
Proceedings of the 23rd Conference on Computational Natural Language Learning, pages 920–928
Hong Kong, China, November 3-4, 2019. c©2019 Association for Computational Linguistics

920

A Simple and Effective Method for Injecting Word-level Information into
Character-aware Neural Language Models

Yukun Feng1, Hidetaka Kamigaito1, Hiroya Takamura1,2 and Manabu Okumura1

1Tokyo Institute of Technology
2National Institute of Advanced Industrial Science and Technology (AIST)

{yukun@lr.,kamigaito@lr.,takamura@,oku@}pi.titech.ac.jp

Abstract
We propose a simple and effective method to
inject word-level information into character-
aware neural language models. Unlike pre-
vious approaches which usually inject word-
level information at the input of a long short-
term memory (LSTM) network, we inject it
into the softmax function. The resultant model
can be seen as a combination of character-
aware language model and simple word-level
language model. Our injection method can
also be used together with previous methods.
Through the experiments on 14 typologically
diverse languages, we empirically show that
our injection method, when used together with
the previous methods, works better than the
previous methods, including a gating mecha-
nism, averaging, and concatenation of word
vectors. We also provide a comprehensive
comparison of these injection methods.

1 Introduction

Language modeling (LM) is an important task in
the natural language processing field, with various
applications such as speech recognition (Mikolov
et al., 2010a), machine translation (Koehn, 2009)
and summarization (Filippova et al., 2015). Re-
cently, neural language models (NLMs) have
shown a great success and are better than tradi-
tional count-based methods (Bengio et al., 2003;
Mikolov et al., 2010b). Standard NLMs usually
maintain a fixed vocabulary and map each word
to a continuous representation. These word rep-
resentations obtained through NLMs are usually
close to each other in the induced vector space
if they are semantically similar. However, there
are two main problems of standard NLMs. One is
that they cannot handle out-of-vocabulary words.
These words are usually replaced with a spe-
cial unknown symbol. Another problem is that
these models are not effective for learning the re-
lationships between words for infrequent words.

For example, although words “husbandman” and
“salesman” share the suffix “man” in their surface
forms, standard NLMs cannot capture such infor-
mation in obtaining the relationship between the
two words. A common way to deal with these is-
sues is to use character information of each word
to calculate the word representation, and it is of-
ten referred to as character-aware NLMs (Ling
et al., 2015; Kim et al., 2016; Vania and Lopez,
2017; Gerz et al., 2018). Our research focuses on
utilizing advantages of both character-level infor-
mation and word-level information in character-
aware NLMs.

Previous work usually combines word-level in-
formation and character-level information at the
input of LSTM layers through a gating mecha-
nism, or averaging or concatenation of word vec-
tors. Because these approaches generally target at
the input vectors, the word-level information can-
not be explicitly taken into account at the output
layer for predicting the next word.

To deal with this problem, we propose an im-
proved character-aware neural language model
that takes into account the injected word-level
information at the output layer. This model is
strongly inspired by the success of n-gram lan-
guage models. Our model can predict the next
word using the embeddings of the words in the
current n-gram window, in addition to the hidden
state of the LSTM layer. Specifically, we also use
a gate to control how much word-level information
should be taken before injecting it into the softmax
function. After that, we combine the gated word-
level information with the output of LSTM. Lastly,
we feed these mixed information to the softmax
function for word prediction. In our method, we
can also take into account the information of previ-
ous words when injecting word-level information
into the softmax function.

Our injection method is simple and easy to im-



921

plement 1. We found our method effective com-
pared with several common previous methods on
14 datasets with typologically diverse languages.
In addition, the improvements can be further ob-
tained when our injection method is used together
with the previous methods. We also conducted
a comprehensive comparison of these injection
methods. Finally, we set up several experiments
to check the effects of infrequent words on our
model, and we also compared our model with sev-
eral previous work on 6 common language model-
ing datasets. Our results show that:

- Compared with the previous injection meth-
ods (i.e., the gating mechanism, averaging,
addition, and concatenation of word vectors),
our injection method performs best on the
majority of languages.

- Our injection method works effectively even
when used alone, and the combination of our
injection method and the previous injection
methods performs better than the previous in-
jection methods.

