and linguistically different approaches
to meaning representation (DM, PSD, EDS,
UCCA and AMR), we propose a uniform,
language and framework agnostic graph-to-
graph neural network architecture. With-
out any knowledge about the graph struc-
ture, and specifically without any linguistically
or framework motivated features, our system
implicitly models the meaning representation
graphs.

After fixing a human error (we used earlier in-
correct version of provided test set analyses),
our submission would score third in the com-
petition evaluation. The source code of our
system is available at https://github.
com/ufal/mrpipe-conll2019.

1 Introduction

The goal of the CoNLL 2019 shared task,
Cross-Framework Meaning Representation Pars-
ing (MRP 2019; Oepen et al., 2019) is to parse a
raw, unprocessed sentence into its corresponding
graph-structured meaning representation.

The MRP 2019 features five formally and lin-
guistically different approaches to meaning rep-
resentation with varying degree of linguistic and
structural complexity:

• DM: DELPH-IN MRS Bi-Lexical Depen-
dencies (Ivanova et al., 2012),
• PSD: Prague Semantic Dependencies (Hajič

et al., 2012; Miyao et al., 2014),

• EDS: Elementary Dependency Structures
(Oepen and Lønning, 2006),
• UCCA: Universal Conceptual Cognitive An-

notation (Abend and Rappoport, 2013),
• AMR: Abstract Meaning Representation

(Banarescu et al., 2013).

In line with the shared task objective to ad-
vance uniform meaning representation parsing
across distinct semantic graph frameworks, we
propose a uniform, language and structure ag-
nostic graph-to-graph neural network architecture
which models semantic representation from input
sequences. The system is an extension of the
UDPipe 2.0, a tagging, lemmatization and syntac-
tic tool (Straka, 2018; Straka et al., 2019).

Our contributions are the following:

• We propose a uniform semantic graph pars-
ing architecture, which accommodates sim-
ple directed cyclic graphs, independently on
the underlying semantic formalism.

• Our method does not use linguistic informa-
tion such as structural constraints, dictionar-
ies, predicate banks or lexical databases.

• We added a new extension to UDPipe 2.0, a
lemmatization, POS tagging and dependency
parsing tool. The semantic extension parses
semantic graphs from the raw token input,
making use of the POS and lemmas (but not
syntax) from the existing UDPipe 2.0.

• As an improvement over UDPipe 2.0, we use
the “frozen” contextualized embeddings on
the input (BERT; Devlin et al., 2019) in the
same way as Straka et al. (2019).

After fixing a human error (we used earlier in-
correct version of provided test set analyses), our
submission would score third in the competition
evaluation.
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2 Related Work

Numerous parsers have been proposed for parsing
semantic formalisms, including the systems par-
ticipating in recent semantic parsing shared tasks
SemEval 2016 and SemEval 2017 (May, 2016;
May and Priyadarshi, 2017) featuring AMR; and
SemEval 2019 (Hershcovich et al., 2019) featuring
UCCA. However, proposals of general, formalism
independent semantic parsers are scarce in the lit-
erature.

Hershcovich et al. (2018) propose a gen-
eral transition-based parser for directed, acyclic
graphs, able to parse multiple conceptually and
formally different schemes. TUPA is a transition-
based top-down shift-reduce parser, while ours, al-
though also based on transitions/operations, mod-
els the graph as a sequence of layered, iterative
graph-like operations, rather (but not necessarily)
in a bottom-up fashion. Consequently, our archi-
tecture allows parsing cyclic graphs and is not re-
stricted to single-rooted graphs. Also, we do not
enforce any task-specific constraints, such as re-
striction on number of parents in UCCA or num-
ber of children given by PropBank in AMR and
we completely rely on the neural network to im-
plicitly infer such framework-specific features.

3 Methods

3.1 Uniform Graph Model

The five shared task semantic formalisms differ
notably in specific formal and linguistic assump-
tions, but from a higher-level view, they univer-
sally represent the full-sentence semantic analy-
ses with directed, possibly cyclic graphs. Uni-
versally, the semantic units are represented with
graph nodes and the semantic relationships with
graph edges.

To accommodate these semantic structures, we
model them as directed simple graphs G =
(V,E), where V is a set of nodes and E ⊆
{(x, y) | (x, y) ∈ V 2, x 6= y} is a set of directed
edges.1

One of the most fundamental differences be-
tween the five featured MRP 2019 frameworks lies
apparently in the relationship between the graph
structure (graph nodes) and the input surface word
forms (tokens). In the MRP 2019, this relation-
ship is called anchoring and its degree varies from

1Specifically, our graphs are directed and allow cycles.
Furthermore, they are simple graphs, not multigraphs.

a tight connection between graph nodes being di-
rectly corresponding to surface tokens in Flavor 0
frameworks (DM and PSD) through more relaxed
relationship Flavor 1 (EDS and UCCA) in which
arbitrary parts of the sentence can be represented
in the semantic graph, to a completely unanchored
semantic graph of Flavor 2 in the AMR frame-
work.

To alleviate the need for a framework-specific
handling of the anchoring, we broaden our under-
standing of the semantic graph: We consider the
tokens as nodes and the anchors (connections from
the graph nodes to tokens) as regular edges, thus
the anchors are naturally learned jointly with the
graph without an explicit knowledge of the under-
lying semantic formalism.

In order to represent anchors as regular edges
in the graph, the input tokenization needs to be
consistent with the annotated anchors: each an-
chor must match one or multiple input tokens. In
order to achieve the exact anchor-token(s) match,
we created a simple tokenizer. The tokenizer is
uniform for all frameworks with a slight change to
capture UCCA’s fine-grained anchoring; see Fig-
ure 1 for the pseudocode.2

Furthermore, to represent anchors as edges, the
anchors have to be annotated in the data, which
is not the case for AMR. We therefore utilize ex-
ternally generated anchoring from the JAMR tool
(Flanigan et al., 2016).3

3.2 Graph-to-graph Parser

We propose a general graph-to-graph parser which
models the graph meaning representation as a
sequence of layered group transformations from
input from input sequence to meaning graphs.
A schematic overview of our architecture is pre-
sented in Figure 2.

Having reduced the task to a graph-to-graph
transformation modeling, we iteratively build the
graph from its initial state (a set of isolated nodes
– tokens) by alternating between two layer-wise
transformations:

1. AddNodes: The first operation creates new
nodes and connects them to already existing

2Instead of generating tokens consistent with the anchors,
the anchoring edges could be allowed to refer only to a part of
a token (for example by having two attributes first anchored
token character and last anchored token character), which is
an approach we plan to adopt in the future.

3We plan to model the anchors jointly using an attention
mechanism (Zhang et al., 2019a).
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1. Any single non-space character
2a. UCCA: \w+[$]?
2b. other: \w(\w-[ˆ-\s]|&|/|’S\w|’[A-RT-Z]|[.](?=.*\w)\w|\d)*[$]?;

\d+-\d+; \d+,\d+; \d+,\d+,\d+
3. --+; ‘+; ’+; [.]+; !+
4. n’t; ’s; ’d ; ’m ; ’re ; ’ve ; ’ll
5. Split the following word into two tokens: would|n’t; could|n’t; ca|n’t; is|n’t; are|n’t; ai|n’t;

was|n’t; were|n’t; do|n’t; does|n’t; did|n’t; should|n’t; have|n’t; has|n’t; had|n’t;
wo|n’t; might|n’t; need|n’t; can|not; wan|na; got|ta

Figure 1: Tokenizer pseudocode as a sequence of regular expressions. Expressions with higher number override
previous ones.

nodes. Specifically, for each already exist-
ing node we decide whether to a) create a
new node and connect it as a parent, b) cre-
ate a new node and connect it as a child, c)
do nothing. When a new node is created, its
label and all its properties are generated too.
Intuitively, anchors are modeled in the first
step from the initial set of individual nodes
(tokens) and in the next steps, higher-layer
nodes are modeled. As a special case,
AddNodes is relatively simple for the Fla-
vor 0 frameworks (DM and PSD): zero or one
node is created for every token in the first and
only AddNodes iteration. This is illustrated
in Table 1, which shows node coverage after
performing a fixed number of AddNodes it-
erations, reaching 100% after one AddNodes
iteration in DM and PSD.

2. AddEdges: The second operation creates
edges between the new nodes and any other
existing nodes (both old and new) using
a classifier for each pair of nodes. Any num-
ber of edges can be connected to a newly cre-
ated node.

At the end of each iteration, the created nodes
and edges are frozen and the computation moves
to its next iteration. We describe the crucial part
of the graph modeling, token, node and edge rep-
resentation, in Section 3.4.

An example of a graph step by step build-up is
shown in Figure 2.

In contrast to purely sequential series of sin-
gle transitions, such as adding a new edge in one
step, adding new nodes and edges in a layer-wise
fashion improves runtime performance and might
avoid error accumulation by performing many in-
dependent decisions. On the other hand, we as-
sume that creating nodes from a single existing
one might be problematic, especially if the graph
has constituency structure.

3.2.1 Creating AddNodes Operations

For training, a sequence of the AddNodes oper-
ations must be created. For this purpose, we de-
fine an ordering of the graph nodes which guides
the graph traversal. The initial order of the iso-
lated graph nodes set (tokens) is left to right, the
first token being the first to be visited. The other
graph nodes’ ordering is then induced by the order
of creation.

Given a training graph, we then generate a se-
quence of AddNodes operations. In every itera-
tion, we traverse all existing nodes in the graph
in the above defined order and for each node, we
consider all its not-yet-created neighbors, from
which we choose the one which is “in the low-
est layer”. This is motivated by our intention to
build the graph in a bottom-up fashion. Specifi-
cally, we choose such a node which has the small-
est number of token descendants (based on the
assumption that nodes in the lower levels tend
to govern less descendants than the nodes in the
higher levels), and if there are several such nodes,
the one where the token descendant indices are
smallest in the ordering. Finally, we favour cre-
ating parents to creating children, and if a node
can be created as a parent, we never create it as
a child.

As a special case, the first iteration always tra-
verses the set of isolated nodes (tokens) and con-
nects their immediate parents with the anchor-
defined edges. For DM and PSD frameworks, this
is the first and only iteration of the AddNodes op-
erations.

The number of required iterations to generate all
nodes and construct complete graphs is presented
in Table 1. Performing three iterations is enough
to cover more than 99% of nodes in all frame-
works, but EDS and AMR frameworks sometimes
require more than 10 iterations to generate a full
graph.

129



Mr. Merksamer is leading the buy-out .

(a) Left: Initial configuration with tokens only. Right: Token representation encoder architecture.
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(b) Left: First AddNodes operation. Right: Architecture of the new node classifier and representation encoder.
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(c) Left: First AddEdges operation. Right: Architecture of the edge classifier and updated node representation encoder.

Potential Parent
Node Repr.

Potential Child
Node Repr.

tanh
Edge

softmax
tanh

Edge
attr 1

softmax

...
Edge

attr A
softmax

Edge
attr 1

embed.

...
Edge

attr A
embed.

...

...
+...

Connecting
repr. of all

created
edges

adjacent
to the node.

(d) Left: Second AddNodes operation. Right: Architecture of the new node classifier and representation encoder.

(e) Left: Second AddEdges operation. Right: Architecture of the edge classifier and updated node representation encoder.
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Figure 2: Our graph-to-graph architecture schematic overview and an example of semantic graph build-up for the
sentence “Mr. Merksamer is leading the buy-out.” from the EDS framework (Oepen and Lønning, 2006). Note
that the weights for all classification layers and for all displayed fully connected layers (displayed with dashed
border) are different for every iteration of AddNodes/AddEdges operations.
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Framework Iterations
1 2 3 4 5 6 7 8 9 10

DM Nodes 100.00%
Graphs 100.00%

PSD Nodes 100.00%
Graphs 100.00%

EDS Nodes 69.18% 97.18% 99.31% 99.64% 99.90% 99.95% 99.97% 99.99% 100.00% 100.00%
Graphs 2.15% 59.31% 91.68% 93.09% 98.84% 99.46% 99.55% 99.87% 99.99% 99.99%

UCCA Nodes 69.63% 97.57% 99.87% 99.97% 100.00% 100.00%
Graphs 0.00% 43.72% 97.29% 99.19% 99.92% 100.00%

AMR Nodes 78.23% 96.15% 99.01% 99.69% 99.88% 99.94% 99.96% 99.97% 99.98% 99.99%
Graphs 19.73% 74.58% 93.48% 98.18% 99.49% 99.86% 99.94% 99.96% 99.97% 99.98%

Table 1: Coverage of training graphs after a fixed number of the layer-wise iterations. Rows labeled “Nodes” show
percentage of covered nodes. Rows labeled “Graphs” show percentage of complete graphs.

During inference, we currently perform a fixed
number of iterations of AddNodes and AddEdges
operations; we use one iteration for DM and PSD,
two iterations for UCCA and AMR, and three it-
erations for EDS. Alternatively, we could allow
a dynamic number of iterations, stopping when
AddNodes generates no new nodes.

3.3 Node Labels and Properties Encoding
Besides the graph structure, node labels and prop-
erties must also be modeled. For some node labels
or properties, it might be beneficial to generate
them relatively to a token. For example, when cre-
ating a lemma look from a token looked, it might
be easier to generate it as a rule remove the last
two token characters instead of generating look di-
rectly. Such approach was taken by UDPipe lem-
matizer (Straka et al., 2019), which produced the
best results in lemmatization in Task 2 of the SIG-
MORPHON 2019 Shared Task.

We adopt this approach, and generate all node
labels and properties using a simple classification
into a collection of rules. Each rule can either gen-
erate an independent value (which we call abso-
lute encoding) or it describes how a value should
be created from a token (which we call relative
encoding). For detailed description of the rela-
tive encoding rules, please refer to Straka et al.
(2019). In short, the lemmas in UDPipe are gen-
erated by classifying into a set of character edit
scripts performed on the prefix and suffix. First,
a common root is found between the input and the
output (word form and lemma). If there is no com-
mon character, the lemma is considered irregular
and an absolute encoding is used. Otherwise, the
shortest edit script is computed for the prefix and
suffix.

In our setting, however, we need to extend
the UDPipe approach in two directions. First,

Framework Property Absolutely Relatively
encoded values encoded values

DM
label 26 907 1 086
pos 38 356
frame 468 2613

PSD
label 32 284 774
pos 42 314
frame 5 294 8 868

EDS label 15 905 4 339
carg 13 667 427

UCCA — — —

AMR

label 14 554 6 278
op1 7 377 1 402
op2 3 673 545
op3 1 149 242
op4 482 113
op5 245 56
ARG1 48 30
ARG2 127 68
ARG3 22 20
quant 885 603
value 861 590
time 110 111
year 153 58
li 56 40
mod 79 33
day 31 57
month 14 17
. . . . . . . . .

Table 2: Cardinality of absolute and relative encoded
node properties in all frameworks. The chosen encod-
ing is displayed in bold.

some properties like pos should never be rela-
tively encoded. Therefore, during data loading,
we consider both allowing and disallowing rela-
tive encoding, and choose the approach yielding
the smaller number of classes. As Table 2 indi-
cates, even such a simple heuristic seems satisfac-
tory.

Second, compared to lemmatization, where the
lemma and the original form are single words, in
our setting both the property and the anchored to-
kens can be a sequence of words (e.g., “Pierre
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Vinken”). We overcome this issue by encoding
each word of a property independently, and for
every property word, we choose a subsequence of
anchoring tokens which yields the shortest relative
encoding.

3.4 Graph Representation

Token Encoder. The input representation is a se-
quence of tokens encoded as a concatenation of
word and character-level word vectors:

• trainable word embeddings (WE),
• character-level word embeddings (CLE):

bidirectional GRUs in line with Ling et al.
(2015). We represent every Unicode char-
acter with a vector of dimension 256, and
concatenate GRU output for forward and re-
versed word characters. The character-level
word embeddings are trained together with
the network.
• pre-trained FastText word embeddings of di-

mension 300 (Mikolov et al., 2018),4

• pre-trained (“frozen”) contextual BERT em-
beddings of dimension 768 (Devlin et al.,
2019).5 We average the last four layers of
the BERT model and we produce a word em-
bedding for a token as an average of the cor-
responding BERT subword embeddings.
Contextualized embeddings have recently
been shown to improve performance of many
NLP tasks, see for example Straka et al.
(2019) in the context of UDPipe and POS
tagging, lemmatization and dependency pars-
ing. Therefore, we expected that utilization
of BERT embeddings would improve results
considerably, which was the case, as demon-
strated in Section 4.1.

Furthermore, the input tokens could be pro-
cessed by a POS tagger, lemmatizer, dependency
parser or a named entity recognizer. If such anal-
yses are available, they can be used as additional
embeddings of input tokens. Specifically, we uti-
lize the POS tags and lemmas provided in the
shared task. We did not experiment with depen-
dency parses, which we plan to do in the future.
Furthermore, we tried utilizing the Illinois Named
Entity Tagger (Ratinov and Roth, 2009), but it did
not improve our results.

4https://fasttext.cc/docs/en/
english-vectors.html

5We use the Base English Uncased model from
https://github.com/google-research/bert.

All available embeddings for a token are con-
catenated and processed with two bidirectional
LSTM layers with residual connections.
Node Encoder. A node is represented by a con-
catenation of these features:

• the (transitively) attaching token representa-
tion (every node has exactly one token which
generated it using the AddNodes operations),
transformed by a dense layer followed by
tanh nonlinearity; every AddNodes iteration
has its own dense layer weights,
• the node label and properties embeddings,
• an average of edge representations of all con-

nected edges.

A natural extension would be to represent all
node’s descendants instead of the one token gener-
ating this node through a sequence of AddNodes,
because the current implementation seems to gen-
erate suboptimal representations in later iterations.
We leave a proper way of propagating all informa-
tion through the graph as our future work.
Edge Representation. An edge is represented by
a sum of its label and attributes embeddings.

