
Proceedings of the 23rd Conference on Computational Natural Language Learning, pages 940–950
Hong Kong, China, November 3-4, 2019. c©2019 Association for Computational Linguistics

940

Studying Generalisability Across Abusive Language Detection Datasets

Steve Durairaj Swamy and Anupam Jamatia
Department of Computer Science
National Institute of Technology

Agartala, India
{steve050798,anupamjamatia}@gmail.com

Björn Gambäck∗
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Abstract

Work on Abusive Language Detection has
tackled a wide range of subtasks and do-
mains. As a result of this, there exists a great
deal of redundancy and non-generalisability
between datasets. Through experiments on
cross-dataset training and testing, the paper re-
veals that the preconceived notion of including
more non-abusive samples in a dataset (to em-
ulate reality) may have a detrimental effect on
the generalisability of a model trained on that
data. Hence a hierarchical annotation model
is utilised here to reveal redundancies in exist-
ing datasets and to help reduce redundancy in
future efforts.

1 Introduction

With the growth of the internet and the increas-
ingly smaller barrier to entry, social media have
become viable platforms for people to make their
views known. These easily accessible fora for
discourse have given a voice to many minori-
ties and individuals to share their stories. The
caveat, however, is that these platforms can be
misused to spread hate and harass other individ-
uals, which has given birth to terms such as cyber-
bullying and trolling. Online harassment has been
a point of criticism levied against social media gi-
ants such as Facebook and Twitter, who have come
under increased pressure to address this misuse.
To this end, they have ensured that their commu-
nity guidelines explicitly ban the usage of profan-
ity/hate speech to harass and bully individuals.

The detection of Online Abuse has proven to be
a layered and complex issue. For example, pro-
fanity is often treated as a sign of hate speech or
offensive language, but profanity can also be used
in a wide variety of expressive ways to convey in-
formality, humour, and emphasis. This usage of

∗Also at: RISE SICS, Kista, Sweden.

profanity outside of abuse/insults, coupled with
implicit insults that may not contain any profan-
ity, makes the task of classifying abuse online a
balancing act of sorts, forming the crux of what
makes this task hard to tackle: stricter guidelines
may hamper a well-meaning individual’s freedom
of speech, while more lenient guidelines may em-
power those who exploit them.

As it stands, the intricacies of free speech do
not translate well to machine understanding. This
has led to the continued use of human modera-
tors in the abusive language detection space. Con-
tent is flagged by users, reviewed by a human and
removed if it violates the platform’s community
guidelines. The main problem with this system is
the sheer volume of content to be reviewed, giv-
ing human moderators very little time to arrive at
a decision. Another issue that was highlighted by
Roberts (2019) is the impact that reviewing online
abuse can have on a worker’s mental well-being.
These issues have led to many social media giants,
such as Facebook, to seek machine learning-based
solutions — to replace or supplement the current
human moderator system.

Automatic detection of abusive language on-
line can be seen as a union of the plethora of
subtasks that have been tackled: Cyberbullying,
Hate Speech (also further constrained as racism,
sexism, and harassment of particular minorities),
Trolling, etc. Research in the field tends to fo-
cus on one of the particular subtasks. It has been
argued by some (Schmidt and Wiegland, 2017;
Waseem et al., 2017b) that due to this phenomenon
where works tackle restricted subsets of abusive
language, it has become difficult to make judge-
ments about whether the features being used can
perform well in other subtasks of abusive language
detection — as they are often only evaluated on a
single dataset, specific to one domain and subtask,
and annotated in a specific way.
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Waseem et al. (2017b) proposed that there ex-
ists an overlap between these subtasks and subse-
quently proposed a typology that emphasises iden-
tifying the target of abuse and whether the abuse
is implicit or explicit. Their typology could poten-
tially be applied to all stages of system develop-
ment, from data collection to the final model build-
ing. This, they hoped, would help to synthesise the
different subtasks. This idea was expanded upon
in the Offensive Language Identification Dataset
(OLID; Zampieri et al. 2019a) to a hierarchical,
three-level annotation model.

After further discussing related research in the
next section, this work looks at various publicly
available datasets in the field (Section 3), and
performs both in-domain (Section 4) and cross-
dataset training and testing to observe whether
models trained on one dataset generalise well
when tested against other datasets (Section 5). It
also makes some qualitative assessments on why
models trained on specific datasets generalise bet-
ter than others. Additionally, the OLID dataset
based on the typology by Waseem et al. (2017b)
is used to observe whether the hierarchical anno-
tation model is sufficient to synthesise the various
subtasks of abusive language detection. To this
end, experiments were run using BERT, Bidirec-
tional Encoder Representations from Transform-
ers (Devlin et al., 2018), to compare its perfor-
mance to other popular models that have been used
for abusive language detection (Section 6).