- When injecting word-level information into
character-aware NLMs, discarding rare
words in the training data can help improve
the performance.

2 Related Work

Many work have attempted to improve character-
aware NLMs in recent years. For example,
Assylbekov and Takhanov (2018) proposed sev-
eral ways of reusing weights in character-aware
NLMs. Gerz et al. (2018) achieved an improved
result on 50 typologically diverse languages by in-
jecting subword-level information into word vec-
tors at the softmax. For a thorough review of past
researches, readers are recommended to read the
work by Vania and Lopez (2017), who performed
a systematic comparison across different models
based on different subword units (characters, char-
acter trigrams, BPE, etc.).

One direction related to our research is to in-
ject word-level information into character-aware
neural models. Aside from language modeling,
Santos and Zadrozny (2014) and dos Santos and
Guimarães (2015) first used a convolutional neural

1https://github.com/yukunfeng/char_
word_lm

network (CNN) to encode characters and then con-
catenated these encoded character-level represen-
tations and word-level representations for part-of-
speech tagging and named entity recognition. Lu-
ong and Manning (2016) introduced a character-
word neural machine translation model that only
consults character-level representations for rare
words encoded with a deep LSTM.

As research efforts for language models, Kang
et al. (2011) used a simple character-word NLM
designed for Chinese. Miyamoto and Cho (2016)
introduced a gate mechanism between word em-
beddings and character embeddings obtained from
a bidirectional LSTM (BiLSTM) for English. Ver-
wimp et al. (2017) directly concatenated word and
character embeddings without other subnetworks
to encode the characters for English and Dutch.

Although there are a number of research efforts
for using both character-level and word-level in-
formation, they feed the two types of information
only to LSTM, while our model also injects the
word-level information into the softmax function.
Previous work on this topic has usually been tested
in a limited number of languages and lacks a com-
prehensive comparison of different injection meth-
ods. We will compare our method with the previ-
ous methods mentioned in this section on 14 typo-
logically diverse languages.

3 Model Description

For language modeling, we basically use a LSTM
network (Hochreiter and Schmidhuber, 1997). We
denote the hidden state of LSTM for the t-th word
wt as ht ∈ Rd, where d is the embedding size.
We incorporate word-level information using the
neural network shown in Figure 1. We describe
the details in the following subsections.

Figure 1: Our character-aware LSTM language model
with injection of word-level information with an exam-
ple word “cats”. Symbols ˆ and $ respectively represent
the start and the end of a word.

https://github.com/yukunfeng/char_word_lm
https://github.com/yukunfeng/char_word_lm
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3.1 Input Word Representations
We use BiLSTM to encode character n-grams to
obtain character-level representation. We set n to
3 for all the languages except Japanese and Chi-
nese, for which we set n to 1. This is because
BiLSTM over character 3-grams obtained best re-
sults on most LM datasets in the work of Vania and
Lopez (2017), but Japanese and Chinese are more
ideographic than the others, and it is expected that
a smaller n works better.

Given a wordwt, we denote its embedding from
a lookup table Win ∈ Rd×|V | as wt ∈ Rd,
where |V | is the vocabulary size. We compute the
character-level representation of wt as follows:

ct = Wfh
fw
l +Wbh

bw
0 + b, (1)

where hfw
l , hbw

0 ∈ Rd are the last states of the
forward and backward LSTMs respectively. Wf ,
Wb ∈ Rd×d and b ∈ Rd are trainable parame-
ters. We define the following methods to obtain
the combination w′t from wt and ct:

- gate: we use the same gating mechanism
as Miyamoto and Cho (2016), which is de-
scribed later to combine wt and ct.

- avg, add, cat: we obtain w′t through averag-
ing, addition and concatenation of wt and ct,
respectively.

In the gating mechanism, we compute w′t as fol-
lows:

ginwt
= σ

(
v>g wt + bg

)
, (2)

w′t = (1− ginwt
)wt + ginwt

ct, (3)

where vg ∈ Rd and bg ∈ R are trainable parame-
ters and σ(·) is a sigmoid function.

