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Abstract

The prevalence of informal language such as
slang presents challenges for natural language
systems, particularly in the automatic discov-
ery of flexible word usages. Previous work
has explored slang in terms of dictionary con-
struction, sentiment analysis, word formation,
and interpretation, but scarce research has at-
tempted the basic problem of slang detection
and identification. We examine the extent
to which deep learning methods support au-
tomatic detection and identification of slang
from natural sentences using a combination of
bidirectional recurrent neural networks, con-
ditional random field, and multilayer percep-
tron. We test these models based on a compre-
hensive set of linguistic features in sentence-
level detection and token-level identification
of slang. We found that a prominent fea-
ture of slang is the surprising use of words
across syntactic categories or syntactic shift
(e.g., verb—noun). Our best models detect the
presence of slang at the sentence level with an
F1-score of 0.80 and identify its exact position
at the token level with an F1-Score of 0.50.

1 Introduction

Slang, or ‘the language of streets’ (Green, 2015),
is a type of informal language consisting of words
and expressions shared within specific groups. A
hallmark of slang is its expressivity, instantiated
in the flexible use of words. For example, the
word sick with the conventional sense of “ill” can
also denote a positive slang sense of “awesome”,
such as “the band’s album is sick”. The expres-
sive nature of slang exemplifies its social function,
because it provides an effective way of commu-
nicating and knowledge-sharing within groups of
distinct social identities, such as in the cases of
vulgar tongue (Green, 2015) and online language.
On the other hand, the flexible nature of slang use
can be intriguing for language users, learners, and
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natural language systems. Here, we ask whether
slang can be automatically detected in natural sen-
tences, and what linguistic features might distin-
guish slang usage from conventional language use.

Our problem statement is simple: Given a natu-
ral sentence such as “the band’s album is sick”, can
machines learn to 1) detect whether slang usage is
present or not (i.e., sentence-level detection), and
2) identify the exact position of the slang term in
the sentence (i.e., token-level identification). For
each of these tasks, our systems should be able to
learn to cope with two main categories of slang
usage (Dhuliawala et al., 2016):

e Newly extended senses: existing words in
the lexicon that develop novel slang senses
distinct from their conventional senses, e.g.,
clutch refers to “an act of grasping” in its con-
ventional usage, but is later extended to the
slang sense of “tense critical situation”.

o Newly created words: words that do not ex-
ist in the standard lexicon, e.g., blending of
friend and enemy forms the slang word fren-
emy that describes a person who is simultane-
ously friend of and in conflict with someone.

Research on slang in the natural language pro-
cessing community falls under several categories,
but to our knowledge the current work is the first
to tackle the basic problem of automatic slang de-
tection and identification.

2 Related computational work

2.1 Slang dictionary construction and
sentiment analysis

Existing approaches such as SlangNet (Dhuli-
awala et al., 2016), SlangSD (Wu et al., 2018),
and SLANGZY (Gupta et al., 2019) have focused
on efficiently maintaining and extending the con-
struction of slang dictionaries to aid computational
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sentiment analysis of slang content. Some popu-
lar systems from this line of research are based on
modular representation (Pal and Saha, 2013) that
treats slang in terms of various linguistic stages,
each of which deals with slang word from differ-
ent aspects, e.g., sound, concept, formation, etc.
These dictionary-based methods rely on static lex-
ical information and structure, which are typically
not sufficient to capture the flexible semantics and
lexical coinage in natural slang usages.

2.2 Slang word formation and interpretation

An independent line of work has explored genera-
tive models (Kulkarni and Wang, 2018) for slang
word formation that captures processes such as
blending, clipping, and reduplication. This work
uses long short-term memory (LSTM) (Hochre-
iter and Schmidhuber, 1997) models to generate
slang words in terms of string components ac-
cording to type-sensitive characteristics. Related
work has also explored automatic interpretation
of non-standard English words and phrases using
sequence-to-sequence architecture with dual en-
coders (Ni and Wang, 2017). This method gener-
ates literal interpretations for queried non-standard
expressions from source sentences, but the pri-
mary focus is on explanation as opposed to detec-
tion or identification, both of which are prerequi-
site tasks for slang interpretation.