2 Previous Work

Abusive language detection has served as an um-
brella term for a wide variety of subtasks. Re-
search in the field has typically focused on a par-
ticular subtask: Hate Speech (Davidson et al.,
2017; Founta et al., 2018; Gao and Huang, 2017;
Golbeck et al., 2017), Sexism/Racism (Waseem
and Hovy, 2016), Cyberbullying (Xu et al., 2012;
Dadvar et al., 2013), Trolling and Aggression (Ku-
mar et al., 2018a), and so on. Datasets for these
tasks have been collected from various social me-
dia platforms, such as Twitter (Waseem and Hovy,
2016; Davidson et al., 2017; Founta et al., 2018;
Burnap and Williams, 2015; Golbeck et al., 2017),
Facebook (Kumar et al., 2018a), Instagram (Hos-
seinmardi et al., 2015; Zhong et al., 2016), Yahoo!
(Nobata et al., 2016; Djuric et al., 2015; Warner
and Hirschberg, 2012), YouTube (Dinakar et al.,
2011), and Wikipedia (Wulczyn et al., 2017), with

annotation typically carried out on crowdsourcing
platforms such as CrowdFlower (Figure Eight)1

and Amazon Mechanical Turk.2

All these datasets represent multi-class classifi-
cation problems, with the exception of the Kag-
gle’s Toxic Comment Classification challenge,3

which entails multi-label classification, and OLID
(Zampieri et al., 2019a) used in the SemEval-2019
‘OffensEval’ shared task (Zampieri et al., 2019b),
which builds on a hierarchical annotation model
(Hierarchy of Multi-Class Classifiers).

Choice of features has been the crucial differ-
ence between the various approaches to abusive
language detection. For the most part, word-level
n-grams have been highly predictive, with other
linguistic features such as part-of-speech tags (Xu
et al., 2012; Davidson et al., 2017) and sentiment
score (Van Hee et al., 2015; Davidson et al., 2017)
providing slight improvements. Due to their abil-
ity to perform better in an online setting where
spelling errors and adversarial behaviour are com-
monplace, character-level features have been en-
dorsed (Mehdad and Tetreault, 2016), and also
shown to often be superior to word-level infor-
mation for this task (Meyer and Gambäck, 2019).
Metadata about users have also been used as fea-
tures: Waseem and Hovy (2016) claim gender in-
formation leads to improved performance, while
Unsvåg and Gambäck (2018) report user-network
data to be more important. Schmidt and Wieg-
land (2017) provides a comprehensive overview of
many of the features used and their efficacy.

In terms of models, popular classical classifica-
tion approaches include Logistic Regression and
LSVM (Linear Support Vector Machines). Deep
Neural networks such as Convolutional Neural
Networks, CNN (Zhang et al., 2018; Gambäck and
Sikdar, 2017) and variations of Recurrent Neu-
ral Networks, RNN (Pitsilis et al., 2018; Gao and
Huang, 2017) have seen widespread success, reg-
ularly obtaining state-of-the-art results on various
datasets. Lee et al. (2018) used the Founta et al.
(2018) dataset to conduct a comparative study of
the performance of many popular models. In the
‘OffensEval’ shared task (Zampieri et al., 2019b),
the use of contextual embeddings such as BERT
(Devlin et al., 2018) and ELMo (Peters et al.,
2018) exhibited the best results.

1figure-eight.com
2mturk.com
3bit.ly/2HNfLaB

figure-eight.com
mturk.com
bit.ly/2HNfLaB
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Generalisability of a model has also come un-
der considerable scrutiny. Works such as Karan
and Šnajder (2018) and Gröndahl et al. (2018)
have shown that models trained on one dataset
tend to perform well only when tested on the
same dataset. Additionally, Gröndahl et al. (2018)
showed how adversarial methods such as typos
and word changes could bypass existing state-of-
the-art abusive language detection systems. They
also observed unimpressive results when using
ULMFiT (Howard and Ruder, 2018) for abusive
language detection, but argued that model archi-
tecture is less important than the type of data and
the annotation scheme.