3.5 Decoders

In the AddNodes operation, we employ the fol-
lowing classification decoders, each utilizing the
node representation and consisting of a fully con-
nected layer followed by a softmax activation:

• decide among three possibilities, whether to
a) add a node as a parent, b) add a node as a
child, or c) do nothing;
• generate node label;
• for each property, generate its value (or a spe-

cial class NONE).

During training, we sum the losses of the de-
coders, apart from the situation when no new node
is created, in which case we ignore the label and
properties losses.

In the AddEdges operation, we consider all
edges to and from the newly created nodes. Utiliz-
ing all suitable pairs of nodes, we decide for each
pair separately whether to add an edge or not.

Although biaffine attention seems to be the
preferred architecture for dependency parsing re-
cently (Zeman et al., 2018), in our experiments
it performed poorly when we used it for deciding
whether to add an edge between any pair of nodes
individually. Our hypothesis is that the range of
the biaffine attention output is changing rapidly.
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That is not an issue when the outputs “compete”
with each other in a softmax layer, but is problem-
atic when we compare each with a fixed threshold.

Consequently, we utilized a Bahdanau-like at-
tention (Bahdanau et al., 2014) instead. Specif-
ically, we pass potential parent and child nodes’
representations through a pair of fully connected
layers with the same output dimensionality, sum
the results, apply a tanh nonlinearity, and attach
a binary classifier (a fully connected layer with
two outputs and a softmax activation) indicating
whether the edge should be added.6

In order to predict edge label and attributes, we
repeat the same attention process (pass potential
parent and child nodes’ representation through a
different pair of fully connected layers, sum and
tanh), and attach classifiers for edge labels and as
many edge attributes as present in the data.

Lastly, in order to predict top nodes, we em-
ploy a sigmoid binary classifier processing the fi-
nal node representations.

Finally, every iteration of AddNodes and
AddEdges operations has invididual set of
weights for all layers described in this section.

3.6 Training

We implemented the described architecture using
TensorFlow 2.0 beta (Agrawal et al., 2019). The
eager evaluation allowed us to construct inputs to
AddNodes and AddEdges for every batch specif-
ically, so we could easily handle dynamic graphs.

We trained the network using a lazy variant of
Adam optimizer (Kingma and Ba, 2014)7 with
β2 = 0.98, for 10 epochs with a learning rate of
10−3 and for 5 additional epochs with a learning
rate 10−4 (the difference being UCCA which used
15 and 10 epochs, respectively, because of consid-
erably smaller training data). We utilized a batch
size of 64 graphs.8 The training time on a sin-
gle GPU was 1-4 hours for DM, PSD, EDS and
UCCA, and 10 hours for AMR.

For replicability, we also describe the used hy-
perparameters in detail. The only differences
among the frameworks were:

• slightly different tokenizer for UCCA (Fig 1),

6We always add an edge generated in the AddNodes op-
eration independently on the prediction for that edge in the
AddEdges operation.

7tf.contrib.opt.lazyadamoptimizer
8Because we trained on a 8GB GPU, we actually needed

to process two batches of size 32 and only then perform pa-
rameter update using summed gradients.

• larger number of training epochs for UCCA,
• number of layer-wise iterations: 1, 1, 3, 2,

2 for DM, PSD, EDS, UCCA and AMR, re-
spectively.

In the encoder, we utilized trainable embeddings
of dimension 512, and trainable character-level
embeddings using character embeddings of size
256 and a single layer of bidirectional GRUs with
256 units. We processed token embeddings using
two layers of bidirectional LSTMs with residual
connections and a dimension of 768. The node
representations also had dimensionality 768, as
did node label and properties embeddings. We
employed dropout with rate 0.3 before and after
every LSTM layer and on all node representa-
tions, and utilized also word dropout (zeroing the
whole WE for a given word) with a rate of 0.2. In
the AddEdges operation, all attention layers have
a dimensionality of 1024.

3.7 Data Preprocessing

We created two train/dev splits from the train-
ing data provided by the organizers: Firstly, a
90%/10% train/dev split was used to train the
model and tune the hyperparameters of the com-
petition entry. For the ablation experiments in the
post-competition phase, we later tried a 99%/1%
train/dev split, which improved the results only
marginally, as shown in Section 4.1.

We further used the provided morphological an-
notations and the JAMR anchoring for the AMR
framework (Flanigan et al., 2016).

4 Results

We present the overall results of our system in
Table 3. Please note that our official shared task
submission contained an error – test data compan-
ion analyses had been updated during the evalua-
tion phase, but we used the original incorrect ones
for DM, PSD and EDS frameworks. The error
was discovered only after the official deadline, at
which point we sent a bugfix submission using the
same trained models, the only difference being the
utilization of the correct test data analyses during
prediction. We present both these submissions in
the Table 3, but refer only to the bugfix submission
from now on.

The overall results of our system using the of-
ficial MRP metric are present in Table 3. All re-
ported scores are macro-averaged F1 scores of all
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System Tops Labels Properties Anchors Edges Attributes All
Original ST submission 75.12% 6 63.99% 7 56.53% 6 69.53% 6 62.17% 7 7.85% 4 74.74% 6
Bugfix ST submission 81.47% 6 73.06% 1 69.95% 1 77.23% 3 73.89% 5 7.87% 4 83.96% 3
99% training data 80.59% 6 73.06% 1 70.18% 1 77.35% 3 74.27% 5 7.96% 4 84.14% 3
No BERT embeddings 70.50% 8 70.71% 4 67.01% 4 76.02% 4 65.02% 6 5.30% 6 78.99% 5
Ensemble 81.13% 6 73.39% 1 70.82% 1 77.57% 3 75.85% 4 8.28% 3 85.05% 3
HIT-SCIR (Che et al., 2019) 90.41% 2 70.85% 3 69.86% 1 77.61% 2 79.37% 1 12.40% 1 86.20% 1
SJTU–NICT (Li et al., 2019) 91.50% 1 71.24% 2 68.73% 2 77.62% 1 77.74% 2 9.40% 2 85.27% 2
SUDA–Alibaba (Zhang et al., 2019b) 86.01% 5 69.50% 4 68.24% 3 77.11% 3 76.85% 3 8.16% 3 83.96% 3
Saarland (Donatelli et al., 2019) 86.70% 4 71.33% 1 61.11% 5 75.08% 5 75.01% 4 — 81.87% 4

Table 3: Overall results, macro-averaged on all frameworks. We present F1 scores and ranks compared to official
ST submissions. Results with rank 1 are typeset in bold, best results in each column have gray background .

five frameworks. The results for individual frame-
works are presented in Table 4.

Our bugfix submission would score third in in
the macro-averaged all metric. Overall, our sys-
tem reaches high accuracy in node labels and
properties prediction, ranking first in both of them.
These predictions employ the relative encoding
extended from UDPipe and demonstrate its effec-
tiveness.

The weakest points of our system are the
top nodes prediction and edges prediction. We
hypothesise that the lower performance of the
AddEdges operation could be improved by better
node representation (i.e., including all dependent
tokens of a node, not only the one token generating
the node) and by a better edge prediction architec-
ture (i.e., global decision over edge connection in
the context of all graph nodes instead of consider-
ing only the current node pair).

Framework-wise, our system would achieve
ranks 5, 4, 4, 4 and 4 on DM, PSD, EDS, UCCA
and AMR, respectively, showing relatively bal-
anced performance. The largest absolute perfor-
mance gap of our system occurs on UCCA, where
we reach 8 percent points lower score than the best
system, which is supposedly caused by the fact
that there are no labels and properties which our
system excels in predicting, and also by the con-
stituency structure of the UCCA graphs which we
represent poorly.

4.1 Ablation Experiments

Given that our submission utilized only 90% of the
available training data, we also evaluated a vari-
ant employing 99% of the training data, keeping
the last 1% for error detection. However, as Ta-
bles 3 and 4 show, the results are nearly identical.

In order to asses the BERT embeddings effect,
we further evaluated a version of our system with-

out them. The macro-averaged all performance
without BERT embeddings is substantially lower,
79% compared to 84%. Generally all metrics de-
crease without BERT embeddings, showing that
contextual embeddings help “everywhere”.

Lastly, we evaluated performance of an 5-model
ensemble. Each model was trained using 99% of
the training data and utilized different random ini-
tialization. The system performance increased by
more than 1 percent point. Although the overall
rank of the ensemble is unchanged, the rank on
individual frameworks increased from 5 to 2 on
DM, from 4 to 1 on PSD, 4 to 3 on EDS and 4 to
2 on AMR. As with the non-ensemble system, the
weakest point of our solution are the edge predic-
tions, which rank 8, 7, 6, 4 and 3 on DM, PSD,
EDS, UCCA and AMR, respectively.

5 Conclusions

We introduced a uniform graph-to-graph architec-
ture for parsing into semantic graphs. The model
implicitly learns the linguistic information and the
graph structure without the need for any specific
hand-crafted or structural knowledge and is suit-
able for any directed graph, including graphs with
cycles. In contrast to a transition-based system,
we build the graph in a layer-wise fashion, with
operations joined in groups.
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System Tops Labels Properties Anchors Edges Attributes All
Bugfix ST submission 87.39% 8 97.29% 1 94.50% 5 99.02% 6 88.32% 8 — 94.66% 5
99% training data 88.36% 8 97.38% 1 94.57% 5 99.04% 6 88.47% 8 — 94.75% 4
No BERT embeddings 80.70% 9 96.24% 2 92.19% 7 98.45% 8 80.06% 10 — 91.75% 8
Ensemble 89.06% 7 97.51% 1 94.86% 4 99.12% 3 89.72% 8 — 95.17% 2
HIT-SCIR (Che et al., 2019) 92.65% 3 93.00% 4 95.33% 3 99.28% 1 92.54% 2 — 95.08% 2
SJTU–NICT (Li et al., 2019) 93.26% 2 94.89% 3 95.49% 2 99.27% 2 92.39% 3 — 95.50% 1
SUDA–Alibaba (Zhang et al., 2019b) 91.13% 6 90.27% 8 91.51% 7 98.16% 8 89.84% 7 — 92.26% 7
Saarland (Donatelli et al., 2019) 85.87% 8 96.82% 1 93.55% 5 99.05% 5 90.95% 6 — 94.69% 4

(a) DM framework

System Tops Labels Properties Anchors Edges Attributes All
Bugfix ST submission 94.48% 6 95.94% 1 92.61% 2 99.00% 4 76.06% 7 — 90.96% 4
99% training data 86.49% 9 96.05% 1 92.70% 2 99.00% 3 76.37% 7 — 90.89% 4
No BERT embeddings 67.57% 12 95.14% 3 90.72% 7 98.47% 8 68.22% 10 — 87.58% 8
Ensemble 87.35% 8 96.19% 1 93.04% 2 99.02% 3 78.20% 7 — 91.51% 1
HIT-SCIR (Che et al., 2019) 96.03% 3 89.30% 5 93.10% 1 99.12% 1 79.65% 3 — 90.55% 4
SJTU–NICT (Li et al., 2019) 96.30% 1 93.14% 4 91.57% 5 99.11% 2 80.27% 1 — 91.19% 3
SUDA–Alibaba (Zhang et al., 2019b) 86.55% 8 84.51% 8 85.03% 8 97.51% 8 75.22% 7 — 85.56% 8
Saarland (Donatelli et al., 2019) 93.50% 6 95.21% 2 92.20% 4 99.00% 3 78.32% 6 — 91.28% 1

(b) PSD framework

System Tops Labels Properties Anchors Edges Attributes All
Bugfix ST submission 82.82% 6 89.99% 3 91.21% 1 92.67% 4 84.76% 7 — 89.12% 4
99% training data 83.79% 6 90.19% 3 91.19% 1 92.88% 4 85.09% 6 — 89.37% 4
No BERT embeddings 73.91% 8 84.52% 5 85.76% 3 89.08% 5 76.73% 7 — 83.43% 7
Ensemble 84.59% 6 90.86% 2 92.00% 1 93.52% 3 86.55% 6 — 90.29% 3
HIT-SCIR (Che et al., 2019) 85.23% 5 89.45% 3 89.54% 2 94.29% 2 88.77% 3 — 90.75% 2
SJTU–NICT (Li et al., 2019) 87.72% 3 89.42% 4 77.53% 4 93.37% 3 87.82% 4 — 89.90% 3
SUDA–Alibaba (Zhang et al., 2019b) 89.94% 2 91.20% 1 89.72% 1 94.86% 1 89.66% 2 — 91.85% 1
Saarland (Donatelli et al., 2019) 86.31% 4 90.61% 2 78.99% 3 86.55% 6 90.96% 1 — 89.10% 4

(c) EDS framework

System Tops Labels Properties Anchors Edges Attributes All
Bugfix ST submission 62.51% 9 — — 95.44% 2 59.45% 4 39.35% 4 73.24% 4
99% training data 63.53% 9 — — 95.80% 2 60.51% 4 39.81% 4 73.95% 4
No BERT embeddings 59.40% 10 — — 94.11% 5 48.70% 8 26.52% 6 66.90% 7
Ensemble 63.28% 9 — — 96.19% 2 62.14% 4 41.39% 3 75.22% 4
HIT-SCIR (Che et al., 2019) 100.00% 1 — — 95.36% 3 72.66% 1 61.98% 1 81.67% 1
SJTU–NICT (Li et al., 2019) 95.31% 5 — — 96.36% 1 65.56% 3 47.00% 2 77.80% 3
SUDA–Alibaba (Zhang et al., 2019b) 99.56% 3 — — 95.02% 4 67.74% 2 40.80% 3 78.43% 2
Saarland (Donatelli et al., 2019) 80.95% 8 — — 90.81% 6 52.66% 6 — 67.55% 6

(d) UCCA framework

System Tops Labels Properties Anchors Edges Attributes All
Bugfix ST submission 80.17% 6 82.09% 4 71.44% 5 — 60.83% 6 — 71.83% 4
99% training data 80.77% 6 81.69% 4 72.45% 4 — 60.93% 6 — 71.73% 5
No BERT embeddings 70.91% 8 77.67% 6 66.36% 6 — 51.39% 8 — 65.29% 7
Ensemble 81.39% 6 82.40% 3 74.21% 4 — 62.65% 3 — 73.03% 2
HIT-SCIR (Che et al., 2019) 78.15% 7 82.51% 2 71.33% 5 — 63.21% 2 — 72.94% 2
SJTU–NICT (Li et al., 2019) 84.88% 4 78.78% 5 79.08% 1 — 62.64% 3 — 71.97% 3
SUDA–Alibaba (Zhang et al., 2019b) 62.86% 9 81.53% 4 74.96% 3 — 61.78% 5 — 71.72% 5
Saarland (Donatelli et al., 2019) 86.89% 1 74.02% 6 40.79% 7 — 62.16% 4 — 66.72% 6

(e) AMR framework

Table 4: Results on individual frameworks. We present F1 scores and ranks compared to official ST submissions.
Results with rank 1 are typeset in bold, best results in each column have gray background .
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2012. Announcing Prague Czech-English depen-
dency treebank 2.0. In Proceedings of the Eighth In-
ternational Conference on Language Resources and
Evaluation (LREC-2012), pages 3153–3160, Istan-
bul, Turkey. European Languages Resources Asso-
ciation (ELRA).

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2018. Multitask parsing across semantic representa-
tions. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 373–385, Melbourne,
Australia. Association for Computational Linguis-
tics.

Daniel Hershcovich, Zohar Aizenbud, Leshem
Choshen, Elior Sulem, Ari Rappoport, and Omri
Abend. 2019. SemEval-2019 task 1: Cross-lingual
semantic parsing with UCCA. In Proceedings
of the 13th International Workshop on Semantic
Evaluation, pages 1–10, Minneapolis, Minnesota,
USA. Association for Computational Linguistics.

Angelina Ivanova, Stephan Oepen, Lilja Øvrelid, and
Dan Flickinger. 2012. Who did what to whom?:
A contrastive study of syntacto-semantic dependen-
cies. In Proceedings of the Sixth Linguistic Annota-
tion Workshop, LAW VI ’12, pages 2–11, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
Method for Stochastic Optimization. International
Conference on Learning Representations.

Zuchao Li, Hai Zhao, Zhuosheng Zhang, Rui Wang,
Masao Utiyama, and Eiichiro Sumita. 2019. SJTU–
NICT at MRP 2019: Multi-task learning for end-to-
end uniform semantic graph parsing. In Proceed-
ings of the Shared Task on Cross-Framework Mean-
ing Representation Parsing at the 2019 Conference
on Natural Language Learning, pages 45 – 54, Hong
Kong, China.

Wang Ling, Tiago Luı́s, Luı́s Marujo, Ramón Fernan-
dez Astudillo, Silvio Amir, Chris Dyer, Alan W.
Black, and Isabel Trancoso. 2015. Finding function
in form: Compositional character models for open
vocabulary word representation. CoRR.

Jonathan May. 2016. SemEval-2016 task 8: Mean-
ing representation parsing. In Proceedings of the
10th International Workshop on Semantic Evalua-
tion, SemEval@NAACL-HLT 2016, San Diego, CA,
USA, June 16-17, 2016, pages 1063–1073. The As-
sociation for Computer Linguistics.

Jonathan May and Jay Priyadarshi. 2017. SemEval-
2017 task 9: Abstract meaning representation
parsing and generation. In Proceedings of the

136



11th International Workshop on Semantic Evalua-
tion (SemEval-2017), pages 536–545, Vancouver,
Canada. Association for Computational Linguistics.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. 2018. Ad-
vances in Pre-Training Distributed Word Represen-
tations. In Proceedings of the International Confer-
ence on Language Resources and Evaluation (LREC
2018).