Differing from these existing research, we
present a methodological framework based on
standard techniques in deep learning for automatic
slang detection and identification that does not
rely heavily on dictionary construction. We ex-
amine a comprehensive set of linguistic features
that might be diagnostic of slang usage in natu-
ral settings, and we explore existing methods that
leverage bidirectional LSTM with multilayer per-
ceptron (MLP) (Rauber and Berns, 2011) and con-
ditional random field (CRF) (Lafferty et al., 2001).
Our framework is related to existing work that ap-
plies sequence-to-sequence models with attention
mechanism (Luong et al., 2015) for the identifica-
tion of dialectal varieties (Jurgens et al., 2017) and
feature-based emotion detection from online me-
dia (Ileri and Karagoz, 2016). However, our em-
phasis here is on learning features that are relevant
to the automatic discovery of slang usage.

To preview the framework, our models for-
mulate slang detection and identification as a
sequence-labelling task. In addition to typical
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word embedding inputs, we incorporate relevant
linguistic features in the input via an efficient fea-
ture boosting procedure. Throughout our exper-
iments, we found that the flexibility of Part-of-
Speech (POS) feature is most diagnostic of slang
usage: Slang often entails structured POS trans-
formation of existing syntactic uses of words. We
show how features related to POS confidence and
POS shift in the input provide the improvement
on model performance. We also demonstrate
how novel tokens of slang can be discovered us-
ing a character level convolutional neural network
(Zhang et al., 2015).

3 Computational methodology

We present the models and features we use for ma-
chine detection and identification of slang.

3.1 Specification of predictive tasks

In the slang detection task, our models determine
whether a given sentence contains at least one
slang usage, which can be an existing word with
a novel slang meaning or a newly created word.
We formulate this as a binary classification task.

In the slang identification task, our models iden-
tify each token within the input sentence as ‘non-
slang’ or ‘slang’ by sequence labeling, which de-
termines the exact positions of slang usage. Note
that the models in the identification task encapsu-
late the detection task; an empty prediction that la-
bels all tokens as ‘non-slang’ is equivalent to clas-
sifying the sentence as a non-slang sentence in the
detection task, and vice versa.

3.2 Model architectures

We present a BILSTM-MLP model that is capa-
ble of identifying slang words in a given sentence.
The basic architecture is shown in Figure 1. Fully
connected MLP layers are placed on top of both
the forward and backward hidden states H; and
Hy, of a biLSTM network encoding the input sen-
tence. The output of the two MLP layers fr, and
by, are then concatenated as an input to the final
MLP layer. In total, there are three components

wi o, w® Wl within the MLP block

that are shared across all hidden states:

fr = o (Wi} pHy + b)) (1)
by, = J(W](\Z)LPHb + b(b)) )
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Figure 1: BiLSTM-MLP model architecture with feature boosting. The architecture for bidirectional LSTM
with Multilayer Perceptron (MLP) as the output layer. The shared b layer is the MLP unit for the current backward
hidden state; the shared fL layer is the MLP unit for forward hidden state; the shared C'L layer takes as input the
concatenation of the outputs from f L and bL, and output the predictive tagging distribution.

evaluated via a CRF score:
Cp = o(WST fribo] +5€™)  (3) ’

SX,Y) =) (Av, v, + fvix)) )
Y = softma:n(W(Y)CL + b(Y)) 4) =
The CRF layer uses output states from BiLSTM
The resulting output vectors are subsequently used  layer to find tags in sequence with optimal CRF
to compute the predictive tag for input tokens.  score to make prediction. (i.e. X = [Hy; Hy))
There are seven tags here: ‘START’, ‘END’, ‘O°,  The CRF probability is easily computed in favor
‘B-U’, ‘I-U’, ‘B-N’, ‘I-N’. These tags apply 'BIO’  of the logarithmic predictive score as follows:
convention (Ramshaw and Marcus, 1999) that la-
bels non-target token as ‘O’, initial token of the in- log(P(Y|X)) =
terested .region (e..g., phrase) as ‘B-’, and thei sub- S(X,Y)~log( Z exp(S(X, Y/))) (6)
sequent intermediate tokens of interest as ‘I-’, etc.
The MLP block in BiILSTM-MLP model can
be swapped with an alternative conditional ran- Analogous to Huang et al. (2015), we apply dy-
dom field (CRF) (Lafferty et al., 2001) that better =~ namic programming during training to handle the
considers explicit sequential restrictions, e.g., the  intractable summation term. This BiLSTM-CRF
tag ‘I-U’ has to be placed after a ‘B-U’ tag. This = model aims to identify the exact position of each
sequential restriction can be captured via combi-  slang word, in terms of sequential restrictions.
nation of an LSTM network and a CRF network.
The CREF layer has a state transition matrix A; ;)
that models the transition score between the i-th ~ We use a comprehensive set of linguistic features
tag and the j-th tag, and an emission matrix f; ;)  to facilitate interpretable learning from the mod-
that models the output score for the i-th tag at the  els described. Carefully curated linguistic fea-
k-th word (Huang et al., 2015). The source sen-  tures can improve the training efficiency because
tence X(;) along with a sequence of tags Y(;) is  linguistic knowledge helps to rectify the learning