Karan and Šnajder (2018) experimented with
cross-domain training and testing, and opted to use
the same model (LSVM) with minimal features
and to preprocess in favour of interpretability.
They also reported positive improvements using
Frustratingly Easy Domain Adaptation (FEDA;
Daumé III, 2007) to augment smaller datasets with
larger ones. Fortuna et al. (2018) concurred, stat-
ing that although models perform better on the
data they are trained on, slightly improved perfor-
mance can be obtained when adding more training
data from other social media. Similarly, Waseem
et al. (2018) attempted to address the problem of
differences between datasets by building a robust
multi-task learning model, which improves upon
single-task performance by using auxiliary sam-
ples from select datasets. Their work revealed that
such models could be competitive with the state-
of-the-art single-task models with the additional
benefit of allowing prediction on other datasets as
well. This helps in negating hidden biases within
datasets and promoting generalisability.

3 Datasets

The experiments in the next section will be based
on four different datasets, annotated for hate
speech and/or offensive language, as described be-
low. The social media platform of choice, Twitter,
was selected due to the availability of a multitude
of easy to access datasets. The datasets are all
in English and from Twitter, and largely chosen
based on popularity and availability.

The first two datasets, from Waseem and Hovy
(2016) and from Davidson et al. (2017) were cho-
sen due to their widespread use as benchmarks for
models. The third, from Founta et al. (2018) was
selected because of its large size, while the fourth

(Zampieri et al., 2019a) was included since it is
using the contemporary hierarchical model. Some
other large datasets were discarded since they are
either not from Twitter (such as the Kaggle Tox-
icity classification of Wikipedia comments, Wul-
czyn et al., 2017) or not easily or openly available
(e.g., Silva et al., 2016; Golbeck et al., 2017).

3.1 The Waseem and Hovy Dataset

In their work on the disambiguation of types
of hate speech, Waseem and Hovy (2016) re-
leased a dataset of 16, 914 tweets. They so-
licited their tweets using a lexicon of hate speech
terms, and manually annotated them with three
tags: racism, sexism, and none. Waseem and
Hovy used an expert outside annotator for review-
ing their annotations to mitigate any bias. The
database is provided as a set of tweet IDs with
tags, but many of the actual tweets have been re-
moved over time, in particular those belonging to
the racist class.4 The first set of rows in Table 1 de-
scribes the dataset, including a comparison of the
original Waseem and Hovy (2016) dataset to the
one available for download using the Twitter API
when the present experiments were initiated.

3.2 The Davidson et al. Dataset

Davidson et al. (2017) made publicly available a
Twitter dataset with three labels: hate speech,
offensive language, and neither. Sim-
ilar to Waseem and Hovy (2016), they used
a lexicon of hate speech terms derived from
Hatebase.org and queried Twitter using these
terms to collect potentially hateful tweets. Each
tweet was annotated by at least three CrowdFlower
workers and the tags were assigned based on the
majority decisions. The final dataset available on-
line contains 24, 783 tweets. Table 1 provides
some statistics of the dataset, which henceforth
will be referred to as the Davidson et al. dataset.

Note the very large fraction of abusive tweets in
the dataset. A possible explanation for this was
given by Waseem et al. (2018), who noted that
2, 161 tweets in Davidson et al.’s dataset written
in African American Vernacular English had been
annotated as offensive or hateful when including
the n-word, although the actual usage was to mark
group inclusion and informality. While Waseem
et al. discuss that these errors were due to the

4Note that this discrepancy means that comparisons to
work by others on this dataset are not straight-forward.

Hatebase.org


943

Dataset Total Normal Hatespeech Offensive / Abusive Spam

Waseem and Hovy racism sexism

original 16,914 11,559 5,355 1,972 3,383 N/A N/A
available 11,112 8,185 2,927 17 2,910 N/A N/A

Davidson et al. 24,783 4,163 1,430 19,190 N/A

Founta et al. 99,996 53,851 4,965 27,150 14,030

UNT TIN (targeted)

IND GRP OTH

Zampieri et al. 14,100 9,460 N/A 4,640 551 2,507 1,152 430 N/A

Table 1: Overview of the datasets by Davidson et al., Founta et al., Waseem and Hovy, and Zampieri et al.

scarcity of African Americans among the annota-
tors, they could also be attributed to lack of meta-
information about the tweet authors: had the an-
notators known that those tweets were written by
African Americans, they would probably have in-
duced that the n-word was not used offensively.

3.3 The Founta et al. Dataset

Founta et al. (2018) released a large Twitter dataset
with four labels: hateful, abusive, normal,
and spam. The main part of their work re-
volved around a methodology to collect and an-
notate data over crowdsourcing platforms. They
collected tweets from the Live Twitter stream and
filtered them using sentiment score (searching for
tweets with strong negative polarity) and a lex-
icon of offensive words from Hatebase.org
and noswearing.com/dictionary.