Yusuke Miyao, Stephan Oepen, and Daniel Zeman.
2014. In-House. An ensemble of pre-existing off-
the-shelf parsers. In Proceedings of the 8th Interna-
tional Workshop on Semantic Evaluation, page 63 –
72, Dublin, Ireland.

Stephan Oepen, Omri Abend, Jan Hajič, Daniel Her-
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Abstract

This paper describes the system submission
of our team Amazon to the shared task on
Cross Framework Meaning Representation
Parsing (MRP) at the 2019 Conference for
Computational Language Learning (CoNLL).
Via extensive analysis of implicit alignments
in AMR, we recategorize five meaning rep-
resentations (MRs) into two classes: Lexical-
Anchoring and Phrasal-Anchoring. Then we
propose a unified graph-based parsing frame-
work for the lexical-anchoring MRs, and a
phrase-structure parsing for one of the phrasal-
anchoring MRs, UCCA. Our system submis-
sion ranked 1st in the AMR subtask, and
later improvements shows promising results
on other frameworks as well.

1 Introduction

The design and implementation of broad-coverage
and linguistically motivated meaning representa-
tion frameworks for natural language is attracting
growing attention in recent years. With the ad-
vent of deep neural network-based machine learn-
ing techniques, we have made significant progress
to automatically parse sentences intro structured
meaning representation (Oepen et al., 2014, 2015;
May, 2016; Hershcovich et al., 2019). More-
over, the differences between various representa-
tion frameworks has a significant impact on the
design and performance of the parsing systems.

Due to the abstract nature of semantics, there
is a diverse set of meaning representation frame-
works in the literature (Abend and Rappoport,
2017). In some application scenario, tasks-specific
formal representations such as database queries
and arithmetic formula have also been proposed.
However, primarily the study in computational se-
mantics focuses on frameworks that are theoreti-
cally grounded on formal semantic theories, and

∗∗Work done when Jie Cao was an intern at AWS AI

sometimes also with assumptions on underlying
syntactic structures.

Anchoring is crucial in graph-based meaning
representation parsing. Training a statistical parser
typically starts with a conjectured alignment be-
tween tokens/spans and the semantic graph nodes
to help to factorize the supervision of graph struc-
ture into nodes and edges. In our paper, with
evidence from previous research on AMR align-
ments (Pourdamghani et al., 2014; Flanigan et al.,
2014; Wang and Xue, 2017; Chen and Palmer,
2017; Szubert et al., 2018; Lyu and Titov, 2018),
we propose a uniform handling of three meaning
representations from Flavor-0 (DM, PSD) and
Flavor-2 (AMR) into a new group referred to
as the lexical-anchoring MRs. It supports both
explicit and implicit anchoring of semantic con-
cepts to tokens. The other two meaning represen-
tations from Flavor-1 (EDS, UCCA) is referred
to the group of phrasal-anchoring MRs where the
semantic concepts are anchored to phrases as well.

To support the simplified taxonomy, we named
our parser as LAPA (Lexical-Anchoring and
Phrasal-Anchoring)1. We proposed a graph-based
parsing framework with a latent-alignment mech-
anism to support both explicit and implicit lexi-
con anchoring. According to official evaluation
results, our submission for this group ranked 1st
in the AMR subtask, 6th on PSD, and 7th on
DM respectively, among 16 participating teams.
For phrasal-anchoring, we proposed a CKY-based
constituent tree parsing algorithm to resolve the
anchor in UCCA, and our post-evaluation submis-
sion ranked 5th on UCCA subtask.

2 Anchoring in Meaning Representation

The 2019 Conference on Computational Lan-
guage Learning (CoNLL) hosted a shared task on

1The code is available online at https://github.com/
utahnlp/lapa-mrp
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Cross-Framework Meaning Representation Pars-
ing (MRP 2019, Oepen et al., 2019), which en-
courage participants in building a parser for five
different meaning representations in three dis-
tinct flavors. Flavor-0 includes the DELPH-
IN MRS Bi-lexical Dependencies (DM, Ivanova
et al., 2012) and Prague Semantic Dependen-
cies (PSD, Hajic et al., 2012; Miyao et al., 2014).
Both frameworks under this representation have a
syntactic backbone that is (either natively or by-
proxy) based on bi-lexical dependency structures.
As a result, the semantic concepts in these mean-
ing representations can be anchored to the individ-
ual lexical units of the sentence. Flavor-1 in-
cludes Elementary Dependency Structures (EDS,
Oepen and Lønning, 2006) and Universal Con-
ceptual Cognitive Annotation framework (UCCA,
Abend and Rappoport, 2013), which shows an ex-
plicit, many-to-many anchoring of semantic con-
cepts onto sub-strings of the underlying sentence.
Finally, Flavor-2 includes Abstract Meaning
Representation (AMR, Banarescu et al., 2013),
which is designed to abstract the meaning rep-
resentation away from its surface token. But it
leaves open the question of how these are de-
rived. Previous studies have shown that the nodes
in AMR graphs are predominantly aligned with
the surface lexical units, although explicit anchor-
ing is absent from the AMR representation. In this
section, we review the related work supporting the
claim of the implicit anchoring in AMR is actu-
ally lexical-anchoring, which can be merged into
Flavor-0 when we consider the parsing meth-
ods on it.

2.1 Implicit Anchoring in AMR

AMR tries to abstract the meaning representation
away from the surface token. The absense of ex-
plicit anchoring can present difficulties for pars-
ing. In this section, by extensive analysis on pre-
vious work AMR alignments, we show that AMR
nodes can be implicitly aligned to the leixical to-
kens in a sentence.

AMR-to-String Alignments A straightforward
solution to find the missing anchoring in an AMR
Graph is to align it with a sentence; We denote it
as AMR-to-String alignment.

ISI alignments (Pourdamghani et al., 2014)
first linearizes the AMR graph into a se-
quence, and then use IBM word alignment
model (Brown et al., 1993) to align the lin-

earized sequence of concepts and relations with
tokens in the sentence. According to the AMR
annotation guidelines and error analysis of ISI
aligner, some of the nodes or relations are
evoked by subwords, e.g., the whole graph frag-
ment (p/possible-01 :polarity -) is
evoked by word “impossible”, where the sub-
word "im-" actually evoked the relation polar-
ity and concept "-"; On the other side, some-
times concepts are evoked by multiple words, e.g.,
named entities, (c/city :name (n/name
:op1 "New":op2 "York")), which also
happens in explict anchoring of DM and PSD.
Hence, aligning and parsing with recategorized
graph fragments are a natural solution in aligners
and parsers. JAMR aligner (Flanigan et al., 2014)
uses a set of rules to greedily align single tokens,
special entities and a set of multiple word expres-
sion to AMR graph fragments, which is widely
used in previous AMR parsers (e.g. Flanigan et al.,
2014; Wang et al., 2015; Artzi et al., 2015; Pust
et al., 2015; Peng et al., 2015; Konstas et al., 2017;
Wang and Xue, 2017).

Other AMR-to-String Alignments exists, such
as the extended HMM-based aligner. To consider
more structure info in the linearized AMR con-
cepts, Wang and Xue (2017) proposed a Hidden
Markov Model (HMM)-based alignment method
with a novel graph distance. All of them re-
port over 90% F-score on their own hand-aligned
datasets, which shows that AMR-to-String align-
ments are almost token-level anchoring.

AMR-to-Dependency Alignments Chen and
Palmer (2017) first tries to align an AMR graph
with a syntactic dependency tree. Szubert et al.
(2018) conducted further analysis on dependency
tree and AMR interface. It showed 97% of AMR
edges can be evoked by words or the syntactic de-
pendency edges between words. Those nodes in
the dependency graph are anchored to each lexical
token in the original sentence. Hence, this obser-
vation indirectly shows that AMR nodes can be
aligned to the lexical tokens in the sentence.

Both AMR-to-String and AMR-to-dependency
alignments shows that AMR nodes, including re-
categorized AMR graph fragements, do have im-
plicit lexical anchoring. Based on this, Lyu and
Titov (2018) propose to treat token-node align-
ments as discrete and exclusive alignment matrix
and learn the latent alignment jointly with parsing.
Recently, attention-based seq2graph model also
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Figure 1: Phrasal-anchoring in EDS[wsj#0209013], for the sentence "A similar technique is almost
impossible to apply to other crops, such as cotton, soybeans and rice.". Bold
nodes are similar to the non-terminal nodes in UCCA, which are anchored multiple tokens, thus overlapping with
the anchors of other nodes.

achieved the state-of-the-art accuracy on AMR
parsing (Zhang et al., 2019). However, whether
the attention weights can be explained as AMR
alignments needs more investigation in future.

2.2 Taxonomy of Anchroing

Given the above analysis on implicit alignments in
AMR, in this section, we further discuss the taxon-
omy of anchoring of the five meaning representa-
tions in this shared task.

Lexical-Anchoring According to the bi-lexical
dependency structures of DM and PSD, and im-
plicit lexical token anchoring on AMR, the nodes/-
categorized graph fragments of DM, PSD, and
AMR are anchored to surface lexical units in an
explicit or implict way. Especially, those lexical
units do not overlap with each other, and most of
them are just single tokens, multiple word expres-
sion, or named entities. In other words, when pars-
ing a sentence into DM, PSD, AMR graphs, tokens
in the original sentence can be merged by look-
ing up a lexicon dict when preprocessing and then
may be considered as a single token for aligning
or parsing.

Phrasal-Anchoring However, different from
the lexical anchoring without overlapping, nodes

in EDS and UCCA may align to larger overlapped
word spans which involves syntactic or semantic
pharsal structure. Nodes in UCCA do not have
node labels or node properties, but all the nodes
are anchored to the spans of the underlying sen-
tence. Furthermore, the nodes in UCCA are linked
into a hierarchical structure, with edges going be-
tween parent and child nodes. With certain ex-
ceptions (e.g. remote edges), the majority of the
UCCA graphs are tree-like structures. Accord-
ing to the position as well as the anchoring style,
nodes in UCCA can be classified into the follow-
ing two types:

1. Terminal nodes are the leaf semantic con-
cepts anchored to individual lexical units in the
sentence

2. Non-terminal nodes are usually anchored
to a span with more than one lexical units, thus
usually overlapped with the anchoring of terminal
nodes.

The similar classification of anchoring nodes
also applies to the nodes in EDS, although they do
not regularly form a recursive tree like UCCA. As
the running example in Figure 1, most of the nodes
belongs to terminal nodes, which can be explicitly
anchored to a single token in the original sentence.
However, those bold non-teriminal nodes are an-
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chored to a large span of words. For example,
the node "undef q" with span <53:100> is
aligned to the whole substring starting from “other
crops” to the end; The abstract node with label
imp conj are corresponding to the whole coordi-
nate structure between soybeans and rice

In summary, by treating AMR as an implicitly
lexically anchored MR, we propose a simplified
taxonomy for parsing the five meaning representa-
tion in this shared task.

• Lexical-anchoring: DM, PSD, AMR

• Phrasal-anchoring: EDS, UCCA

3 Model

For the two groups of meaning representations de-
fined in Section 2, in this section, we propose two
parsing framework: a graph-based parsing frame-
work with latent alignment for lexically anchored
MRs, and a minimal span-based CKY parser for
one of the phrasally anchored MRs, UCCA.2

3.1 Graph-based Parsing Framework with
Latent Alignment

Before formulating the graph-based model into a
probabilistic model as Equation 1, we denote some
notations: C, R are sets of concepts (nodes) and
relations (edges) in the graph, and w is a sequence
of tokens. a ∈ Zm as the alignment matrix, each
ai is the index of aligned token where ith node
aligned to. When modeling the negative log like-
lihood loss (NLL), with independence assumption
between each node and edge, we decompose it into
node- and edge-identification pipelines.

NLL(P (C,R | w))
= − log(P (C,R | w))
= − log(

∑

a

P (a)P (C,R | w, a))

= − log

(∑

a

P (a)P (R | w, a, c)P (c | w, a)
)

= − log

(∑

a

P (a)

m∏

i

P (ci | hai)

·
m∏

i,j=1

P (rij | hai , ci, haj , cj)




(1)
2After the CKY parser gets the related phrasal spans,

graph-based parser can also be used to predict the relations
between nodes.

In DM, PSD, and AMR, every token will only
be aligned once. Hence, we train a joint model
to maximize the above probability for both node
identification P (ci | hai) and edge identification
P (rij | hai,ci,haj ,cj ), and we need to marginalize
out the discrete alignment variable a.

3.1.1 Alignment Model
The above model can support both explicit align-
ments for DM, PSD, and implicit alignments for
AMR.

Explicit Alignments For DM, PSD, with ex-
plicit alignments a∗, we can use P (a∗) = 1.0 and
other alignments P (a|a 6= a∗) = 0.0

Implicit Alignments For AMR, without gold
alignments, one requires to compute all the valid
alignments and then condition the node- and edge-
identification methods on the alignments.

log(P (C,R | w)) ≥
EQ[log(Pθ(c | w, a)PΦ(R | w, a, c))]
−DKL(QΨ(a | c,R,w) || P (a))

(2)

However, it is computationally intractable to enu-
merate all alignments. We estimate posterior
alignments model Q as Equation 3, please refer
to Lyu and Titov (2018) for more details.

• Applying variational inference to reduce it
into Evidence Lower Bound (ELBO, Kingma
and Welling, 2013)

• The denominator ZΨ in Q can be estimated
by Perturb-and-Max(MAP) (Papandreou and
Yuille, 2011)

QΨ(a | c,R,w) =
exp(

∑n
i=1 φ(gi, hai))

ZΨ(c, w)
(3)

Where φ(gi, hai) score each alignment link
between node i and the corresponding words,
gi is node encoding, and hai is encoding for
the aligned token.

• Discrete argmax of a permutation can be es-
timated by Gumbel-Softmax Sinkhorn Net-
works (Mena et al., 2018; Lyu and Titov,
2018)

3.1.2 Node Identification
Node Identification predicts a concept c given a
word. A concept can be either NULL (when there
is no semantic node anchoring to that word, e.g.,
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Figure 2: Architecture of graph-based model and inference, for running exmaple [wsj#0209013]

the word is dropped), or a node label (e.g., lemma,
sense, POS, name value in AMR, frame value in
PSD), or other node properties. One challenge in
node identification is the data sparsity issue. Many
of the labels are from open sets derived from the
input token, e.g., its lemma. Moreover, some la-
bels are constrained by a deterministic label set
given the word. Hence, we designed a copy mech-
anism (Luong et al., 2014) in our neural network
architecture to decide whether to copying deter-
ministic label given a word or estimate a classifi-
cation probability from a fixed label set.

3.1.3 Edge Identification
By assuming the independence of each edge,
we model the edges probabilites independently.
Given two nodes and their underlying tokens, we
predict the edge label as the semantic relation be-
tween the two concepts with a bi-affine classi-
fier (Dozat and Manning, 2016).

3.1.4 Inference
In our two-stage graph-based parsing, after nodes
are identified, edge identification only output a
probility distribution over all the relations between
identified nodes. However, we need to an infer-
ence algorithm to search for the maximum span-
ning connected graph from all the relations. We
use Flanigan et al. (MSCG, 2014) to greedily se-
lect the most valuable edges from the identified
nodes and their relations connecting them. As
shown in Figure 2, an input sentence goes through
preprocessing, node identification, edge identifica-
tion, root identification, and MCSG to generate a

final connected graph as structured output.

3.2 Minimal Span-based CKY Parsing
Framework

Let us now see our phrasal-anchoring parser for
UCCA. We introduce the transformation we used
to reduce UCCA parsing into a consituent parsing
task, and finally introduce the detailed CKY model
for the constituent parsing.

3.2.1 Graph-to-CT Transformation
We propose to transform a graph into a constituent
tree structure for parsing, which is also used in
recent work (Jiang et al., 2019). Figure 3 shows
an example of transforming a UCCA graph into
a constituent tree. The primary transformation as-
signs the original label of an edge to its child node.
Then to make it compatible with parsers for stan-
dard PennTree Bank format, we add some aux-
iliary nodes such as special non-terminal nodes,
TOP, HEAD, and special terminal nodes TOKEN
and MWE. We remove all the “remote” annotation
in UCCA since the constituent tree structure does
not support reentrance. A fully compatible trans-
formation should support both graph-to-tree and
tree-to-graph transformation.

In our case, due to time constraints, we remove
those remote edges and reentrance edges during
training. Besides that, we also noticed that for
multi-word expressions, the children of a parent
node might not be in a continuous span (i.e., dis-
continuous constituent), which is also not sup-
ported by our constituent tree parser. Hence, when
training the tree parser, by reattaching the dis-
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continuous tokens to its nearest continuous parent
nodes, we force every sub span are continuous in
the transformed trees. We leave the postprocessing
to recover those discontinuous as future work.

For inference, given an input sentence, we first
use the trained constituent tree parsing model to
parse it into a tree, and then we transform a tree
back into a directed graph by assigning the edge
label as its child’s node label, and deleting those
auxiliary labels, adding anchors to every remain-
ing node.

Figure 3: UCCA to Constituent Tree Transformation
for [wsj#0209013]

3.2.2 CKY Parsing and Span Encoding
After transforming the UCCA graph into a con-
stituent tree, we reduce the UCCA parsing into a
constituent tree parsing problem. Similar to the
previous work on UCCA constituent tree pars-
ing (Jiang et al., 2019), we use a minimal span-
based CKY parser for constituent tree parsing.
The intuition is to use dynamic programming to
recursively split the span of a sentence recursively,
as shown in Figure 3. The entire sentence can be
splitted from top to bottom until each span is a sin-
gle unsplittable tokens. For each node, we also
need to assign a label. Two simplified assumptions
are made when predicting the hole tree given a
sentence. However, different with previous work,

we use 8-layers with 8 heads transformer encoder,
which shows better performance than LSTM in
Kitaev and Klein (2018).