Y'eY,

3.3 Linguistic features
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process. Feature-based inputs support mapping
between contextual concepts and domain-specific
clues via distributed representations. The follow-
ing linguistic features are stored with unique en-
tries in the lookup tables, and they are encoded
into embeddings via distributed representation.
Figure 2 illustrates these features for the example
token fire.

Unigram. We take each individual word as
an input to the models. The words are repre-
sented by standard multi-dimensional word vec-
tors obtained via embedding models such as
word2vec (Mikolov et al., 2013).

Bigram. Similar to unigram embedding, a bi-
gram embedding represents the word vector for
a bigram. For instance, given an arbitrary word
W} at time-step ¢ in its source sentence, the bi-
grams for W; are W;_1W; and W;W,,1, which
correspond to forward bigram and backward bi-
gram respectively. Whereas the unigram embed-
ding X; is identified as the word vector repre-
sentation for W, the bigram embeddings are de-
fined as their concatenations. The forward bigram
embedding f B; represents the vector [W;_1;Wy],
and the backward bigram embedding bB; repre-
sents the vector [Wy;W;11]. Note that both for-
ward and backward bigrams are implemented us-
ing the identical lookup table.

Pointwise Mutual Information. We consider
measurement of discrepancy between two linguis-
tic variables via PMI (Aji and Kaimal, 2012).
Given two source words W; and W;, the PMI be-
tween them is computed as follows:

PT(WZ‘, Wj)
IPr(W;) Pr(W;)

PMI(W;,W,) =lo ()

We estimate the probabilistic distributions from
the Penn Treebank (Marcus et al., 1993), where
the probabilities of the PMI can be computed
based on co-occurrence statistics. In our mod-
els, we compute PMI of the current word with
each of its neighboring words, and encode the re-
sulting maximum and minimum PMIs as the fea-
tures. For example, given PMI(W;, W;_1) = 0
and PMI(W;,W;4+1) = 2, we would have the
PMI features related to the current word W; as
marPMI = 2 and minPM1I = 0.
Part-of-Speech. We consider Part-of-Speech
(POS) that represents a word’s syntactic category.
Common POSs include noun, verb, adjective, ad-
verb, pronoun, preposition, conjunction, interjec-
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tion, and numeral. Multiple POSs can be as-
signed to an identical word due to the possibil-
ity of a word having distinct grammatical proper-
ties in different sentences, e.g., work is a verb in
“these models work™, but it is a noun in “I don’t
like this work”. We use Natural Language Toolkit
(NLTK) (Loper and Bird, 2002) for POS tagging.

POSp. This linguistic feature is an accessory
feature to the POS feature that only represents the
grammatical property for the token in its current
semantic context. Since each word token might
have multiple POS tags, it is possible to count a
word’s POS distribution that represents the proba-
bilities of a word attached with this specific POS
tags as an additional linguistic feature. For exam-
ple, given a well-formed text corpus C":

Pr(POS(like) < verd|C) = 0.8
Pr(POS(like) < noun|C) = 0.1
Pr(POS(like) < numeral|C) = 0.0

POSt. Word class transfer is a common mecha-
nism (e.g., in English) for extending word senses.
We consider a novel feature that represents the
transformation from the root-POS (the most com-
monly used POS for the current token) to the
current-POS for the token, e.g., “IN-VB” is a POSt
feature, where “IN” is the root-POS, “VB” is the
current-POS of the token.