Table 1 also introduces the Founta et al. dataset,
which with a total of 99, 996 tweets is by far the
largest in the present study, but also contains a siz-
able fraction of spam tweets (a category which is
not included in the other datasets).

3.4 OLID

The Offensive Language Identification Dataset,
OLID (Zampieri et al., 2019a) was used in
SemEval-2019 Task 6: ‘OffensEval’ (Zampieri
et al., 2019b). It consists of 14, 100 tweets anno-
tated through a unique hierarchical model whose
basic idea was proposed by Waseem et al. (2017b).
For the shared task, the data was split into (non-
stratified) training and test sets containing 13, 240
and 860 tweets, respectively.

As can be seen in last rows of Table 1, there
are three annotation levels in OLID, each of which
was directly reflected as a subtask in OffensEval:

A. Whether the tweet can be classified as being

offensive (OFF) or non-offensive (NOT).
B. Tweets labelled as OFF are further classi-

fied as either UNT (untargeted insult/abuse)
or TIN (targeted insult/abuse).

C. Tweets labelled as TIN are sub-divided as
IND (insults targeted at an individual), GRP
(insults targeted at a minority group) or OTH
(insults targeted at an issue or organisation).

4 Preliminary Feature and Model Study

The first set of experiments aimed to test the effi-
cacy of BERT (Devlin et al., 2018) when tackling
the Abusive Language Detection task. For this,
BERT’s performance was compared to three other
popular classifiers: Linear SVM, an LSTM (Long
Short-Term Memory) Recurrent Neural Network
(Hochreiter and Schmidhuber, 1997), and ELMo
(Peters et al., 2018). The methodology and mod-
els are briefly explained here.

To shed some light on the models themselves
rather than the features, no extra surface-level fea-
tures or linguistic features were utilised in the clas-
sification. Also preprocessing was minimal, with
lower-casing of tweets being the only standard.
However, fine-tuning was carried out on the mod-
els’ hyper-parameters, such as sequence length,
drop out, and class weights. Test and training
sets were created for each dataset by performing
a stratified split of 20% vs 80%, with the larger
part used for training the models. The training
sets were further subdivided, keeping 1/8 shares
of them as separate validation sets during devel-
opment and fine-tuning of the hyper-parameters.
However, the validation sets were conflated with
the training sets for the final results as some of the
datasets were already quite small and the models
benefited from the extra data. Information on the
models themselves are provided below.

Hatebase.org
noswearing.com/dictionary
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Dataset LSVM LSTM ELMo BERT

Acc. F1 Acc. F1 Acc. F1 Acc. F1

Waseem and Hovy .8911 .5696 .8498 .5312 .8614 .5394 .9023 .5837
Davidson et al. .9014 .7278 .9143 .7419 .8909 .6802 .9172 .7727
Founta et al. .8034 .6591 .8161 .6788 .8094 .6732 .8187 .6960
OLID (Subtask A) .7610 .7068 .7894 .7479 .7663 .7198 .8004 .7738

Table 2: Model test tesults (macro-F1 and accuracy) for all datasets; the best performer is in bold.

4.1 Linear SVM

The Linear SVM (LSVM) was modelled and
trained in the Scikit-learn5 library (Pe-
dregosa et al., 2011), utilising a TF-IDF vector
representation for the tweets. The classes were ar-
tificially balanced and overfitting penalised using
L2 regularisation. Interesting hyperparameters in-
cluded the n-gram range and whether to use char-
acter or token n-grams. For example, the David-
son et al. dataset tended to perform better with to-
ken n-grams, while the Waseem and Hovy dataset
worked better with character n-grams. The inclu-
sion of unigrams was also pivotal to good classifier
performance when using token n-grams.

4.2 LSTM Network

The tested Deep Learning Model was built on
a fairly simple LSTM architecture using Keras6

with a TensorFlow7 back end. The ‘Adam’ op-
timiser (Kingma and Ba, 2014) was paired with
categorical cross-entropy loss function for model
training. Again no statistical or linguistic features
were used and the only preprocessing involved
lower-casing the tweets. The first layer used a 200
dimensional GloVe embedding,8 pre-trained
on 2 billion tweets (Pennington et al., 2014), with
embedding weights fixed throughout the training.
The Embedding Layer was followed by an LSTM
layer of 200 units. The final layer was a dense
layer with softmax activation and layer size depen-
dent on the number of classes in the dataset being
tested. The most significant hyperparameters were
found to be dropout and class weights.