Tree Factorization In the graph-to-tree trans-
formation, we move the edge label to its child
node. By assuming the labels for each node are
independent, we factorize the tree structure predic-
tion as independent span-label prediction as Equa-
tion 4. However, this assumption does not hold for
UCCA. Please see more error analysis in §4.4

T ∗ = arg max
T

s(T )

s(T ) =
∑

(i,j,l)∈T
s(i, j, l)

(4)

CKY Parsing By assuming the label prediction
is independent of the splitting point, we can further
factorize the whole tree as the following dynamic
programming in Equation 5.

sbest(i, i+ 1) = max
l
s(i, i+ 1, l)

sbest(i, j) = max
l
s(i, j, l)

+ max
k

[sbest(i, k) + sbest(k, j)]

(5)

Span Encoding For each span (i, j), we repre-
sent the span encoding vector v(i,j) = [~yj − ~yi] ⊕
[ ~yj+1− ~yi+1]. ⊕ denotes vector concatenation. As-
suming a bidirectional sentence encoder, we use
the forward and backward encodings ~yi and ~yi
of ith word. Following the previous work, and
we also use the loss augmented inference training.
More details about the network architecture are in
the Section 4.2

3.3 Summary of Implementation
We summarize our implementation for five mean-
ing representations as Table 1. As we men-
tioned in the previous sections, we use latent-
alignment graph-based parsing for lexical an-
choring MRs (DM, PSD, AMR), and use CKY-
based constituent parsing phrasal anchoring in
MRs (UCCA, EDS). This section gives informa-
tion about various decision for our models.

Top The first row “Top” shows the numbers of
root nodes in the graph. We can see that for PSD,
11.56% of graphs with more than 1 top nodes. In
our system, we only predict one top node with a
N (N is size of identified nodes) way classifier, and
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Lexicon Anchoring Phrase Anchoring
DM PSD AMR EDS UCCA

Top 1 ≥ 1 (11.56%) 1 1 1
Node Label Lemma Lemma(*) Lemma(*) + NeType(143+) lemma(*) semi sense N/A

Node Properties POS POS constant values N/A
semi(160*) args(25) wordid sense(25) polarity, Named entity carg: constant value N/A

Edge Label (45) (91) (94+) (45) (15)
Edge Properties N/A N/A N/A N/A “remote”
Connectivity True True True True True
Training Data 35656 35656 57885 35656 6485
Test Data 3269 3269 1998 3269 1131

Table 1: Detailed classifiers in our model, round bracket means the number of ouput classes of our classify, *
means copy mechanism is used in our classifier. At the end of shared task, EDS are not fully supported to get an
official results, we leave it as our future work.

then fix this with a post-processing strategy. When
our model predicts one node as the top node, and if
we find additional coordination nodes with it, we
add the coordination node also as the top node.

Node Except for UCCA, all other four MRs
have labeled nodes, the row “Node Label” shows
the templates of a node label. For DM and PSD,
the node label is usually the lemma of its under-
lying token. But the lemma is neither the same as
one in the given companion data nor the predicted
by Stanford Lemma Annotators. One common
challenge for predicting the node labels is the open
label set problem. Usually, the lemma is one of the
morphology derivations of the original word. But
the derivation rule is not easy to create manually.
In our experiment, we found that handcrafted rules
for lemma prediction only works worse than clas-
sification with copy mechanism, except for DM.

For AMR and EDS, there are other components
in the node labels beyond the lemma. Especially,
the node label for AMR also contains more than
143 fine-grained named entity types; for EDS, it
uses the full SEM-I entry as its node label, which
requires extra classifiers for predicting the corre-
sponding sense. In addition to the node label, the
properties of the label also need to be predicted.
Among them, node properties of DM are from
the SEMI sense and arguments handler, while for
PSD, senses are constrained the senses in the pre-
defined the vallex lexicon.

Edge Edge predication is another challenge in
our task because of its large label set (from 45
to 94) as shown in row “Edge Label”, the round
bracket means the number of output classes of
our classifiers. For Lexical anchoring MRs, edges
are usually connected between two tokens, while

phrasal anchoring needs extra effort to figure out
the corresponding span with that node. For exam-
ple, in UCCA parsing, To predict edge labels, we
first predicted the node spans, and then node labels
based that span, and finally we transform back the
node label into edge label.

Connectivity Beside the local label classifica-
tion for nodes and edges, there are other global
structure constraints for all five MRs: All the
nodes and edges should eventually form a con-
nected graph. For lexical anchoring, we use
MSCG algorithm to find the maximum connected
graph greedily; For phrasal anchoring, we use dy-
namic programming to decoding the constituent
tree then deterministically transforming back to a
connected UCCA Graph 3

4 Experiments and Results

4.1 Dataset and Evaluation

For DM, PSD, EDS, we split the training set by
taking WSJ section (00-19) as training, and sec-
tion 20 as dev set. For other datasets, when devel-
oping and parameter tuning, we use splits with a
ratio of 25:1:1. In our submitted model, we did not
use multitask learning for training. Following the
unified MRP metrics in the shared tasks, we train
our model based on the development set and fi-
nally evaluate on the private test set. For more de-
tails of the metrics, please refer to the summariza-
tion of the MRP 2019 task (Oepen et al., 2019),

4.2 Model Setup

For lexical-anchoring model setup, our network
mainly consists of node and edge prediction

3Due to time constraint, we ignored all the discontinuous
span and remote edges in UCCA
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model. For AMR, DM, and PSD, they all use
one layer Bi-directional LSTM for input sentence
encoder, and two layers Bi-directional LSTM for
head or dependent node encoder in the bi-affine
classifier. For every sentence encoder, it takes a
sequence of word embedding as input (We use 300
dimension Glove here), and then their output will
pass a softmax layer to predicting output distri-
bution. For the latent AMR model, to model the
posterior alignment, we use another Bi-LSTM for
node sequence encoding. For phrasal-anchoring
model setup, we follow the original model set up
in Kitaev and Klein (2018), and we use 8-layers 8-
headers transformer with position encoding to en-
code the input sentence.

For all sentence encoders, we also use the
character-level CNN model as character-level em-
bedding without any pre-trained deep contextual-
ized embedding model. Equipping our model with
Bert or multi-task learning is promising to get fur-
ther improvement. We leave this as our future
work.

Our models are trained with Adam (Kingma and
Ba, 2014), using a batch size 64 for a graph-based
model, and 250 for CKY-based model. Hyper-
parameters were tuned on the development set,
based on labeled F1 between two graphs. We ex-
ploit early-stopping to avoid over-fitting.

4.3 Results
At the time of official evaluation, we submit-
ted three lexical anchoring parser, and then we
submitted another phrasal-anchoring model for
UCCA parsing during post-evaluation stage, and
we leave EDS parsing as future work. The fol-
lowing sections are the official results and er-
ror breakdowns for lexical-anchoring and phrasal-
anchoring respectively.

Official Results on Lexical Anchoring Table 2
shows the official results for our lexical-anchoring
models on AMR, DM, PSD. By using our latent
alignment based AMR parser, our system ranked
top 1 in the AMR subtask, and outperformed the
top 5 models in large margin. Our parser on PSD
ranked 6, but only 0.02% worse then the top 5
model. However, official results on DM and PSD
shows that there is still around 2.5 points per-
formance gap between our model and the top 1
model.

Official Results on Phrasal Anchoring Table 3
shows that our span-based CKY model for UCCA

MR Ours (P/R/F1) Top 1/3/5 (F1)
AMR(1) 75/71/73.38 73.38/71.97/71.72
PSD(6) 89/89/88.75 90.76/89.91/88.77
DM(7) 93/92/92.14 94.76/94.32/93.74

Table 2: Official results overview on unified MRP met-
ric, we selected the performance from top 1/3/5 sys-
tem(s) for comparison

can achieve 74.00 F1 score on official test set, and
ranked 5th. When adding ELMo (Peters et al.,
2018) into our model, it can further improve al-
most 3 points on it.

MR Ours (P/R/F1) Top 1/3/5 (F1)
UCCA(5) 80.83/73.42/76.94 81.67/77.80/73.22
EDS N/A 94.47/90.75/89.10

Table 3: Official results overview on unified MRP met-
ric, we selected the performance from top 1/3/5 sys-
tem(s) for comparison. It shows our UCCA model for
post-evluation can rank 5th

4.4 Error Breakdown
Table 4, 5, 6 and 7 shows the detailed error break-
down of AMR, DM, PSD and UCCA respectively.
Each column in the table shows the F1 score of
each subcomponent in a graph: top nodes, node
lables, node properties, node anchors, edge la-
bels, and overall F1 score. No anchors for AMR,
and no node label and propertis for UCCA. We
show the results of MRP metric on two datasets.
“all” denotes all the examples for that specific
MR, while lpps are a set of 100 sentences from
The Little Prince, and annotated in all five
meaning representations. To better understand the
performance, we also reported the official results
from two baseline models TUPA (Hershcovich
and Arviv, 2019) and ERG (Oepen and Flickinger,
2019).

data tops labels prop edges all
TUPA
single

all 63.95 57.20 22.31 36.41 44.73
lpps 71.96 55.52 26.42 36.38 47.04

TUPA
multi

all 61.30 39.80 27.70 27.35 33.75
lpps 72.63 50.11 20.25 33.12 43.38

Ours(1) all 65.92 82.86 77.26 63.57 73.38
lpps 72.00 78.71 58.93 63.96 71.11

Top 2 all 78.15 82.51 71.33 63.21 72.94
lpps 83.00 76.24 51.79 60.43 69.03

Table 4: Our parser on AMR ranked 1st. This ta-
ble shows the error breakdown when comparing to the
baseline TUPA model and top 2 (Che et al., 2019) in
official results
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data tops labels prop anchors edges all

ERG all 91.83 98.22 95.25 98.82 90.76 95.65
lpps 95.00 97.32 97.75 99.46 92.71 97.03

Top 1 all 93.23 94.14 94.83 98.40 91.55 94.76
lpps 96.48 91.85 94.36 99.04 93.28 94.64

Ours(7) all 70.95 93.96 92.13 97.25 86.45 92.14
lpps 84.00 90.55 91.91 97.96 87.24 91.82

Table 5: Our parser on DM ranked 7th. This ta-
ble shows the error breakdown when comparing to the
model ranked Top 1 (Li et al., 2019) in official results

data tops labels prop anchors edges all

Top 1 all 93.45 94.68 91.78 98.35 77.79 90.76
lpps 93.33 91.73 84.37 98.40 77.63 88.34

Ours(6) all 82.01 94.18 91.28 96.94 72.40 88.75
lpps 85.85 90.48 82.63 95.97 73.60 85.83

Table 6: Our parser on PSD ranked 6th. This ta-
ble shows the error breakdown when comparing to the
model ranked top 1 (Donatelli et al., 2019) in official
results

4.4.1 Error Analysis on Lexical-Anchoring
As shown in Table 4, our AMR parser is good at
predicting node properties and consistently per-
form better than other models in all subcompo-
nent, except for top prediction. Node properties
in AMR are usually named entities, negation, and
some other quantity entities. In our system, we re-
categorize the graph fragements into a single node,
which helps for both alignments and structured in-
ference for those special graph fragments. We see
that all our 3 models perform almost as good as
the top 1 model of each subtask on node label pre-
diction, but they perform worse on top and edge
prediction. It indicates that our bi-affine relation
classifier are main bottleneck to improve. More-
over, we found the performance gap between node
labels and node anchors are almost consistent, it
indicates that improving our model on predicting
NULL nodes may further improve node label pre-
diction as well. Moreover, we believe that multi-
task learning and pre-trained deep models such as
BERT (Devlin et al., 2018) may also boost the per-
formance of our paser in future.

4.4.2 Error Analysis on Phrasal-Anchoring
According to Table 7, our model with ELMo
works slightly better than the top 1 model on an-
chors prediction. It means our model is good at
predicting the nodes in UCCA and we belive that
it is also helpful for prediction phrasal anchoring
nodes in EDS.

However, when predicting the edge and edge

data tops anchors edge attr all

TUPA single all 78.73 69.17 16.96 15.18 27.56
lpps 86.03 76.26 28.32 24.00 40.06

TUPA multi all 84.92 65.74 12.99 9.07 23.65
lpps 88.89 77.76 26.45 18.32 41.04

(Che et al., 2019) all 1.00 95.36 72.66 61.98 81.67
lpps 1.00 96.99 73.08 48.37 82.61

Ours(*5) all 98.85 94.92 60.17 0.00 74.00
lpps 96.00 96.75 60.20 0.00 75.17

Ours + ELMo all 99.38 95.70 64.88 0.00 76.94
lpps 98.00 96.84 66.63 0.00 78.77

Table 7: Our UCCA parser in post-evaluation ranked
5th according to the original official evaluation results.
This table shows the error breakdown when comparing
to the model ranked top 1 (Che et al., 2019) in official
results. * denotes the ranking of post-evaluation results

attributes, our model performs 7-8 points worse
than the top 1 model. In UCCA, an edge label
means the relation between a parent nodes and its
children. In our UCCA transformation, we as-
sign edge label as the node label of its child and
then predict with only child span encoding. Thus
it actually misses important information from the
parent node. Hence, in future, more improvement
can be done to use both child and parent span en-
coding for label prediction, or even using another
span-based bi-affine classifier for edge prediction,
or remote edge recovering.

5 Conclusion

In summary, by analyzing the AMR alignments,
we show that implicit AMR anchoring is actually
lexical-anchoring based. Thus we propose to re-
group five meaning representations as two groups:
lexical-anchoring and phrasal-anchoring. For lex-
ical anchoring, we suggest to parse DM, PSD, and
AMR in a unified latent-alignment based parsing
framework. Our submission ranked top 1 in AMR
sub-task, ranked 6th and 7th in PSD and DM tasks.
For phrasal anchoring, by reducing UCCA graph
into a constituent tree-like structure, and then use
the span-based CKY parsing to parse their tree
structure, our method would rank 5th in the origi-
nal official evaluation results.
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Urešová. 2019. MRP 2019: Cross-framework
Meaning Representation Parsing. In Proceedings of
the Shared Task on Cross-Framework Meaning Rep-
resentation Parsing at the 2019 Conference on Nat-
ural Language Learning, pages 1 – 27, Hong Kong,
China.

Stephan Oepen and Dan Flickinger. 2019. The ERG at
MRP 2019: Radically compositional semantic de-
pendencies. In Proceedings of the Shared Task on
Cross-Framework Meaning Representation Parsing
at the 2019 Conference on Natural Language Learn-
ing, pages 40 – 44, Hong Kong, China.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinková, Dan Flickinger,
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Abstract

In this paper, we describe our participat-
ing systems in the shared task on Cross-
Framework Meaning Representation Parsing
(MRP) at the 2019 Conference for Compu-
tational Language Learning (CoNLL). The
task includes five frameworks for graph-based
meaning representations, i.e., DM, PSD, EDS,
UCCA, and AMR. One common characteristic
of our systems is that we employ graph-based
methods instead of transition-based methods
when predicting edges between nodes. For
SDP, we jointly perform edge prediction,
frame tagging, and POS tagging via multi-task
learning (MTL). For UCCA, we also jointly
model a constituent tree parsing and a remote
edge recovery task. For both EDS and AMR,
we produce nodes first and edges second in
a pipeline fashion. External resources like
BERT are found helpful for all frameworks
except AMR. Our final submission ranks the
third on the overall MRP evaluation metric, the
first on EDS and the second on UCCA.

1 Introduction

Cross-Framework Meaning Representation Pars-
ing (MRP) at CoNLL 2019 contains five differ-
ent graph-based semantic representations, includ-
ing DM, PSD, EDS, UCCA and AMR. The shared
task releases training and testing data for all five
frameworks. For different frameworks, organiz-
ers design different evaluation criteria and pro-
vide standard evaluation scripts. Details about the
five semantic formalisms and evaluation criteria
are given in the MRP shared task homepage1 and
the overview paper (Oepen et al., 2019). In the
following, we give a brief introduction of each
framework and followed by our corresponding ap-
proaches.

∗Corresponding author
1http://mrp.nlpl.eu/index.php?page=1

Semantic Dependency Parsing (SDP) aims to
parse the predicate-argument relationships for all
words in the input sentence, leading to bilexical
semantic dependency graphs (Oepen et al., 2014,
2015, 2016). This shared task focuses on two dif-
ferent formal types of SDP representations, i.e.,
DELPH-IN MRS Bi-Lexical Dependencies (abbr.
as DM, Ivanova et al., 2012) and Prague Semantic
Dependencies (abbr. as PSD, Hajič et al., 2012;
Miyao et al., 2014). They are both classified as
Flavor 0 representations in the sense that every
node in the graph must anchor to one and only
one token unit, and vice verse. Compared with
syntactic dependency trees, some nodes in an SDP
graph may have no incoming edges and some may
have multiple ones. Borrowing the idea of Dozat
and Manning (2018), we encode the input word se-
quence with BiLSTMs and predict the edges and
labels between words with two MLPs. We also
predict the POS tag and frame of each word jointly
under the MTL framework.

Universal Conceptual Cognitive Annotation
(UCCA) is a multi-layer linguistic framework
(Flavor 1) firstly proposed by Abend and Rap-
poport (2013). In UCCA graphs, input words are
leaf (or terminal) nodes. One non-terminal node
governs one or more nodes, which may be discon-
tinuous; and one node can have multiple governing
(parent) nodes through multiple edges, consisting
of a single primary edge and other remote edges.
Relationships between nodes are given by edge
labels. The primary edges form a tree structure,
whereas the remote edges introduce reentrancy,
forming directed acyclic graphs (DAGs).2 We
directly adopt the previous graph-based UCCA
parser proposed by Jiang et al. (2019), treating
UCCA graph parsing as constituent parsing and
remote edge recovery under the MTL framework.