3.2 Representation of Input to Softmax
Our proposal is to combine ht with wt to better
inform the softmax function of word-level infor-
mation. Combination h′t is computed as follows:

h′t = ht + goutwt
wt, (4)

where goutwt
is a gate value. In our experiments,

we set up two types of gate. One is a fixed value,
goutwt

= 0.5. The other is similar to the definition
in Eq. (2), which adaptively outputs a gate value
depending on wt:

goutwt
= σ

(
v>k wt + bk

)
, (5)

where v>k ∈ Rd and bk ∈ R are trainable param-
eters. In Eq. (4), the gate is used only on word-
level information to decide how much information
wt should be taken 2.

In Eq. (4), if we remove the term ht, the resul-
tant model is a simple word-level language model
P (wt+1|wt). Based on this observation, we can
simply extend our method to contain the word-
level information for previous words without extra
parameters:

hword
t =

n∑
i=1

1

i
wt+1−i, (6)

where n is the number of the current and pre-
vious words used to calculate hword

t . We sim-
ply give smaller weights inversely proportional
to distance i to the embeddings of the previous
words. For example, when n = 2, hword

t is com-
puted as wt +

1
2wt−1, which is used to calculate

P (wt+1|wt, wt−1). The hidden state h′t now can
be calculated as follows:

h′t = ht + goutwt
hword
t . (7)

3.3 Language Modeling
The language modeling task is to compute the
probability of a given sentence w1, . . . , wT :

P (w1, . . . , wT ) =
T∏
t=1

P (wt|w1, . . . , wt−1).

(8)
We use a softmax function based on h′t to generate
a probability distribution over the vocabulary:

P (wt+1|w1, . . . , wt) = softmax(WT
outht

′), (9)

where Wout ∈ Rd×|V | is output word embed-
dings.

4 Model Variants

The hyper-parameters of our models are shown in
Table 1. The learning rate is decreased if no im-
provement is observed in the validation dataset.
Several baseline models and our models are listed
as follows:

- Char-BiLSTM-LSTM: We use BiLSTM to
encode characters without injecting word-
level information.

2We have tested the above other methods, such as avg,
add and cat, for combining ht and wt, in place of gate, and
found these methods did not work well.
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Embedding size d 650
LSTM layers 2
Dropout 0.5
Optimizer SGD
Learning rate 20
Learning rate decay 4
Parameter init: rand uniform [-0.1,0.1]
Batch size 20
LSTM sequence length 35
Gradient clipping 0.25
Epochs 40

Table 1: Hyper-parameters of our model. We use d for
the sizes of the character/word embeddings and for the
number of hidden units of LSTM and BiLSTM.

- Word-LSTM: Standard word-level LSTM
model.

- Char-BiLSTM-gate/avg/add/cat-Word-
LSTM: We combine character-level and
word-level information at the input of
LSTM through gate/avg/add/cat methods,
mentioned in Sec. 3.1.

- Char-BiLSTM-LSTM-Word: We inject
word-level information only into the softmax
function. This is our injection method.

- Char-BiLSTM-gate/avg/add/cat-Word-
LSTM-Word: We combine our injection
method and previous injection methods,
which means we inject word-level informa-
tion both at the input of LSTM and into the
softmax function.

For both Char-BiLSTM-LSTM-Word and Char-
BiLSTM-gate/avg/add/cat-Word-LSTM-Word,
we use g = 0.5/adaptive and n = 1/2/3 to repre-
sent our specific injection method. For example,
Char-BiLSTM-LSTM-Word (g = 0.5, n = 2)
represents that we use a fixed gate value on word-
level information in Eq. (4) and we inject the
information of the current word and the preceding
word into the softmax function.

5 Experiments on 14 Languages

5.1 Datasets

Common language modeling datasets for evaluat-
ing character-aware NLMs are from the work of
Botha and Blunsom (2014). While these datasets
contain languages with rich morphology, they
have only 5 different languages. Perhaps, the
most large-scale language modeling datasets are
from the work of Gerz et al. (2018), who released

50 language modeling datasets covering typolog-
ically diverse languages. The difference between
the newly released datasets and the previous com-
mon datasets is that unseen words are kept in test
set. Thus, on the datasets, we can test our methods
in a real LM setup. The languages from the work
of Gerz et al. (2018) were selected to represent a
wide spectrum of different morphological systems
and contain many low-frequency or unseen words.
Thus, these datasets should be desirable for check-
ing the performance of character-aware NLMs 3.