4.3 ELMo

The third model tested used ELMo for feature
extraction and was implemented in the Tensor-
Flow hub module9 with 1024 dimensional ELMo

5scikit-learn.org/stable/
6github.com/fchollet/keras
7tensorflow.org/
8nlp.stanford.edu/projects/glove/
9tfhub.dev/google/elmo/2

embeddings. This input was passed through an
LSTM layer of dimension 256 and then a dense
layer with a softmax activation function. The size
of the last dense layer was again equal to the num-
ber of labels that should be classified. The ‘Adam’
optimiser and categorical cross-entropy loss func-
tion were used during training. ELMo’s stand-
alone performance was found to not be as impres-
sive as hoped, with the batch size and usage of
dropout significantly affecting classification rates.

4.4 BERT

BERTbase, uncased was used as the underlying
pre-trained model, in a fine-tuning only approach
with no statistical or linguistic features. The
model built on the run classifier API pro-
vided on the BERT GitHub page10 and the BERT
tokeniser, which simply lower-cases sentences and
removes illegal characters. BERTbase,uncased
trains a total of 110 million parameters, and con-
tains 12 transformer blocks and 12 self-attention
heads with hidden layer dimension 768. The most
successful parameter settings utilised larger max-
imum sequence lengths, but smaller batch sizes
and lower learning rates. The best models used a
learning rate of e−5 and batch size 32 with varying
maximum sequence lengths between 60 and 70.
Other parameters worth mentioning are the num-
ber of epochs and the Linear Warm-up Proportion.

4.5 Results

The experimental results are recorded in Table 2,
with most improvements and decrements in per-
formance across models being minimal. BERT
exhibits the best results for all datasets used in
the experiments (with a significance level of 0.05).
Surprisingly, ELMo was neither competitive with
BERT nor with the GLoVE-embedding LSTM re-
current neural network (when tested with the same
statistical significance level).

10github.com/google-research/bert

scikit-learn.org/stable/
github.com/fchollet/keras
tensorflow.org/
nlp.stanford.edu/projects/glove/
tfhub.dev/google/elmo/2
github.com/google-research/bert
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Dataset Positive labels Negative labels Positive label fraction

Waseem and Hovy racism, sexism neither 26.34%
Davidson et al. hate speech, offensive language neither 77.43%
Founta et al. hateful, abusive spam, none 32.12%
OLID OFF NOT 32.91%

Table 3: Cross-dataset experiment, positive and negative label split.

Dataset
Waseem and Hovy Davidson et al. Founta et al. OLID

Acc. F1 Acc. F1 Acc. F1 Acc. F1

Waseem and Hovy .9037 .8755 .5626 .5296 .7205 .5824 .6716 .5982
Davidson et al. .7719 .6928 .9639 .9351 .9261 .9157 .7514 .6847
Founta et al. .7278 .6049 .8324 .7559 .9421 .9340 .7862 .7447
OLID .7108 .6269 .8247 .7308 .9251 .9162 .8004 .7738

Table 4: Cross-dataset test results (accuracy and macro-F1) for all dataset combinations, using the BERT models.
Rows show the dataset used to train the model and columns the dataset used for testing.

5 Cross-Dataset Training and Testing

In the second round of experiments, the best mod-
els built for individual dataset were used to test
generalisability across the other datasets. For all
datasets, these were BERT models, but with vary-
ing hyper-parameter settings. Karan and Šnajder
(2018) used a simpler Linear SVM model for all
the datasets for the sake of interpretability, while
the aim here, in contrast, was to see how well the
best models (that may have learnt some dataset-
specific biases) performed on other datasets. This
was done to investigate how well state-of-the-art
systems perform in a real-life scenario, i.e., when
exposed to data from other domains, with the hy-
pothesis that a model trained on one dataset that
exhibits comparatively reasonable results on other
datasets can be expected to generalise well.

For these experiments, the models were tested
on the test set which had been generated for the
preliminary model study described in Section 4.
As there exists a large number of heterogeneous
annotation schemes between datasets, the same
approach as Karan and Šnajder (2018) was taken,
separating the tags in each dataset according to
positive (abusive) and negative (benign) labels.
This separation is represented in Table 3, which
also gives the percentage of positive samples in
each dataset. As can be seen, three of the datasets
contain slightly less than 1/3 abusive instances.
The Davidson et al. dataset stands out, by con-
taining 3/4 offensive instances. As discussed in
Section 3.2, this can probably be attributed to how
those tweets were selected and annotated.