2The full UCCA scheme also has implicit nodes and link-
age relations, which are excluded in the shared task.
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Elementary Dependency Structure (EDS) is a
graph-structured semantic representation formal-
ism (Flavor 1) proposed by Oepen and Lønning
(2006). Buys and Blunsom (2017) introduce a
neural encoder-decoder transition-based model to
obtain the EDS graph. They use external knowl-
edge to generate nodes3. Chen et al. (2018) intro-
duce a novel SHRG (Synchronous Hyperedge Re-
placement Grammar) extraction algorithm which
requires a syntactic tree and alignments between
conceptual edges and surface strings. Such align-
ment information is not provided in the shared
task and seems difficult for us to induce due to
time limitation. Therefore, we divide the EDS task
into two-stage task: node prediction and edge pre-
diction, and treat both as sequence labeling. To
tackle with the explicit, many-to-many relation-
ship between nodes and sub-strings of the underly-
ing sentence (via anchoring), we introduce a sim-
ilar method used in dependency SRL (semantic
role labeling) to produce nodes. For the edge pre-
diction, the widely-used Biaffine model is used.

Abstract meaning representation (AMR), pro-
posed by Banarescu et al. (2013), is a broad-
coverage sentence-level semantic formalism (Fla-
vor 2) to encode the meaning of natural language
sentences. AMR can be regarded as a rooted
labeled directed acyclic graph. Nodes in AMR
graphs represent concepts, and labeled directed
edges are relations between the concepts. Due to
the time limitation and the complexity of the AMR
parsing problem, we directly employ the state-
of-the-art parser of Lyu and Titov (2018), which
treats AMR parsing as a graph prediction prob-
lem.

Methodology Summarization. Our participat-
ing systems can be characterized in the following
aspects:

• Graph-Based. All our methods for the five
frameworks belong to graph-based methods
in the sense that we directly predict edges
among nodes, instead of using a transition
system. In particular, the constituent parser
for UCCA is also graph-based.

• Joint Model. We simplify our architecture
and use less training steps by jointly model-
ing subtasks whenever it is possible. This is
achieved by sharing the encoder component

3Their knowledge sources ERG 1214 (http://svn.delph-
in.net/erg/tags/1214) are not in the white list of this shared
task.

under the MTL framework and it is adopted
by the DM, PSD, and UCCA models. For
both EDS and AMR, we first produce nodes
and then predict edges in a pipeline architec-
ture. We have not attempted to jointly solve
multiple semantic frameworks via MTL yet.

• BERT. We observe that using BERT as our
extra inputs is effective for all the models, ex-
cept AMR. It is also interesting that BERT-
large does not produce more improvements
over BERT-base based our preliminary exper-
iments.

Our final submission ranks the third on the over-
all evaluation metric, the first on EDS and the sec-
ond on UCCA. In the following, We introduce our
methods in detail in Section 2, and present the ex-
perimental results in Section 3, and finally con-
clude our paper in Section 4.

2 Methods

2.1 SDP

We construct our SDP parser based on the ideas of
Dozat and Manning (2017) and Dozat and Man-
ning (2018). Note that lemmas, POS tags and
frames are also included in the MRP evaluation
metrics, so our method is a bit different from
Dozat and Manning (2018).

Edge Prediction. Our basic edge prediction
model is similar to the Dozat and Manning (2017)
and Dozat and Manning (2018). The input words
are first mapped into a dense vector composed by
pretrained word embeddings and character-level
features.

xi = ewordi ⊕ echari

where echari is extracted by the bidirectional
character-level LSTM (Lample et al., 2016). They
are then fed into a multilayer bidirectional word-
level LSTM to get contextualized representations.
Finally, two modules are applied to predict edges.
One is to predict whether or not a directed edge
exists between two words (keeping the edges be-
tween pairs of words with positive scores); and the
other is to predict the most probable label for each
potential edge (choosing the label with maximum
score). Each of them has two seperate MLPs for
head and dependent representations and a biaffine
layer for scoring. The training loss is the sum of
sigmoid cross-entropy loss for edges and softmax
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Shared BiLSTMs

MLPs & Biaffines MLP

Edge Prediction POS Tagging

MLP

Frame Tagging

Figure 1: The framework of our SDP Parser.

cross-entropy loss for labels.

`
′
= `label + `edge

Lexical Taggers. This SDP task is more dif-
ficult than the ealier 2014 and 2015 SDP tasks
(Oepen et al., 2014, 2015), since the gold tok-
enization result, lemmas, and POS tags are not
available in the parser input data and the predic-
tions are parts of the MRP evaluation metrics. We
use automatic tokenization result and lemmas pro-
vided by the datasets; while for POS and frames,
we train the taggers with the edge predicter si-
multaneously under the multi-task learning frame-
work. Figure 1 shows the framework of our SDP
parser. The final training loss is :

`sdp = `
′
+ `frame + `pos

where `frame and `pos are both softmax cross-
entropy losses.

2.2 UCCA
We directly follow Jiang et al. (2019)’s graph-
based UCCA parser. The key idea is to convert a
UCCA semantic graph into a constituent tree, and
mark remote edges and discontinuous nodes with
extra labels for later recovery.

Graph-to-tree Conversion. In the new version
of UCCA, one non-terminal node is allowed to
point to another by more than one primary edges,
e.g., the word “singer” represents a “process” and
a “participant” in a semantic scene at the same
time (Figure 2 shows the example). Therefore,
we keep only one of the edges and concatenate all
their tags in the alphabetical order. During the re-
covery step, the edge with a mixed label is splitted
according to the label’s length.

Then for the edges that point to the same node,
we delete all remote edges and concatenate an ex-
tra “remote” to the label of the only primary edge.

Figure 2: An example of newest version of UCCA.

To handle discontinuous node, we trace bottom-
up from a discontinuous leaf node until we find
the specific node whose parent is the lowest com-
mon ancestor (LCA) of the discontinuous node
and leaf node. Finally we move the edge to make
the specific node become the child of the discon-
tinuous, with “-ancestor” added behind the edge
label. Please refer to Jiang et al. (2019) for more
conversion details.

Constituent Parsing. We directly adopt the
minimal span-based parser of Stern et al. (2017).
Given an input sentence X = {x0, x1, · · · , xn},
each word xi is mapped into a dense vector xi and
fed into bidirectional LSTM layers. The top-layer
output of each position are used to represent the
span as

ri,j = (fj − fi)⊕ (bi − bj)

where fi and bi are the output vectors of the top-
layer forward and backward LSTMs. The span
representations are then fed into MLPs to com-
pute the scores of span splitting and labeling. Fi-
nally, a parse tree is derived by a greedy top-down
searching. In particular, We start from the span
of the whole sentence, assigning it the label with
maximum score and choosing the best split point
where the sum of two sub-spans’ splitting scores
are maximum. Then we repeat this process for
the left and right sub-spans until the span can no
longer be split.

Remote Edge Recovery. To recover remote
edges, two seperate MLPs and biaffine operations
are applied on remote nodes and other candidate
parent nodes representations. They share the same
inputs and LSTM encoder with the constituent
parser under the MTL framework. The parsing
loss and the cross-entropy losses of all remote and
non-terminal node pairs are added in the MTL
framework.
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2.3 EDS

This subsection describes our models on EDS
task, which are simple but effective. Since many
external resources cannot be used to generate
nodes in EDS graph in this shared task, we con-
vert the main task into two sequence labeling sub-
tasks: node prediction and edge prediction.

Node prediction. For each input sentence
X = {x0, x1, · · · , xn}, our model needs to pre-
dict nodes in EDS graph N = {n0, n1, · · · , nm}.
For each node, it contains such information: id,
anchors, labels, properties and values. Taking
one node as example, anchors mean the span in-
dicators of characters in the input sentence, like
“< a, b >”. It means this node strides across the
sub string from character index a to b in the in-
put sentence string. We can convert anchors from
character index provided by the data to word in-
dex4.

From the definition of EDS graph, there is
a many-to-many relationship between words and
nodes. Lots of nodes stride across more than one
word of the underlying sentence according to their
anchors. To simplify the alignment between words
and nodes, we divide nodes in graphs into two
types due to their characteristic.

The first type is those nodes whose labels be-
gin with “ ” or properties are not null, e.g.,
“ fund n 1”. We call them the original node,
labels of which usually consist of three parts:
lemma, coarse part-of-speech(POS) tag and sense
according to the role the word plays in the sen-
tence. The second type is the append node, e.g.,
“udf q”. Those nodes do not contain explicit sen-
tence text and many of them stride across several
words, which makes us difficult to obtain their an-
chors.

We align the nodes to input words, so that we
predict labels and anchors based on the input word
sequence:

For original nodes , we use the lemma of each
word provided by organizers and we take POS
tag and sense as a joint label and predict them
with sequence labeling, like the POS tagger. To
generate training data, based on our statistics and
analysis, we tag words in the following ways:
1) in most cases, original nodes are aligned to

4Index conversion makes us align nodes to words in the
input sentence, so that we can simplify our task. And due to
the evaluation standard of this shared task, we do not consider
punctuation and we can take punctuation as common words
if the task needs.

Pension Reserves : Holdings by pension funds .

n 1 n 1 v id n 1 p n 1 n 1 O

compound compound

udf q udf q
udf q udf q

udf q

Figure 3: An example for node prediction in the EDS
graph. We use nodes with different color shadows to
represent different kinds of EDS nodes. Nodes with
yellow shadows under the input sentence are original
nodes. The number of original nodes is equal to the
length of sentence. Nodes with pink shadows above
the sentence are non-terminal append nodes and purple
nodes below the sentence are leaf nodes. In the ex-
ample sentence, there are two non-terminal nodes and
five leaf nodes. Nodes over across several words means
their anchors.

words one by one and these words are tagged with
their “POS sense”5; 2) for those compound nodes
striding across several words (e.g., “ such+as p”
means it combines “such” and “as” two words),
we tag the first word with the true label and other
words tagged with “A”; and 3) we tag the input
words disappearing in EDS graph with “O”. Note
that, when one word participates in different orig-
inal nodes, we will concatenate all labels of one
word together with separator “:”.

For append node , we divide it into two types,
leaf nodes and non-terminal nodes6. The differ-
ence between leaf nodes and non-terminal nodes
is that whether they are pointed by other nodes.
Both leaf nodes and non-terminal nodes may over-
lap several words and one input word may partic-
ipate in different append nodes as Figure3 shows.
Therefore, we take a similar way like the predic-
tion of SRL predicate and argument7. We firstly
predict the begin index of each append node, like
predicate identification in the SRL task, and then,
we predict their end index and their labels, like ar-
gument prediction. Given the beginning, we tag
the end words of nodes with their labels and con-
catenate labels with separator “:” if more than one
node have same anchors. This allows us to solve

5Sometimes, the label only contains POS information.
6We take this division originally for edge prediction and

task simplification. In EDS graph, leaf nodes should partici-
pate in only one edge, but our edge prediction model achieves
great performance on all nodes, so we do not distinguish them
in the edge prediction.

7We did not apply the same sequence labeling method for
the original node, since it is difficult to recover when contin-
uous words participate in more than nodes.
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Detailed errors Modification
company abbreviation, like Corp., Co., Inc corporation, company and inc
address forms, like Mr., Mrs., Dr. corresponding full name
numbers in English Arabic numerals
country name abbreviation delete “.” in string
some symbol like “%”, “#”, “$”, “&” and “:” English String

Table 1: Effective post-processing for labels and values in EDS node.

Figure 4: Architecture of our multi-layers self-
attention-based model. The dotted box on the right is
the detailed composition of the self-attention block.

the problem of the overlap and multi-participation
of the append nodes elegantly.

We apply a multi-head self-attention model
(Tan et al., 2018) for our node prediction, which
has been proved effective in SRL task. Details
about the attention model please refer to Tan et al.
(2018) and Vaswani et al. (2017). For original
nodes and beginning of append nodes prediction,
the input consists of embeddings of words and
POS-tags provided by organizers; while for end of
append nodes prediction, the input contains em-
bedding of the beginning indicator in addition.
Then we use simple softmax function to get the
index or labels whose scores are the highest.

Edge prediction. Compared with the node
prediction, the edge prediction model is more
straightforward, which builds links between nodes
and generates the final EDS graph.

Labels in edges are used to tag the relation be-
tween two nodes, like “ARG1”, “BV”. If there
is no edges between two nodes, we use the rela-
tion “O”. Note that, we add one pseudo node like
the ”ROOT” node in the dependency parsing, so
that we can get the top node of the graph (which is
pointed by the ”ROOT” node).

For the edge prediction model, a multi-layered
BiLSTM is firstly used to encode the original in-
put sentence, so that we get the representation of
each word. Then we represent each node accord-
ing to its anchors (begin index and end index) as
formula in 2.2 shows, so that each node contains
information of all words in the anchors. Lastly, we
compute the score of each candidate edge relation
between two nodes by the biaffine mechanism, and
get label whose score is the highest.

Post-processing. We convert our predicted re-
sults into nodes according to the predicted begin
index and the predicted label (including the end
index and corresponding label). We sort them by
the anchors of nodes to get the id of each node in
the EDS graph. We index these nodes in the as-
cending order by the begin index of anchors and
then in the descending order by the end of the an-
chors.

We analysis the results of our splitted develop-
ment data, and correct some common lemma er-
rors by a post-processing script (Table 1).

For senses, we fix some errors according to the
ERG knowledge provided by the organizers. ERG,
a external knowledge provided by the shared task,
contains all legal sense for each lemma and POS
tag. Given a joint string of lemma and POS tag,
we judge whether our predicted sense is legal, and
for the illegal sense, we use the first one in ERG to
replace it.

For compound words containing “-”, we find
that most of them should split into several parts,
but limited by our model, we cannot get their
lemma, POS tag and sense. Therefore, we use one
split word and the predicted POS tag and sense to
replace the originally predicted one after we verify
sense legality8.

8In dev data, we find that, such split does not work well,
but we think, without the replacement, the node is unlikely to
be correct.

153



2.4 AMR
Abstract meaning representation (AMR) (Ba-
narescu et al., 2013) is a semantic formalism to
encode the meaning of natural language sentences,
which is a broad-coverage sentence-level semantic
representation. AMR can be regarded as a rooted
labeled directed acyclic graph. We directly follow
Lyu and Titov (2018)’s joint modeling of align-
ments, concepts and relations. In the following,
we describe the details of our AMR parser and
the modifications we make due to the constrains
of the white list of MRP. In general, the training
process employs a probability model composed of
concept identification, relation identification and
alignment, while the testing process only consists
of the former two.

Notations. Given a sentence s = w1, w2, ..., wn,
where n is the sentence length. Its concepts are
defined as c = (c1, c2, ..., cm), where m is the
number of concepts. A relation between ci and
cj is denoted as rij ∈ R, where R is the set of
all relations. If there is no relation between ci
and cj , we give them a NULL label. We employ
a = a1, a2, ..., am to denote the concepts, where
ai ∈ 1, 2, ..., n is the index of a word aligned to
ci. We use hk(k ∈ 1, 2, ..., l) to denote the hidden
states of BiLSTM encoders of our model compo-
nents, where l is the number of the BiLSTM lay-
ers.

Concept Identification Model. The concept
identification model chooses a concept c condi-
tioned on the aligned word k based on the BiL-
STM state hk, which is defined as Pθ(c|hk, wk).
For more details about the re-categorization and
candidate concept, please refer to Lyu and Titov
(2018).

Relation Identification Model. The relation
identification model is arc-factored as:

Pφ(R|a, c,w) =
m∏

i,j=1

P (rij |hai , ci,haj , cj)

(1)
The model employs a log-linear module with bi-
linear scorer to compute the probabilities of ci and
cj .

Alignment Model. The alignment model is
only used in training, and thus it only depends
on the BiLSTM hidden states h1,h2, ...,hn and
the concept list c1, c2, ..., cm. Given the concepts
list c, the alignment model encodes c with a BiL-
STM encoder, which defines the state of ci as gi,
i ∈ 1, 2, ..., n. A globally-normalized alignment

model is used, which is defined asQψ(a|c,R,w),
and the score of the alignment ai is also computed
via a bilinear scorer.

Pre-processing and Post-processing. Since
the text format of MRP AMR is different from
the original AMR, we need to convert the MRP
AMR text to original AMR text, which is same as
the input file of the parser (Lyu and Titov, 2018).
We utilize Illinois Named Entity Tagger9 (NER)
to generate the NER labels for the AMR data; and
we use the Part-of-Speech (PoS) tags and lemmas
provided by MRP. After the parser generating the
test data output, we convert the AMR form to the
MRP form. For details about the pre-processing
and post-processing, please refer to the original
paper Lyu and Titov (2018) as well.

3 Experiments

This section describes model parameters used in
our models, and the overall results of all the five
tasks.

3.1 Model Parameters
In both SDP and UCCA tasks, we use 100-
dimensional GloVe (Pennington et al., 2014) as
pretrained embedding and random initialized 50-
dimensional char embedding. The char lstm out-
put is 100-dimensional. We also utilize the BERT
embeddings extracted from the last four trans-
former layers. The final BERT representation is
their normalized weighted sum, which is concate-
nated with the word embeddings. The other pa-
rameters are the same with the previous works
(Dozat and Manning, 2018; Jiang et al., 2019).