Bigram-Count. The Bigram-Count is similar
to the POSp, except that the Bigram-Count rep-
resents the probability that the current word is col-
located with its neighboring words. Given an arbi-
trary word token W; in a sequence ¢, the forward
and backward Bigram-Counts are evaluated as

Pr(W; 1 W;
fBC:lOQ(Tz(wwlo oo
Pr(W;w;
bBC = zog(rfpr (W; 1) ©)

The Bigram-Counts are also similar to PMI except
that the Bigram-Counts focus more on the current
word. In some cases, the Bigram-Count will lever-
age the zero PMI of low-frequent collocations.

3.4 Feature boosting: Feature-level learning

We present feature boosting for the models with
limited features to learn feature-level knowledge.
The linguistic features are assumed to be related
in terms of the concatenated form of input vec-
tors. For an input token, the related features can
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Figure 2: Concatenation of linguistic features for a given token. For a specific token fire in the source sentence
“she can cook some fire food”, the related linguistic features are represented as token vectors to concatenate the
feature-based input for this token. Each randomly initialized vector is updated during training. The unigram
features are represented as 32-dimensional word vectors, the bigram vectors are 20-dimensional, and all else are

16-dimensional.

be assigned with distinct weights that selectively
focus on specific features. Suppose we have a to-
ken x represented by k distinct linguistic features
[fl(x)...flgx)], where fi(x) e RIVilx1 and a shared
multi-layer perceptron Wy.,; across all the states.
The local feature weights are defined as:

O‘feat(x) = erat[fl(x)flgx)] + bf

Where by is the MLP bias, and afeat(x) is k-
dimensional vector that assigns distinct weights to
each feature. To provide feature-level information
for the vectors fed as inputs to the BiLSTM layer,
the feature vectors are weighted in terms of the
computed o feat(“"’) for concatenation:

(10)

Qfeat, ] (11)

S

The concatenation of weighted feature embed-
dings contains global feature-level information, al-
lowing the inputs to selectively feed into the model
in terms of the feature distribution. As an alterna-
tive, the last propagated hidden states from both
forward and backward layers of the BiLSTM can
be concatenated with the raw features fi(x) to com-
pute the local feature weights.

We demonstrate later the relative importance
of different features in a feature ablation analysis
where we remove less relevant input features and
keep only the light-weighted but informative lin-
guistic features such as Part-of-Speech and POSp.

Vx = [fl(x) * O feqty (x)

3.5 Treatment of novel slang word forms

Our models are able to handle novel tokens by
learning the contextual structure within a sentence.
Although all the out-of-vocabulary tokens are con-
sistently labelled as ‘UKT’ such that they are truly
unseen by the models, the sequential relations can
be captured by the hidden layers of LSTMs. In or-
der to improve model predictability on unknown
tokens, we apply character-based convolutional
neural network to encode the spelling of words.
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Figure 3: BIiLSTM-CRF model architecture with
feature boosting. The architecture for bidirectional
LSTM with Conditional Random Field as the output
layer. The shared CRF layer takes as input the BiL-
STM'’s outputs from hidden states, then finds the opti-
mal path in terms of sum of emission scores and transi-
tion scores. The optimal path results in the prediction.

Each character is represented by a fixed dimen-
sional embedding (Zhang et al., 2015), similar to
word embeddings, and forwarded into a convolu-
tional neural network to obtain a character-level
encoding of the word. The resulting Char-CNN
embeddings are concatenated with the original in-
put embeddings that feed into the models.

4 Experiments and results

4.1 Experimental setup

We consider datasets that are composed of sen-
tences in two distinct categories, standard (slang-
less) and slang-specific:

o Slang-less sentence dataset: 15-thousand
non-slang sentences from Wall Street News
(2011-2016) in Penn Treebank (Marcus et al.,
1993) as the negative examples.



o Slang-specific sentence dataset: 15-
thousand sentences that contain slang words
from Online Slang Dictionary (http:
//onlineslangdictionary.com/)
as the positive examples.

The sentences from Wall Street News are taken to
be non-slang sentences since the news-based sen-
tences were typically standard English conformed
and reviewed before publication. In order to con-
struct an even more trustworthy negative set for
standard English, we filtered the sentences from
Wall Street News based on the proportion of un-
known tokens within the sentences. A News sen-
tence will be considered as an eligible non-slang
sentence if it has at most 20% words that have
not been covered by the provided frequency-based
vocabulary. The vocabulary (or lexicon) consists
of top 25,000 most frequent English words from
an authoritative text corpus, e.g., Penn Treebank.
On average, each negative example sentence con-
tains 12.11 (mean) tokens with standard deviation
of 2.52.