The results of cross-dataset testing are pre-

sented in Table 4. Considerable performance
drops can be observed when going from a large
training dataset to a small test set (i.e., Founta
et al.’s results when tested on the Waseem and
Hovy dataset) and vice versa. This is in line with
a similar conclusion by Karan and Šnajder (2018).

It is surprising to see how well a model trained
on Founta et al.’s dataset performs when tested
on OLID (Zampieri et al., 2019a) and vice versa.
However, this can be expected to be the case where
there is a good agreement between the datasets,
i.e., there is a large amount of similar data shared
between them. To this effect, the Founta et al.
dataset was searched with terms used by Zampieri
et al. when collecting data for OLID, giving
around 6, 600 hits. For comparison, OLID gets
around 12, 200 hits with the same set of terms.

The most interesting observation is that datasets
with larger percentages of positive samples tend to
generalise better than datasets with fewer positive
samples, in particular when tested against dissim-
ilar datasets. For example, we see that the mod-
els trained on the Davidson et al. dataset, which
contains a majority of offensive tags, perform well
when tested on the Founta et al. dataset, which
contains a majority of non-offensive tags. (The
differences are all statistically significant when the
test set is Waseem and Hovy.) Similar trends were
observed by Karan and Šnajder (2018) when em-
ploying the Kolhatkar et al. (2018) and TRAC-1
(Kumar et al., 2018a) datasets, that have 62.7%
and 56.6% positive samples, respectively, and ex-
hibited better results in cross-dataset testing than
datasets with lower positive sample ratios.
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Subtask A Subtask B Subtask C
BERT Top BERT Top BERT Top

F1 .8168 .8286 .6997 .7545 .6162 .6597
Acc. .8546 .8628 .9000 .9250 .7136 .7277

Rank 2 1 9 1 6 1

Table 5: BERT test set results (macro-F1 and accuracy) compared to top OffensEval shared task performers.

6 Synthesising Subtasks Using the
Hierarchical Model

The OLID dataset was used to perform cross-
dataset training and testing similar to the exper-
iments of the previous section. However, since
OLID uses a hierarchical annotation model (dif-
fering from the annotation schemes of the other
datasets), this task was approached from a differ-
ent angle. A model trained on the three subtasks
of the OLID dataset (described at the end of Sec-
tion 3.4) was tested for the task of tagging the in-
domain Twitter datasets. This makes it possible to
not only see how well OLID-trained models gen-
eralise to other data, but to identify the overlap be-
tween the different subtasks that the other datasets
tackle by observing what percentage of documents
under each subtask share common OLID tags.

For the OLID classifiers, a BERT model was
used without any extra statistical features and
with minimal preprocessing (only lower-casing of
tweets). The classifiers were then fine-tuned to
the different subtasks, again showing a positive
correlation between sequence length and classifier
performance. For the results to be comparable to
those obtained in the OffensEval 2019 shared task,
the same test set was used as in that task. Model
performances are reported in Table 5, along with
what rank the model would have obtained if it had
been submitted to OffensEval 2019, showing that
the models are competitive when compared to the
top shared task submissions.

The tested model was trained for a total of
3 epochs with a batch size of 16 and learning
rate e−5. The maximum sequence length was set
to 70 for subtasks A and C, but to 60 for sub-
task B, where over-fitting was observed on se-
quence length 70. Also in subtask C the model
showed significant signs of over-fitting, with the
BERT approach only achieving an F1 score of
0.52. In this case, a technique was borrowed from
the top subtask C submission to OffensEval (Radi-
vchev and Nikolov, 2019), namely to use lower
decision boundaries for the OTH (0.2) and GRP

(0.3) tags, instead of the typical decision boundary
probability of 0.5. As can be seen in the table, this
addition led to huge improvements (F1 = 0.62),
compared to the models using the typical deci-
sion boundary (F1 = 0.52), although the achieved
scores still were not close to the top submission.

Returning to the tagging/synthesis experiments,
the entire datasets were used. The results are pre-
sented in Table 6. Here we see quite a bit of over-
lap between the offensive and hate speech tags
with the majority tag being (OFF, TIN, IND)
by a landslide. Clearly, these results can become
trivial if the differences boil down to whether
the model generalises well to the other datasets
used here. This is why only in-domain (Twitter
datasets) are considered here and the results also
are discussed while taking this into account.