In EDS task, external resources we use are: 1)
word embeddings pre-trained with GloVe (Pen-
nington et al., 2014) on the Gigaword corpus for
Chinese; and 2) BERT 10 (Devlin et al., 2018),
recently proposed effective deep contextualized
word representation. We split the provided train-
ing data into train/dev/test data, and both dev and
test data contain 2500 examples respectively. We
evaluate our model on the split data, and before
submitting the final result, we train our model on
all the data and predict the provided test data as
our submission.

In AMR task, we randomly choose the samples
of the training data according to the proportion of

9https://cogcomp.org/page/software_
view/NETagger

10We generate our pre-trained BERT embedding with the
released model in https://github.com/google-research/bert.
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DM PSD UCCA EDS AMR
P R F1 P R F1 P R F1 P R F1 P R F1

Node prediction
labels 89 90 89.26 83 85 83.80 # # # 91 91 91.20 82 81 81.53
properties 90 91 90.65 83 85 84.43 # # # 89 91 89.72 77 73 74.96
anchors # # # # # # 96 94 95.02 95 95 94.86 # # #

Edge prediction
top 91 91 91.01 96 79 86.49 100 100 99.56 90 90 89.94 63 63 62.86
edges 88 90 88.69 74 75 74.41 70 65 67.74 90 90 89.66 64 60 61.78
attributes # # # # # # 54 33 40.80 # # # # # #

Overall
all 90 92 91.26 84 86 84.81 81 76 78.43 92 92 91.85 73 70 71.72

Table 2: Experiment results on the provided test data from the shared task. We divide different evaluation criteria
into two types: node-related and edge related, which agrees with our task division.

each domain, and compose them as the develop-
ment data, which contain 2993 samples. We have
also attempted to integrate BERT representations
into the basic model input, but it did not bring
significant improvements. For the model param-
eters, we directly use the default settings of Lyu
and Titov (2018).

3.2 Experiment Results

Our experiment results on the provided test data
are shown in Table 2.

SDP. We randomly selected 20% sentences as
our development set and the rest as our training
set. After tuning on the development set, we train
the parser on the whole dataset from scratch and
early stop at the best epoch on the development
data. The MRP F1 scores of our DM and PSD
deveplopment data are 93.37 and 87.89, respec-
tively. After utilizing BERT embeddings, the re-
sults rise to 94.06 and 88.79 respectively. As the
improvements are not very significant, we will ex-
plore better ways of integrating BERT in the fu-
ture. We achieve 91.26 and 84.81 F1 scores on
PSD and SDP test data regarding to the MRP eval-
uation metrics, which rank the eighth and the ninth
respectively.

UCCA. The training strategy is the same as
SDP. The MRP F1 scores on our deveplopment
data are 79.80 and 73.41, w/o BERT respectively.
Unlike SDP, the result is significantly improved af-
ter using BERT embeddings. This is consistent
with Jiang et al. (2019). We achieve 78.43 F1
score on the test set which ranks the second.

EDS. For nodes prediction, our models cannot
assign the labels well compared to the anchors as
shown in Table 2, and properties are even worse.
This trend is consistent with our model design and
the evaluation strategy, since they predict anchors

first and the labels second. Another important rea-
son is that provided lemmas of the words are not
always correct for EDS task.

For edge prediction, on our split test/dev data,
edge model can achieve much better performance
based on the gold nodes than predicted nodes, up
to ca. 98%. Based on such high performance, we
have not considered constraints like leaf node can-
not be pointed by other nodes. Edge prediction
performance in Table 2 is not optimal mainlly due
to the error propagation from node prediction.

External knowledge including BERT and pre-
trained word embedding are effective; and post-
processing listed in can achieve about 1% im-
provement on our split dev/test data. Another
interesting observation during our experiments is
that the complete match score is much higher
than the normal dependency parsing (ca. 75% vs.
30%), although the corresponding LAS can be as
high as ca. 92%.

Finally, we obtain 91.85 F1 score on the test
data, ranks the first.

AMR. We choose the best model that tuned on
the development data to generate AMR graphs for
the test data, which achieves 69.9 F1 smatch score
on development data. Table 2 shows the results of
the AMR test data regarding to the MRP evalua-
tion metrics. We achieve 71.72 F1 score on the
test data and it ranks the fifth.

Our overall result on all five tasks ranks third,
and our results ranks first on EDS and second on
UCCA.

4 Conclusions and Future Work

We participate in the shared task on Cross-
Framework Meaning Representation Parsing
(MRP) at CoNLL-2019. The shared task com-
bines five frameworks for graph-based meaning
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representation, including DM, PSD, EDS, UCCA,
and AMR. Considering the common character-
istics of the five semantic formalisms, we treat
them as two-stage processing using graph-based
methods: node prediction (no need for DM and
PSD) and edge prediction. For different graphs,
we generate nodes and edges in a joint way or in a
pipeline way. BERT is also employed to boost the
performance (except AMR). Our system ranked
the third on the overall evaluation metrics, the first
on EDS and the second on UCCA. For the future
work, we plan to jointly handle multiple semantic
frameworks (e.g., DM, PSD, and UCCA) at the
same time via MTL, in order to facilitate mutual
benefits and interactions, and make better use
of the non-overlapping training data. Moreover,
model ensemble may also further enhance the
performance.
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Abstract

This paper describes the ÚFAL–Oslo sys-
tem submission to the shared task on Cross-
Framework Meaning Representation Parsing
(MRP, Oepen et al. 2019). The submission is
based on several third-party parsers. Within
the official shared task results, the submission
ranked 11th out of 13 participating systems.

1 Introduction

The CoNLL 2019 shared task is on Meaning Rep-
resentation Parsing, i.e., finding graphs of se-
mantic dependencies for plain-text English sen-
tences. There are numerous frameworks that de-
fine various kinds of semantic graphs; five of them
have been selected as target representations in this
shared task. The five frameworks are: Prague
Semantic Dependencies (PSD); Delph-In bilexi-
cal dependencies (DM); Elementary Dependency
Structures (EDS); Universal Conceptual Cogni-
tive Annotation (UCCA); and Abstract Mean-
ing Representation (AMR). See the shared task
overview paper (Oepen et al., 2019) for a descrip-
tion of the individual frameworks.

Previous parsing experiments have been de-
scribed for all these frameworks, and some of the
parsers are freely available and re-trainable. Being
novices in the area of non-tree parsing, we did not
aim at implementing our own parser from scratch;
instead, we decided to experiment with third-party
software and see how far we can get. Our partic-
ipation can thus be viewed, to some extent, as an
exercise in reproducibility. The challenge was in
the number and in the diversity of the target frame-
works. No single parser can produce all five target
representation types (or at least that was the case
when the present shared task started).

Within the shared task, data of all five frame-
works are represented in a common JSON-based

interchange format (the MRP format). This for-
mat allows to represent an arbitrary graph struc-
ture whose nodes may or may not be anchored to
spans of the input text. Using a pre-existing parser
thus means that data have to be converted between
the MRP interchange format and the format used
by the parser; such conversion is not always trivial.

The shared task organizers have provided ad-
ditional companion data where both the training
and the test data were preprocessed by UDPipe
(Straka and Straková, 2017), providing automatic
tokenization, lemmatization, part-of-speech tags
and syntactic trees in the Universal Dependen-
cies annotation scheme (Nivre et al., 2016). We
work solely with the companion data in our exper-
iments; we do not process raw text directly.

2 Related Work

For the purposes of this work we considered pre-
vious work matching the following criteria:

• reporting reasonably good results;

• accompanied by open-source code available
to use;

• with instructions sufficient to run the code;

• using only the resources from the shared task
whitelist.

Peng et al. (2017) presented a neural parser that
was designed to work with three semantic depen-
dency graph frameworks, namely, DM, PAS and
PSD. The authors proposed a single-task and two
multitask learning approaches and extended their
work with a new approach (Peng et al., 2018) to
learning semantic parsers from multiple datasets.

The first specialized parser for UCCA was pre-
sented by Hershcovich et al. (2017). It utilized
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novel transition set and features based on bidirec-
tional LSTMs and was developed to deal with spe-
cific features of UCCA graphs, such as DAG struc-
ture of the graph, discontinuous structures, and
non-terminal nodes corresponding to complex se-
mantic units. The work saw further development
in (Hershcovich et al., 2018), where authors pre-
sented a generalized solution for transition-based
parsing of DAGs and explored multitask learning
across several representations, showing that using
other formalisms in joint learning significantly im-
proved UCCA parsing.

Buys and Blunsom (2017) proposed a neu-
ral encoder-decoder transition-based parser for
full MRS-based semantic graphs. The decoder
is extended with stack-based embedding fea-
tures which allows the graphs to be predicted
jointly with unlexicalized predicates and their to-
ken alignments. The parser was evaluated on
DMRS, EDS and AMR graphs. Lexicon extrac-
tion partially relies on Propbank (Palmer et al.,
2005), which is not in the shared task whitelist.
Unfortunately, we were not able to replace it with
an analogous white-listed resource, therefore we
did not use it.

Flanigan et al. (2014) presented the first ap-
proach to AMR parsing, which is based around the
idea of identifying concepts and relations in source
sentences utilizing a novel training algorithm and
additional linguistic knowledge. The parser was
further improved for the SemEval 2016 Shared
Task 8 (Flanigan et al., 2016). JAMR parser uti-
lizes a rule-based aligner to match word spans in a
sentence to concepts they evoke, which is applied
in a pipeline before training the parser.

Damonte et al. (2017) proposed a transition-
based parser for AMR not dissimilar to the ARC-
EAGER transition system for dependency tree
parsing, which parses sentences left-to-right in
real time.

Lyu and Titov (2018) presented an AMR parser
that jointly learns to align and parse treating align-
ments as latent variables in a joint probabilistic
model. The authors argue that simultaneous learn-
ing of alignment and parses benefits the parsing
in the sense that alignment is directly informed by
the parsing objective thus producing overall better
alignments.

Zhang et al. (2019a) and (Zhang et al., 2019b)
recently reported results that outperform all pre-
viously reported SMATCH scores, on both AMR

2.0 and AMR 1.0. The proposed attention-based
model is aligner-free and deals with AMR parsing
as sequence-to-graph task. Additionally, the au-
thors proposed an alternative view on reentrancy
converting an AMR graph into a tree by duplicat-
ing nodes that have reentrant relations and then
adding an extra layer of annotation by assigning
an index to each node so that the duplicates of the
same node would have the same id and could be
merged to recover the original AMR graph. This
series of papers looks very promising, but unfor-
tunately we were not able to test the parser due to
them being published after the end of the shared
task.

3 System Description

3.1 DM and PSD
To deal with the DM and PSD frameworks we
chose a parser that was described in (Peng et al.,
2017). This work explores a single-task and two
multitask learning approaches using the data from
the 2015 SemEval shared task on Broad-Coverage
Semantic Dependency Parsing (SDP, Oepen et al.
2015) and reports significant improvements on
the state-of-the-art results for semantic depen-
dency parsing. The parser architecture utilizes arc-
factored inference and a bidirectional-LSTM com-
posed with a multi-layer perceptron. Our first in-
tention was to adapt the models that utilize the
multitask learning approach. Unfortunately, the
project seems to be stalled and multitask pars-
ing part is not available. We proceeded with the
single-task model (NeurboParser), in which mod-
els for each formalism are trained completely sep-
arately. To reproduce the experiment from the pa-
per we needed to perform the following steps:

• Convert the training data from the MRP
format to the input format required by the
parser.1 The input format is the same as the
one used in the 2015 SemEval Shared Task2

(see Figure 1 for an example).

• Download pre-trained word embeddings
(GloVe, Pennington et al. 2014). We use
the same version that is described in the

1All conversion scripts that we created for this
shared task are available on GitHub at https:
//github.com/ufal/mrptask/tree/master/
conll-2019-system.

2See detailed format description at http:
//alt.qcri.org/semeval2015/task18/index.
php?id=data-and-tools
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paper – 100-dimensional vectors trained on
Wikipedia and Gigaword.

• Create training and development splits. We
use scripts and id lists provided by the au-
thors. The development set comprises 5% of
sentences of the training data.

• Create an additional file with the following
information: part-of-speech tag, token ID of
the head of the current word, dependency re-
lation. The parser considers syntactic depen-
dencies before it predicts the semantic ones;
note that we can obtain this information from
the companion data and give it to the parser.

• Run the training script to train the model.
The most challenging part was to install and
compile the parser. The authors provided
the training script with default hyperparam-
eters; however, using some of the docu-
mented options resulted in errors on our sys-
tem. Models are trained up to 20 epochs with
Adadelta (Zeiler, 2012).

The single-task model does not predict the
frame labels. This is a simple classifica-
tion problem, similar to lemmatization, so as a
quick workaround, we used UDPipe (Straka and
Straková, 2017), namely its predictor of morpho-
logical features, to simulate such a classifier. First,
we converted the training data to the CoNLL-U
format3 replacing morphological features in the
sixth column with the frame labels. Next, we
trained the model using the instructions from Re-
producible Training section of the UDPipe man-
ual.4

To produce the final output for the testing data,
we first parsed it with the trained models. The
input files were produced using companion data.
To be more specific, for the UDPipe model input
we used tokenization and word forms from com-
panion data. NeurboParser takes the following in-
formation as input: token ID, word form, lemma,
and part-of-speech tag. Then we merged the frame
information predicted by UDPipe with the Neur-
boParser output and converted it back to the MRP
interchange format.

3https://universaldependencies.org/
format.html

4http://ufal.mff.cuni.cz/udpipe/
models#universal_dependencies_24_
reprodusible_training

3.2 EDS

We do not have any parser specifically for EDS.
However, EDS is closely related to DM (DM is
a lossy conversion of EDS, where nodes that do
not represent surface words have been removed
(Ivanova et al., 2012)). We thus work with the hy-
pothesis that a DM graph is a subset of the cor-
responding EDS graph, and we submit our DM
graph to be also evaluated as EDS.

This is obviously just an approximation, as EDS
parsing is a task inherently more complex than
DM parsing. The hope is that the DM parser will
be able to identify some EDS edges while others
will be missing, and the overall results will still
be better than if we did not predict anything at all.
To illustrate this, consider Figures 2 and 3. Four
DM edges are also present in the EDS graph (in
one case, the corresponding nodes have different
labels but they are still anchored in the same sur-
face string).

3.3 AMR

For AMR, we chose the JAMR parser (Flanigan
et al., 2014, 2016). The parser is based on a
two-part algorithm that identifies concepts using
a semi-Markov model and then identifies the rela-
tions by searching for the maximum spanning con-
nected subgraph (MSCG) from an edge-labeled,
directed graph representing all possible relations
between the identified concepts. Lagrangian re-
laxation (Geoffrion, 1974) is used to ensure se-
mantic well-formedness. For our experiments we
used the version that was presented at the 2016
SemEval shared task on Meaning Representation
Parsing (May, 2016), in which the authors imple-
mented a novel training loss function for struc-
tured prediction, added new lists of concepts and
improved features, and improved the rule-based
aligner.

The instructions and training scripts were pro-
vided by the authors. To run the training, we
needed to split the data into training and devel-
opment sets, to create a label-set file, which is a
list of unique edge labels collected from the train-
ing data, and then convert the training data to the
parser input format. Our development split con-
sists of 5% of sentences taken from each text of
the training data.

The JAMR parser works with the traditional
AMR format, PENMAN, which represents an
AMR graph in bracketed form (Banarescu et al.,
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1 There there EX - -
2 is be VBZ + + v there:e-i loc
3 no no DT - + q:i-h-h
4 asbestos asbestos NN - - n:x ARG1 BV ARG1
5 in in IN - + p:e-u-i
6 our we PRP$ - + q:i-h-h
7 products product NNS - - n:x ARG2 poss
8 now now RB - + time n:x
9 . . . - -
10 '' ” ' ' - -

Figure 1: An example of a sentence in the format required by NeurboParser. See Figure 3 for visualization of this
DM graph.

be no asbestos in def poss pronoun pron product loc time def now
v there q n 1 p explicit q poss q n 1 nonsp n implicit q a 1

ARG1

ARG1

BV

ARG1

BV

ARG1

ARG1

ARG2

ARG2

ARG2

BV

BV

top

“There is no asbestos in our products now.”

Figure 2: EDS representation of the example sentence.

is no asbestos in our product now

ARG2

ARG1

ARG1

loc

BV poss

top

“There is no asbestos in our products now.”

Figure 3: DM representation of the example sentence.

2013), therefore necessitating a two-way conver-
sion between the MRP and PENMAN formats.
The example sentence “There is no asbestos in our
products now."” would look the following way in
PENMAN format (see also Figure 5 for a visual-
ization of the graph):

(a / asbestos :polarity -
:time (n / now)
:location (t / thing

:ARG1-of (p / produce-01
:ARG0 (w / we))))

To facilitate the conversion, we created a
Python3 script for each conversion direction.

The main features of conversion from the MRP

be no asbestos #PersPron product now

RSTR

ACT-arg

APP

LOC

TWHEN
top

“There is no asbestos in our products now.”

Figure 4: PSD representation of the example sentence.

format to the PENMAN format are as follows:

• For each sentence, a representation of the
graph in the form of source-to-target mapping
is obtained from the JSON representation of
the list of edges.

• The graph is traversed starting from the top
using depth-first search algorithm outputting
one node on a line in order the nodes are tra-
versed, leading to dropping reentrancies.

• Nodes that were already visited are marked
and are not traversed again in order to break
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asbestos now thing produce-01 we
polarity=-

location

time ARG1-of ARG0

“There is no asbestos in our products now.”

Figure 5: AMR representation of the example sentence.

possible infinite loops resulting from the cy-
cles in the graph.

• Numeric node ids are substituted with al-
phanumeric values standard for PENMAN
format: the first letter of the MRP node la-
bel is followed by an ordinal number if it is
necessary to distinguish multiple nodes start-
ing with the same letter.

• Properties of the node are output on the same
line as the node.