We collect positive examples from lexical en-
tries in the Online Slang Dictionary (OSD) where
example usage sentences are available. We obtain
the ground-truth slang usage positions from OSD
and apply the BIO tagging scheme, which labels
interested tokens with “B-" at the beginning token,
and with “I-” at the subsequent tokens. All the to-
kens out of interest are labelled as “O”. There are
two kinds of slang types: UKT-slang and Normal
word slang, labelled with “U” and “N”, respec-
tively. The UKT-slang refers to slang usages with
novel word forms, while normal word slang refers
to slang usages with existing words. Out of the
15,000 positive examples, 10,000 of which con-
tain UKT slang words that are not covered by the
lexicon. On average, each positive example sen-
tence contains 13.79 (mean) tokens with standard
deviation of 3.42.

All models are trained using the Adam opti-
mizer (Kingma and Ba, 2015) with a learning rate
0.001 with 8; = 0.9 and B3 = 0.999.

4.2 Evaluation and results

We evaluate our models in terms of slang detection
and identification. We also perform feature abla-
tion to locate salient features of slang usage and
show example cases of model success and failure.
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4.2.1 Detection task

We evaluated our models to determine whether a
given sentence contains at least one slang usage.
The evaluation metrics are precision, recall, and
Fl-score. Table 1 summarizes the results from
the models. Overall, all our proposed models
performed substantially better than the baseline,
with the CRF-based models yielding better perfor-
mance than the MLP-based models. For instance,
although all models tend to have high precision
and relatively lower recall, the CRF-based mod-
els generally achieve better recall than the MLP-
based models given the same level of precision.
Importantly, the best overall model makes use of
all linguistic features and yields an F1-score close
to 0.80. This result suggests that the features we
proposed contribute critically to both the precision
and recall of slang detection. It is worth noting that
models with only the POS related features achieve
reasonable performance (although not as well as
the full model), and we will return to this observa-
tion in the ablation analysis.

4.2.2 Identification task

We evaluated our models to identify each word in
a given sentence at the word level. The evaluation
metrics are precision, recall, and F1-score. Table 2
summarizes the results. Similar to the case of de-
tection, our models performed substantially above
the baseline in this task. In particular, both the
MLP and CRF-based models yielded higher F1
scores (close to 0.50) when multiple features are
taken into account. Tables 3 and 4 further summa-
rize the results (i.e., number of correctly predicted
cases) of these models in identifying the two main
different types of slang: novel slang word and
novel slang sense (of an existing word), and how
the models fair with and without the incorporation
of CNN character-based embeddings.

4.2.3 Feature ablation

We evaluated the contributions of the linguistic
features on the test set via model performance
degradation through ablation. We would like to
evaluate the extent that the model performance
would be degraded with respect to a single feature
(e.g., POS), given a trained model with the com-
plete featured set. In this case we would force all
the POS embeddings to be zero-vectors, and we
then compare the ablated model against the full
model. Figure 4 summarizes the degradation of