In the Davidson et al. dataset, the non-abusive
tag, neither had a much lower percentage of
its tweets annotated under NOT (69.37%) by the
OLID classifier when compared to other datasets.
This observation may be attributed to the data col-
lection techniques used by Davidson et al., who
filtered tweets based on a hate speech lexicon be-
fore annotating them, as well as to profanities oc-
curring within the neither tag, causing a dip in
the amount of explicitly non-offensive tweets.

A similar issue is seen, but to a lesser extent,
in the neither tag of the Waseem and Hovy
dataset, which also was extended by using a sam-
ple of hateful tweets. Another interesting obser-
vation with that dataset is that the majority class
for the sexism tag in Subtask A was NOT. This
complies with observations by both Waseem and
Hovy and Davidson et al. (2017) that the human
coders considered sexist terms as offensive rather
than hateful. However, in terms of our classifier,
this may only be due to the implicit nature of most
sexist insults and a lack of sexist samples within
the OLID dataset. Founta et al.’s dataset shows
a high number of hateful tweets classified as
NOT, which may be due to the implicit nature of
sexism or sarcasm in the tweets involved.
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Dataset Tag Subtask A Subtask B Subtask C
OFF NOT UNT TIN IND GRP OTH

Waseem and Hovy
racism 52.94 47.06 0.00 100 64.70 23.52 11.76
sexism 42.96 57.04 8.28 91.72 54.06 30.27 15.67
neither 20.22 79.78 28.27 71.73 67.11 25.95 6.94

Davidson et al.
hate speech 84.13 15.87 3.35 96.65 63.22 24.61 12.17
offensive language 86.89 13.11 7.45 92.55 71.89 20.39 7.72
neither 30.63 69.37 20.44 79.56 63.29 5.48 31.23

Founta et al.

hateful 78.11 21.89 5.92 94.08 52.35 27.37 20.28
abusive 97.34 2.66 26.04 73.96 75.56 10.42 14.02
normal 9.23 90.77 24.82 75.18 60.24 35.84 3.92
spam 8.72 91.28 43.59 56.41 50.98 1.71 47.31

Zampieri et al. (actual annotation fraction) 32.91 67.09 11.88 88.12 61.31 28.17 10.52

Table 6: Results of using a BERT model trained on OLID to tag other the datasets, for each OffensEval subtask.
The values are percentages of tweets in each class (rows) annotated with the corresponding OLID tag (columns).
Note that in the version of the Waseem and Hovy dataset used here, the racism tag only had 17 samples.

Some blanket statements that can be made given
these results are that hate speech is highly targeted,
mainly at individuals, but with a significant share
targeted at groups and other institutions/issues.
Offensive language, on the other hand, tends to be
highly targeted only at individuals. Furthermore,
the dearth of data belonging to the UNT, GRP and
OTH tags may have had a detrimental effect on
the model leading to the lob-sided (OFF, TIN,
IND) classification.

7 Discussion and Conclusion

The paper makes two major contributions: First,
an evaluation of the general effectiveness of BERT
in Abusive Language Classification tasks and its
ability to obtain results comparable to — or better
than — the state-of-the-art by only fine-tuning.

Second, experiments showing that datasets with
larger percentages of positive samples generalise
better than datasets with fewer positive samples
when tested against a dissimilar dataset (at least
within the same platform, e.g., Twitter), which in-
dicates that a more balanced dataset is healthier
for generalisation. This observation should be ac-
counted for when attempting to build new datasets
to tackle Abusive Language Detection, but this is
far from the only problem faced when attempting
to create such datasets.

Looking at the various available datasets in this
field, it is obvious that it cannot be expected
for a single dataset to encompass all facets of
abuse online. For example, on scanning the OLID
(Zampieri et al., 2019a) using a lexicon of sex-
ist and racist terms from Hatebase.org only

a measly 55 and 567 hits, respectively, were ob-
tained. Armed with this information we can-
not possibly expect a model trained on the OLID
dataset to effectively detect racism and sexism on-
line. In fact, most of the data in OLID seem to be
political, indicating that it in contrast has a high
potential to detect such phenomena.

The point made here is that datasets used in the
Abusive Language Detection space must be more
representative of all facets of abusive language,
if we expect them to generalise to any subset of
abuse. Also, there are very few datasets that pro-
vide a large number of samples that can be taken
advantage of by huge neural networks (Lee et al.,
2018). However, we do acknowledge the diffi-
culty in collecting abusive samples as most dis-
course online is benign. To address these issues,
all datasets must advertise the subset of the abu-
sive language they represent. In addition, more
work must be done to identify similarities and
holes in the representation of datasets. Merging
of datasets may also prove to be a promising solu-
tion to the non-generalisability problem. Waseem
et al. (2018)’s multi-task learning model can be a
solid starting point for such endeavours.