• Property values that contain characters that
are special for AMR representation, namely
a colon (:), are enclosed in straight double
quotes, as recommended by the parser doc-
umentation, e.g., 20:00 becomes "20:00".

The back conversion has the following features:

• For each sentence, its AMR representation is
recursively split into a nested list structure re-
flecting the nestedness of bracket notation.

• The path starting from the top node is recur-
sively retrieved from the nested list structure.

• The lists of nodes and edges are collected
along the path and converted to the MRP for-
mat.

• Finally, the alphanumeric node ids are con-
verted to numeric format: the root is assigned
0, then the incremental ids are assigned to the
rest of the nodes in order they are visited by
depth-first traverse, with the child nodes of
the same parent node sorted by rough prior-
ity of their connecting edge label:

– frame arguments are sorted in order of
their numbers, e.g., :ARG0 precedes
:ARG1;

– frame arguments precede semantic rela-
tions, e.g., :ARG0 precedes :date;

– inverse relations are placed after straight
ones of the same name, e.g., :ARG0 pre-
cedes :ARG0-of.

3.4 UCCA
We decided to adapt JAMR parser that we had al-
ready set up to parse AMR data in order to train on
UCCA data as well. We had theorized that a parser
suitable for AMR could be trained to predict non-
surface nodes in UCCA graphs. For this, we
needed to convert UCCA graphs from the uniform
graph interchange format to AMR-like bracketed
representation and vice versa, so the parser would
be able to work with sentences in familiar format.
The example sentence “There is no asbestos in our
products now."” would look the following way in
the AMR-like representation (see also Figure 6 for
a visualization of the graph):

(_1 / _root
:H (_2 / _h

:S (t / There)
:F (i / is)
:D (n / no)
:A (a / asbestos)
:A (_3 / _a

:R (i1 / in)
:E (_4 / _e

:S (o / our))
:C (p / products))

:T (n1 / now)
:U (. / .)
:U (_ / _quot)))

As demonstrated by this example, we intro-
duced the following modifications to the PEN-
MAN format in order to adapt it for UCCA:

• Since in UCCA nodes that do not directly
correspond to surface tokens lack any labels
at all, we assign them placeholder labels dur-
ing conversion, which start with the under-
score to differentiate them from labels of sur-
face nodes. Top node is given the root la-
bel, while the rest are given labels that are
the same as the label on the edge connecting
it with its parent node.

• In UCCA punctuation gets its own nodes. In
most cases we use the punctuation symbol
as the node label, with one exception: we
replace the double-quote character (") with
quot because the parser treats the double

quote as a special character.
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2 There is no asbestos 3 in 4 our products now .

U

T

A

A

D

F

S

C

E

R S

H

“There is no asbestos in our products now.”

Figure 6: UCCA representation of the example sentence.

The conversion process is mostly the same as
for AMR, with the following notable modifica-
tions:

• Conversion from MRP to the AMR-like for-
mat:

– labels for the nodes that correspond to
surface tokens are obtained by taking
parts of the sentence text denoted by
corresponding anchors;

– the list of possible special characters
that necessitate the label to be enclosed
in double quotes is extended to slash (/)
and parentheses;

– nodes with empty labels are assigned la-
bels as described above;

– the double-quote label is replaced with
quot as described above.

• Conversion from the AMR-like format to
MRP:

– anchors are recalculated from node la-
bels and sentence text where needed, as-
suming the order of nodes’ occurrences
corresponds to the order in which their
labels occur in the sentence;

– alphanumeric ids are reassigned to nu-
meric not based on the order the nodes
emerge when depth-first traversing the
tree, but first assigned to the surface
nodes in order of their occurrence in the
sentence, then to the rest of the nodes,
which seems to be the preferred way for
UCCA graphs.

4 Results

The results are shown in Table 1. Unfortunately,
our results for AMR and UCCA testing sentences

were corrupted, thus the official results comprise
only scores for DM, PSD and EDS frameworks.
However, we do provide the scores for the post-
evaluation run for AMR and UCCA frameworks.
The results for the complete evaluation set and for
the LPPS subset, a 100-sentence sample from The
Little Prince annotated in all frameworks, are re-
ported for both the official and unofficial runs.

For reference we provide previously reported
original results measured by formalism-specific
metrics for both the parsers that we use. Our re-
sults for DM and PSD are quite close to the origi-
nal results reported in (Peng et al., 2017). Original
SMATCH scores are reported in (May, 2016). The
score reported on the LPPS subset is close to the
original score, whereas the score measured on the
whole test set is much lower. This difference may
largely be due to a misinterpreted bug in the back
conversion script, which lead to dropping 36% of
sentences from the evaluation set. This, however,
didn’t affect the LPP subset, which comprises rel-
atively simple sentences.

5 Conclusion

We have described the ÚFAL–Oslo submission to
the CoNLL 2019 shared task on cross-framework
meaning representation parsing. This submission
stands on three parsers that were previously pro-
posed, implemented and made available by other
researchers: NeurboParser, JAMR, and UDPipe.
We added several conversion scripts to make the
parsers work with the shared task data. We were
not able to implement other improvements within
the time span of the shared task; we also do not list
other publicly available parsers that we thought of
testing but failed to make them work.

The main purpose of the present paper is to pro-
vide some context to our numbers in the shared
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MRP MRP:DM MRP:PSD MRP:EDS MRP:UCCA MRP:AMR SDP:DM SDP:PSD SMATCH:AMR

Official run 0.344 0.8051 0.6092 0.3064 0.0000 0.0000 0.8803 0.7689 0.0000
0.334 0.7782 0.5663 0.3260 0.0000 0.0000 0.8879 0.7950 0.0000

Post-evaluation 0.439 0.8051 0.6092 0.3064 0.1118 0.3645 0.8803 0.7689 0.3515
0.473 0.7782 0.5663 0.3260 0.1748 0.5194 0.8879 0.7950 0.5081

Previously reported 0.894 0.776 0.56

Table 1: Official run: official results; Post-evaluation: results that were achieved after the submission deadline;
Previously reported: original results for utilized parsers. For every metric we show F1 score, except for SDP:DM
and SDP:PSD, where we show labeled F1 score; for both runs we provide results for the complete evaluation set
(upper line) and the LPPS subset (lower line).

task results; the results themselves are far from op-
timal. Using the official MRP shared task metric
(and looking at the unofficial post-evaluation run,
which includes AMR and UCCA results), we were
relatively successful only in parsing DM. Parsing
PSD is obviously harder (these figures are compa-
rable, as we applied the same processing to PSD
and DM), and, perhaps unsurprisingly, AMR is
the most difficult target of the three. We achieved
non-zero score on EDS by simply pretending that
the DM graph is EDS. Finally, training an AMR
parser on the UCCA representation did not turn
out to be a good idea, and our UCCA score is the
worst among all the target representations.
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Abstract
We design, implement and evaluate two se-
mantic parsers, which represent factorization-
and composition-based approaches respec-
tively, for Elementary Dependency Struc-
tures (EDS) at the CoNLL 2019 Shared Task
on Cross-Framework Meaning Representa-
tion Parsing. The detailed evaluation of the
two parsers gives us a new perception about
parsing into linguistically enriched meaning
representations: current neural EDS parsers
are able to reach an accuracy at the inter-
annotator agreement level in the same-epoch-
and-domain setup.

1 Introduction

For the CoNLL 2019 Shared Task on Cross-
Framework Meaning Representation Parsing
(MRP; Oepen et al., 2019), we concentrate on
Elementary Dependency Structures (EDS; Oepen
and Lønning, 2006), the graph-based meaning
representations derived from English Resource
Semantics1 (ERS; Flickinger et al., 2014b) that is
the richly detailed semantic annotation associated
to English Resource Grammar (ERG; Flickinger,
2000), a domain-independent, linguistically deep
and broad-coverage HPSG grammar. The full
ERS and EDS annotations include not only basic
predicate–argument structures, but also informa-
tion about quantifiers and scopal operators, e.g.
negation, as well as analyses of linguistically
complex phenomena such as time and date
expressions, conditionals, and comparatives.

Following Koller et al. (2019)’s practice, we
divide existing work on string-to-semantic-graph
parsing into four types, namely factorization-,
composition-, transition- and translation-based ap-
proaches. Our previous studies (Chen et al.,
2018b; Cao et al., 2019) as well as other inves-
tigations on other graph banks indicate that the

1http://moin.delph-in.net/ErgSemantics

factorization- and composition-based approaches
obtain currently superior accuracies. In this paper,
we fine-tune our factorization- and composition-
based parsers and present a detailed evaluation on
the MRP data.

Our factorization-based system obtains an over-
all accuracy of 94.47 in terms of the official MRP
evaluation metrics, and out-performs other sub-
mission systems by a large margin with respect
to the prediction for labels, properties, anchors
and edges. We highlight a new perception: Cur-
rent neural parsers are able to reach an accuracy at
the inter-annotator agreement level (Bender et al.,
2015) for the linguistically enriched EDS repre-
sentations in the same-epoch-and-domain setup.
Given the information depth of ERS, we think
many NLP applications may benefit from a re-
visit of classic discrete semantic representations.
The composition-based system reaches a score of
91.84. We do not think the performance gap sug-
gests a weakness of the latter approach, but take
it a reflection of the fact that a composition-based
parser involves more individual modules that have
not been fully optimized yet.

2 Parsing to Semantic Graphs

In this section, we present a summary of
factorization-, composition-, transition- and
translation-based parsing approaches.

Factorization-Based Approach. This type of
approach is inspired by the successful design of
graph-based dependency tree parsing (McDonald,
2006). A factorization-based parser explicitly
models the target semantic structures by defining a
score function that is able to evaluate the goodness
of any candidate graph. Usually, the set of possible
graphs that can be assigned to an input sentence is
extremely large. Therefore, a parser also needs to
know how to find the highest-scoring graphs from
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a large set.
To the best of our knowledge, McDonald and

Pereira (2006) present the first graph-based syn-
tactic dependency parsing algorithm that removes
the tree-shape constraint. In the scenario of se-
mantic dependency parsing, Kuhlmann and Jons-
son (2015) generalize the graph-based framework
(aka Maximum Spanning Tree parsing) and pro-
pose Maximum Subgraph parsing. Given a di-
rected graph G = (V,E) that corresponds to an
input sentence x = w0, . . . wn−1 and a score func-
tion SCOREG. The string-to-graph parsing is for-
mulated as a problem of searching for a subset
E′ ⊆ E with the maximum score. Formally, we
have the following optimization problem:

(V,E′) = arg max
G∗=(V,E∗⊆E)

SCOREG(G∗) (1)

For semantic dependency parsing, V is the set of
surface tokens, and G is, usually, the correspond-
ing complete graph.

It is relatively straightforward to extend
Kuhlmann and Jonsson’s framework to cover more
types of semantic graphs as follows,

G′ = arg max
G∗∈GEN(x)

SCOREG(G∗) (2)

where GEN(x) denotes all plausible semantic
graphs that can be assigned to x.

To make the above combinatorial optimization
problems solvable, people usually employ a fac-
torization strategy, i.e. defining a decomposable
score function that enumerates all sub-parts of a
candidate graph. This view matches a classic so-
lution to structured prediction which captures el-
emental and structural information through part-
wise factorization. For example, the following for-
mula defines a first-order factorization model for
semantic dependency parsing,

G′ = arg max
G∗=(V,E∗⊆E)

∑

e∈E∗
SCOREEDGE(e) (3)

The essential computational module in this ar-
chitecture is the score function, which is usually
induced based on moderate-sized annotated sen-
tences. Various deep learning models together
with vector-based encodings induced from large-
scale raw texts have been making advances in
shaping a score function significantly (Dozat and
Manning, 2018). We will detail our factorization-
based parser in §3.

Composition-Based Approach. Composition-
ality is a cornerstone for many formal semantic
theories. Following a principle of compositional-
ity, a semantic graph can be viewed as the result of
a derivation process, in which a set of lexical and
syntactico-semantic rules are iteratively applied
and evaluated. On the linguistic side, such rules
extensively encode explicit knowledge about nat-
ural languages. On the computational side, such
rules must be governed by a well-defined gram-
mar formalism. In particular, to manipulate graph
construction in a principled way, Hyperedge Re-
placement Grammar (HRG; Drewes et al., 1997)
and AM Algebra (Groschwitz et al., 2017) have
been applied to build semantic parsers for various
graph banks (Chen et al., 2018b; Groschwitz et al.,
2018; Lindemann et al., 2019).

A composition-based parser explicitly models
derivations that yield semantic graphs by defining
a score function SCORED. Assume a derivation
D = r1, r2, . . . , rm is a sequence of rules. For-
mally, we have the following optimization prob-
lem:

G′ = arg max
G∗∈GEN(x)

∑

D∈DERIV(G∗)

SCORED(D) (4)

To make the above problem solvable, people usu-
ally employ a decomposition strategy, i.e. sum-
ming over local scores that correspond to individ-
ual derivation steps:

SCORED(D) =

m∑

i=1

SCORERULE(ri) (5)

Again, this matches many structured prediction
models. Deep learning has been shown very pow-
erful to associate scores to individual rule applica-
tions, and thus to provide great models for eval-
uating a derivation. The general form of (4) is
a very complex combinatorial optimization prob-
lem. The approximating strategy to search for the
best derivation instead has been shown practical
yet effective for ERS parsing (Chen et al., 2018b).
Formally, we solve the below problem,

D′ = arg max
D∗∈GENDERIV(x)
D∗=r1r2···rm

m∑

i=1

SCORERULE(ri) (6)

where GENDERIV(x) denotes all sound derivations
that yield x. Then we get a target graph by eval-
uating D′. We will detail our composition-based
parser in §4.
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Transition-Based Approach. This type of ap-
proach is inspired by the successful design of
transition-based dependency tree parsing (Yamada
and Matsumoto, 2003; Nivre, 2008). To the best
of our knowledge, Sagae and Tsujii (2008) firstly
apply this type of approach to predict predicate–
argument structures grounded in HPSG (Miyao
et al., 2005). A number of new transition sys-
tems and disambiguation models have been dis-
cussed for parsing into different graphs (Wang
et al., 2015; Zhang et al., 2016; Buys and Blun-
som, 2017; Gildea et al., 2018; Sun et al., 2019)

Translation-Based Approach. This type of ap-
proach is inspired by the success of sequence-to-
sequence (seq2seq for short) models that are the
heart of modern Neural Machine Translation. A
translation-based parser takes a family of seman-
tic graphs as a foreign language, in that a seman-
tic graph is encoded and then viewed as a string
from another language (Peng et al., 2017b; Kon-
stas et al., 2017; Buys and Blunsom, 2017). A
parser knows how to linearize a graph. Data aug-
mentation has been shown very helpful (Konstas
et al., 2017), partially reflecting the data-hungry
nature of seq2seq models.

Simple application of seq2seq models is
not sucessful. However, some basic mod-
els can be integrated with other types of ap-
proaches. Peng et al. (2018) propose to combine
the translation- and transition-based approaches.
Zhang et al. (2018) combined the translation- and
factorization-based approaches.

3 The Factorization-Based Parser

3.1 Elements in EDS Graphs

The key idea underlying the factorization-based
approach is to explicitly model what are expected
as elements in target structures. Therefore before
introducing the technical details of our parser, we
roughly sketch key elements in EDS graphs. Refer
to Flickinger et al. (2014a) for more information
about the design of ERS.

We distinguish three kinds of elements: (1) la-
beled nodes, (2) node properties and (3) labeled
edges. Nodes are sometimes called concepts2,
where their labels reflect conceptual meaning. The

2 Considering the original design and especially the logic
foundation of ERS, the seemly more standard name is pred-
icate. In this paper, we call them concepts, mainly because
we want to follow the new tradition of graph-based meaning
representations (Kuhlmann and Oepen, 2016).

node labels can be divided into two classes: (1)
surface concepts that are exclusively introduced
by lexical entries, whose orthography is the source
form of a core part of a concept symbol, and (2)
abstract concepts that are used to represent the se-
mantic contribution of grammatical constructions
or more specialized lexical entries. Take the out-
put structure in Figure 1 for example: go v 1
and want v 1 indicate surface concepts, while
proper q and named indicate abstract concepts.

To avoid proliferation of concepts, some con-
cepts are parameterized. The parameters can
be viewed as properties of nodes. For exam-
ple, named("Tom") is a named concept with a
CARG property of "Tom". For every EDS graph,
there exists a top concept, which relates to the
top handle in its original ERS annotation. In Fig-
ure 1, for example, want v 1 is the top. In this
paper, we practically treat whether a node is top as
a property whose value can be either true or false.

Edges are called relations. An edge links ex-
actly two nodes and mainly reflects predicate–
argument relations. Edges are assigned with a
small, fixed inventory of role labels (e.g. ARG1,
ARG2, . . . ).

3.2 The Architecture

We employ a four-stage pipeline to incrementally
construct an EDS graph. Figure 1 illustrates the
four steps with a simple sentence. The core idea is
to identify concepts from surface strings, and then
detect the relations between them.

3.3 Tokenization

Automatic tokenization for English has been
widely viewed as a solved problem for quite a
long time. Taking the risk of oversimplifying the
situation, tokenization does not have a significant
impact on downstream NLP tasks, e.g. POS tag-
ging and syntactic parsing. When we consider se-
mantic parsing, however, it is still a controversial
issue which unit is the most basic one that trig-
gers conceptual meaning and semantic construc-
tion. Therefore, we need to rethink the tokeniza-
tion problem in which tokens may not be fully con-
sistent with their traditional definitions. Moreover,
when we consider other languages like German or
Chinese, tokenization brings other issues.

In this paper, we take the most basic word-level
units3 as strings that are separated by whitespaces

3We purposely avoid using words here. But when we in-
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Tom wants to go.