To simplify the experiments without losing the
wide coverage, we only chose datasets of 14 lan-
guages from these datasets and tried to cover dif-
ferent language typologies as well as different
type/token ratios (TTRs). The statistics of our cho-
sen datasets are shown in Table 2. We used all the
words observed in training data and one special
unknown token for out-of-vocabulary words as the
output vocabulary to make the setting the same as
Gerz et al. (2018).

5.2 Comparison of Baseline Models

The results of Word-LSTM and Char-BiLSTM-
LSTM are shown in Table 3. We also showed
the results of Word-LSTM and Char-CNN-LSTM
from the work of Gerz et al. (2018). The em-
bedding size and the number of LSTM layers
are the same as those for the models in Gerz
et al. (2018). As shown in the table, both the
Word-LSTM and Char-BiLSTM-LSTM baselines
are better than the Word-LSTM and Char-CNN-
LSTM from the work of Gerz et al. (2018) on
all the datasets 4. Both Char-BiLSTM-LSTM
and Char-CNN-LSTM from Gerz et al. (2018)
are better than their respective Word-LSTM on all
the datasets. One possible reason is that all the
unseen words in the test set in the 14 datasets
cannot be handled by Word-LSTM in the test-
ing phase. However, character-aware models can
encode the characters from these unseen words,
making them possible to process these words.
It is also shown that as TTR increases, Char-
BiLSTM-LSTM achieves the better result than
Word-LSTM. This may be because high-TTR lan-
guages have more low-frequency words and un-
seen tokens, as shown in Table 2. Since frequent

3To test our models against previous work, we also in-
clude experiments on common datasets, as described later.

4We have made the experimental setting the same as that
of the work of Gerz et al. (2018), and the perplexity scores
are comparable.
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Language Typology TTR
Train
vocab

#Train
tokens

#Test
tokens

#Unseen
tokens

Freq<=15
(Train)

vi (Vietnamese) Isolating 0.04 32055 754K 61.9K 1678 8.50%
zh (Chinese) Isolating 0.06 43672 746K 56.8K 2132 16.00%
ja (Japanese) Agglutinative 0.06 44863 729K 54.6K 2558 15.20%
pt (Portuguese) Fusional 0.07 56167 780K 59.3K 2947 17.20%
en (English) Fusional 0.07 55521 783K 59.5K 3618 16.60%
ms (Malay) Isolating 0.07 49385 702K 54.1K 3918 16.00%
es (Spanish) Fusional 0.08 60196 781K 57.2K 3486 17.90%
he (Hebrew) Introflexive 0.12 83217 717K 54.6K 4855 27.20%
ar (Arabic) Introflexive 0.12 89089 722K 54.7K 6076 26.40%
de (German) Fusional 0.12 80741 682K 51.3K 5451 24.30%
cs (Czech) Fusional 0.14 86783 641K 49.6K 5436 30.00%
ru (Russian) Fusional 0.15 98097 666K 48.4K 4881 32.10%
et (Estonian) Agglutinative 0.17 94184 556K 38.6K 4960 33.70%
fi (Finnish) Agglutinative 0.20 115579 585K 44.8K 7899 38.10%

Table 2: The statistics of our language modeling datasets. TTR represents type/token ratio.