A more ambitious solution could be the devel-
opment of pre-trained embeddings (at the word
and/or character level) for Abusive Language De-
tection, although the procurement of enough broad
spanning data to produce a high-quality embed-
ding could again be quite a challenging task.

In terms of whether the hierarchical annotation
model helps in reducing redundancy and overlap
in Abusive Language Detection subtasks, the an-
swer is both yes and no:

Hatebase.org
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• yes, the hierarchical annotation model does
reveal the overlap in the subtasks of abusive
language detection; but,

• no, it could hardly be a replacement for the
existing multi-class annotation schema.

This is because there is still value in identifying
whether a sample is racist / sexist / cyberbullying
over just recognising whether the abuse is explicit
or not, and in identifying the target of abuse.

However, the hierarchical model in its cur-
rent form still cannot differentiate between vari-
ous subsets of abusive language. Future hierar-
chical models could address this either by adding
more levels to further differentiate the subsets or
by creating additional levels to identify subsets
more explicitly. For example, after the first level
of the OLID (Zampieri et al., 2019a) annotation
schema, it could branch out into a layer that clas-
sifies samples as hate speech, bullying / trolling
or as non-abusive use of offensive language. The
hate speech tag could then be expanded into an-
other level classifying hate speech as being, e.g.,
racism, sexism, or other. This way of moving from
coarse-grained tags to increasingly finer-grained
ones might be a workable approach to tackling hi-
erarchical annotation.

Other issues such as the adversarial methods
used to bypass detection methods (Gröndahl et al.,
2018) also plague this problem space. Character-
based features alleviate this complication to some
degree, but more work needs to be done to solve
this. Research in this domain has also largely con-
strained itself to text, while real-world scenarios
are quite different — there is a huge section of
abuse online that rely on other forms of commu-
nication such as images, videos and gifs.

An overall conclusion is that the data is more
important than the model when tackling Abu-
sive Language Detection. Schmidt and Wiegland
(2017) expressed the need for a benchmark dataset
for abusive language tasks, but it would be unwise
to say any current dataset fills this role. Future
work must focus more on how models generalise
to the real world by modifying the testing pro-
cedure. A model’s performance on the dataset it
was trained on cannot be indicative of how well
it would perform in a real-life application, and a
dataset’s quality must be measured on how broad
spanning and how representative it is of abusive
language as a whole.

Acknowledgments

Thanks to all the researchers who have made
their datasets available, specially Waseem and
Hovy, Davidson et al., Founta et al., and Zampieri
et al., the organisers of SemEval-2019 Task 6:
OffensEval (‘Identifying and Categorizing Offen-
sive Language in Social Media’).

Special thanks to the anonymous reviewers
whose comments helped to improve the paper.

References

Pete Burnap and Matthew L. Williams. 2015. Cyber
hate speech on Twitter: An application of machine
classification and statistical modeling for policy and
decision making. Policy & Internet, 7(2):223–242.

Maral Dadvar, Dolf Trieschnigg, Roeland Ordelman,
and Franciska de Jong. 2013. Improving cyber-
bullying detection with user context. In Advances in
Information Retrieval: 35th European Conference
on IR Research, pages 693–696. Springer, Moscow,
Russia.
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Canada. AAAI Press.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Karthik Dinakar, Roi Reichart, and Henry Lieber-
man. 2011. Modeling the detection of textual
cyberbullying. In The Social Mobile Web: Pa-
pers from the 2011 ICWSM Workshop, pages 11–17,
Barcelona, Spain. AAAI Press.

Nemanja Djuric, Jing Zhou, Robin Morris, Mihajlo Gr-
bovic, Vladan Radosavljevic, and Narayan Bhamidi-
pati. 2015. Hate speech detection with comment
embeddings. In Proceedings of the 24th Interna-
tional Conference on World Wide Web, pages 29–30,
Florence, Italy. ACM.
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2019. A platform agnostic dual-strand hate speech
detector. In Proceedings of the 3rd Workshop
on Abusive Language Online, pages 146–156, Flo-
rence, Italy. ACL.

Chikashi Nobata, Joel Tetreault, Achint Thomas,
Yashar Mehdad, and Yi Chang. 2016. Abusive lan-
guage detection in online user content. In Pro-
ceedings of the 25th International Conference on
World Wide Web, pages 145–153, Montréal, Canada.
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