Input

Tom / wants / to / go / .
proper q
named * v 1 ∅ * v 1 ∅

Tom wants to go .

named

want v 1
go v 1

proper q

ARG1
ARG1BV

ARG2

named("Tom")〈0:3〉

want v 1〈4:9〉

go v 1〈13:15〉

proper q〈0:3〉
Top

ARG1
ARG1BV

ARG2

Output

Tokenization
Concept

Identification

Relation Detection

Property
Prediction

Figure 1: The workflow of our factorization-based parser. Tokenization: To separate an input sentence into se-
mantic parsing-oriented tokens. Concept Identification: To generate concepts with a sequence labeling model.
Relation Detection: To link concepts with a semantic dependency parsing model. Property Prediction: To predict
node properties by classification.

Input string Assets of these short-term funds surged more than $5.5 billion in September.

RegEx match Assets of these short - term funds surged more than $ 5 . 5 billion in September .
Classification B B B B BB B B B I B B I I B B B B

Our tokens Assets of these short - term funds surged more than $ 5 . 5 billion in September .

PTB tokens Assets of these short - term funds surged more than $ 5 . 5 billion in September .

Table 1: A tokenization example. Row “Our tokens” shows the result of our tokenizer, while Row “PTB tokens”
shows the tokenization results defined by the Penn TreeBank (PTB; Marcus et al., 1993).

Concept Type String

more+than p multi-unit more than
asset n 1 single unit Assets
short a of sub-unit short-term
term n of sub-unit short-term
mis- a error sub-unit misinterpreted
interpret v 1 sub-unit misinterpreted

Table 2: Examples to illustrate the relationships be-
tween surface concepts and word-level units. ‘ ’ is an
escape character for whitespace.

and punctuation markers. In an EDS graph, a sur-
face concept may be aligned with a sub-unit, a sin-
gle unit or multiple units. Table 2 shows some ex-
amples. During concept identification (§3.4), there
should exist a surjection from surface concepts to
the input tokens. Therefore, tokenization is impor-
tant for obtaining a reasonable alignment between
concepts and input tokens.

We adopt the character-based word segmenta-
tion approach for Chinese (Sun, 2010) to find suit-
able tokens. We first split an input sentence into

troduce our neural parsing models, we still use word to relate
the units to word embeddings.

a sequence of basic elements with simply defined
regular expressions. The core part of our tokenizer
is a sequence labeling model over this sequence.
In particular, each element is assigned with a po-
sitional label that indicates token boundaries. The
labels can be either B, which means the unit is at
the begining of a target token, or I, which means
the unit is inside a token. For sequential classifi-
cation, we utilize a multi-layer BiLSTM network.
Tokens can be retrieved from the predicted labels.
See Figure 1 for an example. Note that, Dridan
and Oepen (2012) showed that regular expressions
are quite powerful to deal with the tokenizaiton
problem for different styles.

3.4 Concept Identification

Surface concepts (e.g. quantifier some q) and
some of the abstract concepts (e.g. named en-
tity named) have a more transparent connection to
surface forms and are relatively easier to identify.
We call such concepts lexicalized concepts, which
include all but are not limited to surface concepts.
We cast identification of lexicalized concepts as
a token-based tagging problem. The lexicalized
concepts usually include lemma information in its
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label. For example, boy n 1 consists of a lemma
(boy) and a type , denoted as * n 1. As lemmas
are much more easily to analyze, our concept iden-
tifier targets the type part only.

Some of the rest of abstract concepts are trig-
gered by phrasal constructions. For example,
compound is associated to the combination of
multiple words. In this case, a concept is origi-
nally aligned to a sequence of continuous words.
Considering that this type of concepts is a small
portion, we propose to handle them in a word-level
tagger. To this end, we re-align them to specific
tokens with a small set of heuristic rules. For ex-
ample, compound is re-aligned to the first word
of a compound. Re-aligning these concepts means
discarding their original anchors. To fully fit the
MRP goals, we treat anchors as properties of con-
cepts, and recover them by predicting the start/end
boundaries with a classification model, as to be de-
scribed in §3.6.

We employ a neural sequence labeling model
to predict concepts. A multi-layer BiLSTM is
utilized to encode tokens and another two soft-
max layers to predict concept-related labels: One
for lexicalized concepts and the other for the rest.
We also use recently widely-used contextualized
word representation models, including ELMo (Pe-
ters et al., 2018) and BERT (Devlin et al., 2018).
Figure 2 shows the neural network for concept
identication.

3.5 Relation Detection
After finding a set of concepts, the next step is to
link them together. Each semantic dependency is
treated independently. We use integers as indices
to mention concepts nodes. For any two nodes i
and j, we give a score SCOREEDGE(i, j) to the
possible arc i → j. An arc is included to the final
graph if and only if its score is greater than 0. We
use a first-order model as described in Eq. (3).
Figure 2 briefly summarizes the neural network for
relation detection.

Following Dozat and Manning (2016, 2018), we
use a deep biaffine attention to evaluate a candi-
date edge:

SCOREEDGE(i, j) = BIAFFINE(ci, cj)

= cTi Ucj +W (ci + cj) + b

where ci/cj is the vector associated to i/j. We
consider two information sources to calculate c:
a textual part rc2w(i) and a conceptual part ni, as

He wants to go

encoder encoder encoder encoder
r1 r4

2:pronoun q
1:pron 3:* v 1 φ 4:* v 1

arg max

c1 c4
BIAFFINE

SCOREEDGE(pron← go v 1)

Figure 2: The network architecture for our con-
cept identification and relation detection models which
share the same architecture in word embedding and
contextual encoder layers but with the same sets of pa-
rameters. A softmax layer is used for concept identifi-
cation. To determine whether the dependency pron←
go v 1 exists, i.e. unlabeled dependency parsing, the

corresponding embeddings c1 and c4, which are the
concatenation of textual embeddings (in the red color)
and the conceptual embeddings (in the yellow color),
are biaffinely transformed into a score.

following,
ci = rc2w(i) ⊕ ni

Due to our concept identification method, we have
a function “c2w” that takes as input the index of
a node and returns as output the index of its an-
chored word. rc2w(i) is the contextual vector of
the word aligned to i, which is calculated by the
word embedding layer and the encoder layers. ni
is the randomly-initialized embedding of i’s con-
cept type, e.g. * v 1. We also use the deep bi-
affine attention function to calculate each edge’s
scores for all labels, according to which we select
the best label that achieves the maximum.

For training, we use a margin-based approach to
compute loss from the gold graph G∗ and the best
predicted Ĝ according to current model parame-
ters. We define the loss term as:

loss = max(0,∆(G∗, Ĝ)

− SCOREG(G∗) + SCOREG(Ĝ))
(7)

The margin objective ∆ measures the similarity
betweenG∗ and Ĝ. Following Peng et al. (2017a),
we define ∆ as weighted Hamming to trade off
between precision and recall.

3.6 Property Prediction

The final stage is to predict properties for each
concept that is generated in the previous stages.
For the EDS representation at CoNLL2019, we
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He wants to go

encoder encoder encoder encoder

r1 r4

c1

pron
predicted
concepts PROJ(·)

BIAFFINEs

SCOREs(pron, go)

Figure 3: The network architecture for property pre-
diction. The vector representations of concepts are ob-
tained similarly to relation detection. The only differ-
ence is that the labels of concepts are provided by pre-
vious stages instead of being predicted by a softmax
layer.

consider three types of properties and apply dif-
ferent strategies.

Anchors (spans). String anchors are treated as
properties of concepts. For a given concept, a
classification model is utilized to select two to-
kens over all input tokens as the start/end bound-
ary of the concept respectively. We use exactly the
same neural architecture in §3.5 to encode input
tokens. See Figure 3 for a visualized illustration.
The score of token jw being the start/end boundary
of node i can be computed by following equation:

SCOREs/e(i, jw) = BIAFFINEs/e(ci, PROJ(rjw))

Here PROJ(·) represents a feed-forward network
with LEAKYRELU activation.

The anchors provided by training dataset are all
character-based, so transformation is required be-
fore training this model. In the same manner, after
retrieving the start/end word of a concept, we need
to convert word-based anchors back to character-
based anchors. Margin-based loss is used again
when training this model and the total loss is the
sum of losses for both boundaries.

The CARG property. Since the main function
of the CARG attribute is to reduce the size of pred-
icate names by parameterizing them with regular-
ized surface strings, a rule-based system could be
effective to predict the CARG information.

Firstly, we decide whether a concept has the
CARG property according to its label. For exam-
ple, named, card and ord need CARGs, but not
the q.

Secondly, we use a dictionary which is ex-
tracted automatically from the training dataset.
Entries of the dictionary are of the form

〈label, string,CARG〉. For example, a concept
named whose anchoring string is D.C. will be
mapped to WashingtonDC. Based on a close ob-
servation of the data, we introduce several heuris-
tic rules if there is no applicable entry for a con-
cept in the dictionary. For example, one widely
applicable rule is to use 1 as the CARG value for
concepts labeled card and aligned to a float num-
ber which is less than 1.

Finally, if no rule is available, we remove punc-
tuation markers at left or right boundaries of an-
choring strings and use the remaining part.

Top concept. We cast the precition for top as a
binary classification problem over all nodes in a fi-
nal graph. This strategy matches a recent research
interest in graph neural networks (Li et al., 2015;
Veličković et al., 2017; Defferrard et al., 2016;
Chen et al., 2018a; Song et al., 2018), one goal of
which is to associate vectors to graph nodes. Such
vectors can be more easily to be integrated to neu-
ral networks for various purposes. We employ a
Graph-based LSTM (Song et al., 2018) to encode
an EDSgraph and a multi-layer feed-forward net-
work to determine whether a node is top. Similar
as §3.5, margin-based approach is used to compute
the loss term.

4 The Composition-Based Parser

Our composition-based parser is based on our pre-
vious work (Chen et al., 2018b). The core engine
is a graph rewriting system that explicitly explores
the syntactico-semantic recursive derivations that
are governed by a synchronous HRG (SHRG). See
Figure 4 for an example. Our parser constructs
EDS graphs by explicitly modeling such deriva-
tions. In particular, it utilizes a constituent parser
to build a syntactic derivation, and then selects se-
mantic HRG rules associated to syntactic CFG rules
to generate a graph. When multiple rules are ap-
plicable for a single phrase, a neural network is
used to rank them.

One main difference between our submission
parer and the parser introduced in Chen et al.
(2018b) is that the syntactic parsing model is a re-
implementation of Kitaev and Klein (2018). It uti-
lizes transformer layers to capture words’ contex-
tual information, denoted as ri. After encoding an
input sentence, a multiple-layer peceptron (MLP)
is employed to get span scores. The score of span
(i, j) with label L is calculated from its embed-
ding si,j , which is from the contextual vector of
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Figure 4: An SHRG-based syntactico-semantic deriva-
tion. The derivation can be viewed as a syntactic tree
enriched with semantic interpretation rules that are de-
fined by an HRG. Each phrase in the syntactic tree is
also assigned with a graph which corresonds to a sub-
part in the final semantic graph. Moreover, some par-
ticular nodes (filled nodes) in a sub-graph is marked as
communication channels to other meaning parts in the
same sentence. In HRG, these nodes are summarized
as a hyperedge. Gluing two sub-graphs according to a
construction rule follows the graph substitution princi-
ple of HRG. The application of the top rule that intro-
duces a reentrancy structure is such an example. The
“X” node in the graph of the left branching phrase is
unified with the “X” node in the rule, and so do to the
“Y” and “Z” nodes.

the two endpoints, ri and rj−1:

SBCORE(i, j, L) = MLP(si,j)[L]

si,j = ri ⊕ ri−1
MLP(x) = W2σ(W1x + b1) + b2

The operator [] denotes index selection. We
perform CKY decoding to retrieve the highest-
scored constituent tree that agrees with the syn-
tactic CFG grammar.

When a phrase structure tree is available, se-
mantic interpretation can be regarded as translat-
ing this tree to the derivation of graph construc-
tion. As multiple subgraph correspondents in each
node are available, the beam search strategy is
used to balance the search complexity and quality.

To score subgraphs, we use two types of fea-
tures. The first type is node feature. For a concept
n aligned with span (i, j), we use the span em-
bedding si,j as features, and score with non-linear
transformation:

SCOREPARTconcept(i, j, p) = MLPconcept(si,j)[p]

The second type is edge feature. Note that a se-
mantic dependency with label L from conceptual
node na to nb are aligned to constituents (i1, j1)
and (i2, j2) respectively. We calculate this part
of score with non-linear transformation from the
span embeddings si1,j1 , si2,j2 and random initial-
ized concept embeddings na, nb:

SCOREPARTarc(i1, j1, i2, j2,pa,pb, L)

= MLParc(si1,j1 ⊕ si2,j2 ⊕ pa ⊕ pb)[L]

For training, again, we use the margin-based loss.

5 Experiments

The MRP2019 training data consists of 35656 sen-
tences in total. For convenience, the composition-
and factorization-based parsers share the same to-
kenization model. Gold token position labels are
extracted from DeepBank (Flickinger et al., 2012).
For the composition-based parser, we leverage the
syntactic information provided by DeepBank to
extract synchronous grammars. Therefore, all sen-
tences in the MRP2019 data that do not appear
in DeepBank 1.1 are removed. Following the
same preprocessing of semantic graphs in Chen
et al. (2018b) and using the recommended setup
in DeepBank, there are 33722 samples for training
and 1689 samples for validation. The synchronous
grammars are extracted from the training data us-
ing coarse-grained labels (Chen et al., 2018b). For
factorization-based parser, we use heuristic rules
to re-align the non-lexicalized concepts to input
tokens. We remove all sentences that do not re-
cieve results in this step from our training set. Af-
ter re-alignment, 33580 sentences are left for train-
ing and 1689 for validation.

Table 3 shows the results of both parsers on the
validation data using the official evalution tool—
mtool4. Table 4 shows the intermediate results
during parsing for both parsers.

For factorization-based parsing, we combine 4
models for concept identification and 5 models for
relation detection. We ensemble models by av-
eraging the score functions across all stand-alone
models. These models use different initial random
seeds, different pretraining methods (ELMo or
BERT) or different encoder architectures (Trans-
former or BiLSTM). All these models achieve a
similar performance respectively, but the ensem-
ble one achieves a much better performance, as we
can conclude from Table 3.

4https://github.com/cfmrp/mtool
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# Top Label Property Anchor Edge
DEVEL. TEST

P R F1 F1

Factorization-based Parsing

Gold tokenization 88.75 96.92 96.39 96.98 94.88 96.38 96.00 96.19 —
+ensemble stage2 89.23 97.37 97.46 97.16 95.18 96.80 96.26 96.53 —
+ensemble stage2 & 3 89.64 97.37 97.46 97.17 95.53 96.95 96.34 96.64 —

Full pipeline 88.87 96.76 96.03 96.72 94.69 96.20 95.78 95.99 —
+ensemble stage2 89.29 97.12 97.08 96.91 94.98 96.59 96.00 96.30 —
+ensemble stage2 & 3 89.52 97.12 97.10 96.93 95.34 96.74 96.10 96.42 94.47

Composition-based Parsing

gold tokenization 88.63 95.73 97.37 96.85 93.00 95.38 95.04 95.21 —
Full pipeline 88.27 95.44 97.17 93.62 92.67 94.08 93.86 93.97 91.84

Table 3: Results on the development data set. The evaluation algorithm is Maximum Common Edge Subgraph
Isomorphism (MRP). Gold tokenization means that the parser uses gold standard tokenization provided by Deep-
Bank. Full pipeline means that all stages in the pipeline are based on automatic predictions. Columns in the
middle block include F1 scores with respect to basic evaluation items respectively. The right block shows overall
precision, recall and F1. All numbers are obtained by using mtool.

Factorization-based Parser
Concept Identification (F1) Relation Detection

Lexicalized Non-lexicalized Overall Nodes Edges Overall

Gold tokenization 97.04 95.72 96.50 96.94 93.43 95.20
+ensemble stage2 97.40 96.20 96.94 97.30 93.85 95.60
+ensemble stage2 & 3 the same as above row 97.28 94.03 95.67

Composition-based Parser
Syntactic Parsing Semantic Interpretation

P R F1 POS Nodes Edges Overall

Gold tokenization 92.16 92.16 92.16 95.01 95.63 91.43 93.56

Table 4: Results of each stage for both parsers on the development data. Gold tokenization has the same meaning in
Table 3. Columns in the right block are the SMATCH scores ignoring all the node and edge properties for generated
graphs. For factorization-based parser, columns in the middle block include the F1 scores of concept identification
with respect to lexicalized, non-lexicalized and all concepts respectively. For composition-based parser, columns
in the middle block are the syntactic parsing results using standard metric and POS concerns the prediction of
preterminals.

Our factorization-based parser achieves rela-
tively satisfactory performance in all basic evalua-
tion items except top. In the in-domain evalution,
its performace nearly reaches the inter-annotator
agreement reported in Bender et al. (2015). To
find top concepts, our model encodes the semantic
graphs and ignores the input sentences. We take
the unsatisfactory result as a confirmation of the
challenge to encode complex discrete structures
into vectors.

The evalution results of our composition-based
parser are not as good as the factorization-based
one. We believe that the disagreement between our
SHRG grammar and the original ERG leads to a
major part of the performance gap.

6 Conclusion

Current neural ERS parsers work rapidly and re-
liably, with an MRP accuracy of over 94% in
the same-epoch-and-domain setup. It is com-
parable to the inter-annotator agreement (in Ele-
mentary Dependency Match) reported in Bender
et al. (2015). As ERS parsers become more and
more accurate, efficient and robust, they have ex-
tensive application prospects in downstream deep
language understanding-related tasks.
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