vi zh ja pt en ms he ar de cs es et ru fi
Word-LSTM (Gerz et al., 2018) 190 826 156 272 494 725 2189 2587 903 2200 366 2564 1309 4263
Char-CNN-LSTM (Gerz et al., 2018) 158 797 136 214 371 525 1519 1659 602 1252 275 1478 812 2236
Our Word-LSTM 137 582 113 201 348 476 1480 1610 609 1278 271 1295 839 2128
Char-BiLSTM-LSTM 134 578 107 178 302 463 1170 1337 483 973 230 967 620 1648
Char-BiLSTM-gate-Word-LSTM 136 582 112 195 328 483 1340 1619 551 1149 264 1189 704 1987
Char-BiLSTM-cat-Word-LSTM 133 565 105 183 314 432 1239 1360 504 1052 245 993 614 1602
Char-BiLSTM-avg-Word-LSTM 133 609 110 177 307 461 1181 1340 478 963 225 996 611 1574
Char-BiLSTM-add-Word-LSTM 127 551 103 171 298 423 1091 1302 481 938 218 967 606 1578
Char-BiLSTM-LSTM-Word
(g =adaptive,n = 1) 126 567 104 175 314 424 1133 1279 491 920 235 949 605 1592

Char-BiLSTM-LSTM-Word
(g = 0.5, n = 1) 123 523 101 171 292 415 1068 1247 479 934 217 906 601 1590

Table 3: Perplexity of several baseline models and Char-CNN-LSTM on 14 language modeling datasets. The best
results among all models are in bold.

words still occupy the majority of both training
and test data, injecting word-level information is
still helpful for improving these character-aware
models, as shown below.

5.3 Comparison of Different Injection
Methods

The results of all the other different injection
methods on 14 language modeling datasets are
also shown in Table 3. In our experiments, Char-
BiLSTM-gate-Word-LSTM underperforms Char-
BiLSTM-LSTM on all the datasets. This in-
dicates the gate method is not effective in
our experiments. Char-BiLSTM-cat-Word-LSTM
achieves better results than Char-BiLSTM-gate-
Word-LSTM on all the datasets, but still under-
performs Char-BiLSTM-LSTM on 8 out of 14
datasets. Char-BiLSTM-avg-Word-LSTM outper-
forms Char-BiLSTM-cat-Word-LSTM on 9 out
of 14 datasets, which indicates the simple aver-
age method is better than the gating mechanism

and the concatenation method in our tasks. How-
ever, Char-BiLSTM-avg-Word-LSTM still has
no obvious improvements, compared with Char-
BiLSTM-LSTM on most datasets.

We found some previous work also has similar
results in the language modeling task. Kim et al.
(2016) used a Char-CNN-LSTM model without
injecting word-level information. They reported
that some basic methods (e.g., concatenation, av-
eraging and adaptive weighting schemes) for in-
jecting word-level information degraded the per-
formance of their Char-CNN-LSTM. Miyamoto
and Cho (2016) showed the concatenation method
for injecting word-level information into their
Char-BiLSTM-LSTM also degraded their Word-
LSTM model.

Char-BiLSTM-add-Word-LSTM achieves
more improved results than Char-BiLSTM-LSTM
on 13 out of 14 datasets and also performs best in
general among Char-BiLSTM-avg/add/gate/cat-
Word-LSTM. The addition method works better
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than other previous injection methods in general
in our tasks, while this simple method is less
mentioned in the previous work. In conclusion,
the performance of the previous injection methods
in our experiments was in the descending order of
add, avg, cat and gate.

Our Char-BiLSTM-LSTM-Word (g =
0.5, n = 1) and Char-BiLSTM-LSTM-Word
(g = adaptive, n = 1) work effectively, and
both of them achieve better results than Char-
BiLSTM-LSTM. A simple fixed gate value in
our injection method may be effective enough.
Char-BiLSTM-LSTM-Word (g = 0.5, n = 1)
works better than Char-BiLSTM-LSTM-Word
(g = adaptive, n = 1) on most datasets. When
compared with other injection methods, Char-
BiLSTM-LSTM-Word (g = 0.5, n = 1) achieves
the best results on most datasets (bold scores in
Table 3). This suggests that our injection method,
aiming at the different position from the input of
LSTM, the softmax function, makes good use of
word-level information.

5.4 Combination of Injection Methods
To avoid too many combinations of our injec-
tion method and other previous methods, we only
chose to combine our Char-BiLSTM-LSTM-Word
(g = 0.5, n = 1) with the other previous in-
jection methods, because Char-BiLSTM-LSTM-
Word (g = 0.5, n = 1) performs better than Char-
BiLSTM-LSTM-Word (g = adaptive, n = 1), as
mentioned above. The results of the combination
of our Char-BiLSTM-LSTM-Word (g = 0.5, n =
1) and the previous injection methods are shown
in Table 4.

When our injection method is used together
with gate/avg/cat/add methods, obvious im-
provements can be observed on most datasets.
Among them, Char-BiLSTM-add-Word-LSTM-
Word (g = 0.5, n = 1) obtained the best results
on most datasets (bold scores in Table 4). The re-
sult indicates that the previous injection methods
do not make full use of word-level information,
while our method, which injects the word-level in-
formation into the different position, specifically,
the softmax, can help the previous models make
better use of the word-level information.

5.5 Including Word-level Information for
Previous Words

As mentioned in Sec. 3.1, we can include word-
level information for previous words when inject-

ing it into the softmax function. The number of
words used in our injection method is denoted by
n. In our experiments, we only set n to 1, 2 and
3, as we observed no obvious improvements when
using a larger n. Since Char-BiLSTM-add-Word-
LSTM-Word (g = 0.5, n = 1) performs best in
general on most datasets, as mentioned above, we
only changed n for this model. Note that our Char-
BiLSTM-add-Word-LSTM-Word (g = 0.5, n =
2/3) does not need extra parameters as we just
reuse the word embeddings from the lookup ta-
ble Win to compute word-level information. In
addition, the computational time of our injection
method should be low, since the involved compu-
tation is simple. The result is shown in Table 5.

In general, Char-BiLSTM-add-Word-LSTM-
Word (g = 0.5, n = 2) achieves the best re-
sult on most datasets. Char-BiLSTM-add-Word-
LSTM-Word (g = 0.5, n = 3) does not obtain
further improvements on most datasets. Since our
current method for including word-level informa-
tion for previous words is simple, a more advanced
method can be further exploited in future work.

5.6 Effects of Infrequent Words

In order to check whether infrequent words help
our character-aware NLMs, we set up several ex-
periments by discarding some infrequent words
based on their word frequency. Note that we main-
tain two independent vocabularies. One is the in-
put vocabulary and is used to inject word-level in-
formation. We obtain the word embeddings in our
and previous injection methods through the lookup
table Win, as described in Sec. 3.1. The other is
the output vocabulary and is used for word predic-
tion, as described in Sec. 3.3. When we discard the
infrequent words, we only narrow down the input
vocabulary and do not change the output vocabu-
lary. Thus, the perplexity scores are still compara-
ble with the scores in the above experiments. For
example, when our model processes the sentence
“the salesman brought some samples” in training
phase, where ‘salesman’ is an infrequent word in
training data, our model can still try to predict the
word ‘salesman’ given the previous word ‘the’,
because ‘salesman’ is in our output vocabulary.
When inputting the word ‘salesman’ to predict the
word ‘brought’, we do not inject word-level in-
formation for the word ‘salesman’. We only use
its character-level representation obtained through
our BiLSTM over characters to perform the lan-
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vi zh ja pt en ms he ar de cs es et ru fi
Char-BiLSTM-gate-Word-LSTM 136 582 112 195 328 483 1340 1619 551 1149 264 1189 704 1987
Char-BiLSTM-gate-Word-LSTM-Word
(g = 0.5, n = 1) 125 538 105 182 316 430 1339 1474 536 1116 260 1103 659 1728

Char-BiLSTM-cat-Word-LSTM 133 565 105 183 314 432 1239 1360 504 1052 245 993 614 1602
Char-BiLSTM-cat-Word-LSTM-Word
(g = 0.5, n = 1) 122 541 103 180 305 426 1158 1316 530 1031 241 1012 607 1561

Char-BiLSTM-avg-Word-LSTM 133 609 110 177 307 461 1181 1340 478 963 225 996 611 1574
Char-BiLSTM-avg-Word-LSTM-Word
(g = 0.5, n = 1) 121 495 99 165 293 398 1044 1224 488 890 218 898 569 1510

Char-BiLSTM-add-Word-LSTM 127 551 103 171 298 423 1091 1302 481 938 218 967 606 1578
Char-BiLSTM-add-Word-LSTM-Word
(g = 0.5, n = 1) 116 481 98 160 291 387 1038 1172 462 874 215 870 568 1494

Table 4: Perplexity of the combination of our injection method with the previous methods on 14 language modeling
datasets.

vi zh ja pt en ms he ar de cs es et ru fi
Char-BiLSTM-add-Word-LSTM-Word
(g = 0.5, n = 1) 116 481 98 160 291 387 1038 1172 462 874 215 870 568 1494

Char-BiLSTM-add-Word-LSTM-Word
(g = 0.5, n = 2) 117 489 95 163 277 376 998 1179 452 867 213 884 548 1456

Char-BiLSTM-add-Word-LSTM-Word
(g = 0.5, n = 3) 118 475 96 162 285 391 1041 1162 463 877 215 913 563 1471

Table 5: Perplexity of our Char-BiLSTM-add-Word-LSTM-Word including word-level information for previous
words on 14 language modeling datasets.

guage modeling task.

We denote the frequency threshold as θ and set
its value among 5, 15 and 25. If the frequency
of a word seen in the training data is less than
or equal to θ, we discard it. We refer the model
that discards infrequent words as Char-BiLSTM-
add-Word-LSTM-Word (g = 0.5, n = 1, θ =
5/15/25). The result is shown in Table 7.

When discarding the words whose frequency is
less than or equal to 15, the model obtains bet-
ter results only on 2 out of 14 datasets than Char-
BiLSTM-add-Word-LSTM-Word (g = 0.5, n =
1). This indicates some infrequent words are still
helpful. When we increase the frequency thresh-
old further to 25, the performance of the model
has dropped compared with Char-BiLSTM-add-
Word-LSTM-Word (g = 0.5, n = 1, θ = 15)
as more frequent words are discarded. However,
we found a relatively small frequency threshold
θ = 5 works quite effectively. Char-BiLSTM-
add-Word-LSTM-Word (g = 0.5, n = 1, θ = 5)
achieves better results than Char-BiLSTM-add-
Word-LSTM-Word (g = 0.5, n = 1) on 7 out
of 14 datasets. It seems to be the trend that dis-
carding infrequent words with θ = 5 is useful
for high TTR languages. Note that we arranged
our datasets from low TTR to high TTR in Table
7. Since many of the words in natural languages
are rare as described in Zipf’s law, we can reduce
the size of the input vocabulary significantly even
with a small θ. The size for the full input vocabu-
lary and the reduced vocabulary with different fre-

quency threshold value is shown in Table 8. As
we can see, when θ is set to 5, our model achieves
better results with fewer parameters.

6 Experiments on 6 Common Datasets

In addition to the above datasets, we also set up
6 common language modeling datasets: English
Penn Treebank (PTB) (Marcus et al., 1993) and 5
non-English datasets with rich morphology from
the 2013 ACL Workshop on Machine Transla-
tion5, which have been commonly used for eval-
uating character-aware NLMs (Botha and Blun-
som, 2014; Kim et al., 2016; Bojanowski et al.,
2017; Assylbekov and Takhanov, 2018). Since
some of previous work has tested their model on
PTB, we also included PTB in our experiment.
We used the preprocessed small version of non-
English datasets by Botha and Blunsom (2014)
and followed the same split as the previous work.
The data statistics is provided in Table 9.

The results of our proposed models and previ-
ous work are shown in Table 6. We used Char-
BiLSTM-LSTM and Char-BiLSTM-add-Word-
LSTM as baseline models. For our models, we set
the frequency threshold θ to 5 and also set n to 2
as these settings help improve our character-aware
NLMs, as discussed in Sec. 5.6 and Sec. 5.5. The
language models used in the previous work are im-
proved at different aspects, and most of them are
also based on standard LSTM, like ours. Botha

5http://www.statmt.org/wmt13/translation-task.html
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PTB CS DE ES FR RU
MLBL (Botha and Blunsom, 2014) - 465 296 200 225 304
MorphSum (Kim et al., 2016) - 398 263 177 196 271
CharCNN (Kim et al., 2016) 78.9 371 239 165 184 261
SkipGram initialization (Bojanowski et al., 2017) - 312 206 145 159 206
MorphSum+RE+RW(Assylbekov and Takhanov, 2018) 72.2 338 222 157 172 210
Char-BiLSTM-LSTM 85.5 311 198 144 164 223
Char-BiLSTM-add-Word-LSTM 79.1 300 199 138 155 213
Char-BiLSTM-add-Word-LSTM-Word
(g = 0.5, n = 1, θ = 5)

75.9 287 192 135 152 201

Char-BiLSTM-add-Word-LSTM-Word
(g = 0.5, n = 2, θ = 5)

76.1 284 193 137 150 202

Table 6: Perplexity of our models and previous work on 6 language modeling datasets.

vi zh ja pt en ms he ar de cs es et ru fi
Char-BiLSTM-add-Word-LSTM-Word
(g = 0.5, n = 1) 116 481 98 160 291 387 1038 1172 462 874 215 870 568 1494

Char-BiLSTM-add-Word-LSTM-Word
(g = 0.5, n = 1, θ = 5) 116 495 98 166 285 397 1016 1153 463 863 214 877 547 1492

Char-BiLSTM-add-Word-LSTM-Word
(g = 0.5, n = 1, θ = 15) 117 502 99 164 286 397 1046 1185 467 883 215 924 570 1492

Char-BiLSTM-add-Word-LSTM-Word
(g = 0.5, n = 1, θ = 25) 118 502 101 167 292 405 1053 1202 471 896 215 929 573 1526

Table 7: Perplexity of Char-BiLSTM-add-Word-LSTM-Word (g = 0.5, n = 1) with different frequency thresholds
on 14 language modeling datasets.

Full θ = 5 θ = 15 θ = 25
vi 32055 5979 3383 2547
zh 43672 12200 5847 3940
ja 44863 9793 4355 2806
pt 56167 11207 4975 3203
en 55521 11142 5060 3282
ms 49385 9849 4728 3187
he 83217 14867 5961 3589
ar 89089 13459 5607 3482
de 80741 10290 4020 2511
cs 86783 12581 4680 2762
es 60196 11043 4722 2959
et 94184 10392 3815 2299
ru 98097 13337 4677 2734
fi 115579 11520 3930 2303

Table 8: The size of input vocabulary seen in the train-
ing data on 14 datasets with different frequency thresh-
old.

and Blunsom (2014) used the morphological log-
bilinear (MLBL) model, which takes into account
morpheme information. Kim et al. (2016) used
CNN as their character encoder, and also trained
an LSTM language model, where the input repre-
sentation of a word is the sum of the morpheme
embeddings of the word. Bojanowski et al. (2017)
trained the word embeddings through skip-gram
models with subword-level information, and used
these word embeddings to initialize the lookup ta-
ble of word embeddings of a word-level language

Vocab size #Train token
PTB 10K 1M

Czech (CS) 46K 1M
German (DE) 37K 1M
Spanish (ES) 27K 1M
French (FR) 25K 1M

Russian (RU) 86K 1M

Table 9: The data statistics of our 6 language modeling
datasets.

model. Assylbekov and Takhanov (2018) focused
on reusing embeddings and weights in a character-
aware language model. The input of their model
is also the sum of the morpheme embeddings of
the word. As shown in the table, Char-BiLSTM-
LSTM underperforms the previous work on PTB.
One reason may be that we did not tune the hyper-
parameters of our models on PTB. The hyper-
parameters were simply kept the same in all the
experiments on 20 datasets. As we can see, Char-
BiLSTM-LSTM achieves better results than most
previous work on non-English datasets. Our mod-
els also achieve the best results on non-English
datasets.

7 Conclusion

In addition to combining character-level and
word-level information at the input of LSTM,
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which is a widely used combination manner, we
proposed to also inject word-level information into
the softmax function in a character-aware neural
language model. We gave a detailed compari-
son with previous methods, and the result showed
our proposal works effectively on typologically di-
verse languages. For future work, it would be in-
teresting to see how our model works for other
tasks such as text generation.

Acknowledgments

We would like to thank anonymous reviewers for
their constructive comments.

References
Zhenisbek Assylbekov and Rustem Takhanov. 2018.

Reusing weights in subword-aware neural language
models. In NAACL-HLT.
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