http://onlineslangdictionary.com/
http://onlineslangdictionary.com/

Model (features) Precision Recall Fl-score
Random Guess (baseline) 0.5000 0.5000 0.5000
BiLSTM-MLP (POS+POSp) 0.9893 0.4806 0.6469
BiLSTM-MLP (POS+POSp+POSt+PMI) 0.9777 0.5651 0.7162
BiLSTM-MLP (POS+POSp+POSt+PMI boosting) 0.9771 0.6053 0.7475
BiLSTM-MLP (full features) 0.9433 0.6842 0.7931
BiLSTM-CRF (POS+POSp) 0.9873 0.5969 0.7440
BiLSTM-CRF (POS+POSp+POSt+PMI) 0.9749 0.6482 0.7787
BiLSTM-CRF (POS+POSp+POSt+PMI boosting)  0.9749 0.6496 0.7797
BiLSTM-CREF (full features) 0.9518 0.6856 0.7971
Table 1: Model comparisons in the slang detection task.
Model (features) Precision Recall Fl-score
Random Guess (baseline) 0.0263 0.4834 0.0498
BiLSTM-MLP (POS+POSp) 0.6240 0.3172  0.4206
BiLSTM-MLP (POS+POSp+POSt+PMI) 0.6172 0.3864 0.4753
BiLSTM-MLP (POS+POSp+POSt+PMI boosting) 0.5967 0.3975 0.4771
BiLSTM-MLP (full features) 0.5423 0.4612 0.4985
BiLSTM-CRF (POS+POSp) 0.5666 0.3712 0.4485
BiLSTM-CRF (POS+POSp+POSt+PMI) 0.5763 0.4183 0.4847
BiLSTM-CRF (POS+POSp+POSt+PMI boosting)  0.5954 0.4280 0.4980
BiLSTM-CREF (full features) 0.5499 0.4501 0.4950
Table 2: Model comparisons in the slang identification task.
Model (features) New Word New Sense
BiLSTM-MLP (POS+POSp) 194/523 35/199
BiLSTM-MLP (POS+POSp+POSt+PMI) 228/523 53/199
BiLSTM-MLP (POS+POSp+POSt+PMI boosting) 236/523 53/199
BiLSTM-MLP (full features) 267/523 66/199
BiLSTM-CRF (POS+POSp) 227/523 41/199
BiLSTM-CRF (POS+POSp+POSt+PMI) 251/523 50/199
BiLSTM-CRF (POS+POSp+POSt+PMI boosting)  260/523 50/199
BiLSTM-CREF (full features) 242/523 83/199

Table 3: Model comparisons on identified slang by type (either as new word or existing word with new sense).

Model Identification F1-score Detection F1-score
BiLSTM-MLP 0.5101 0.8649
BiLSTM-CRF 0.5024 0.8679
BiLSTM-MLP with Char-CNN  0.5172 0.8693
BiLSTM-CRF with Char-CNN  0.5146 0.8679

Table 4: Comparisons of model performance with and without character-based embedding.

model performance based on ablation of each in-
dividual feature in question.

Salience of Part-of-Speech transformation.
Based on the feature ablation analysis, Part-of-
Speech features are the most crucial to overall
model performance. Bigram counts come next
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which suggests that syntacmatic relations also
play a role in slang usage. We probed the most
prominent features by dividing the POS trans-
formations observed in the data into two kinds:
homogeneous and heterogeneous transformations.
POSt features such as “VV-VV” (i.e. the identified
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Figure 4: Summary of feature ablation analysis. The
contributions of the individual linguistic features are
shown. The degradation in performance is considered
to be equivalent to a feature’s contribution.

POS given the source sentence is identical to the
root POS) are considered homogeneous transfor-
mations; the heterogeneous POSt refer to the case
when the target POS differs from the root POS.
The proportion of heterogeneous POSt over all the
transformations is 25.74% among all the tokens,
while the heterogeneous proportion surprisingly
increases to 53.94% in slang-specific tokens. This
indicates that a slang word is twice as likely to ex-
perience (heterogeneous) POS transformation in
comparison to an arbitrary word, providing evi-
dence that syntactic shift is a salient feature of
slang usage. A comparison between POSt distri-
butions of slang-specific and ordinary use cases is
shown in Figure 5.

4.2.4 Examples of model success and failure

We provide examples of both successful and failed
predictions to demonstrate the model capability in
slang detection and identification:

e Probe sentence: “That money you sent me
was clutch.”

e Model prediction: [“clutch”]
e Ground truth: [“clutch”]

In the probe sentence, the token clutch refers to
tense critical situation (noun) rather than its com-
mon sense “grasping” (verb). Our model success-
fully detected this slang component in the query.

e Probe sentence: “That’s a real blower.”

9

e Model prediction: [“-] (no slang detected)

e Ground truth: [“blower”]
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Figure 5: Transformation of Part-of-Speech in slang
usage. Heterogeneous POS transformations (POSt)
that have proportions higher than 1% are shown. There
are 11 distinct POSt, 9 of which correspond to cases
where the POSt proportion of slang word usage is
higher than that of common word usage (i.e., control
set). Both the slang tokens and normal tokens with
JJ (adjective) tend to transfer to NN (noun); the slang
words with CC (coordinating conjunction) are more
likely to tranfer to NN (noun).

The token blower normally refers to a device that
produces a current of air in common usage, while
it refers to “surprise” in this probe sentence. Our
model failed to detect this slang-component possi-
bly due to insufficiency of contextual information.

5 Discussion

We take an initial step at automatic detection and
identification of slang from natural sentences us-
ing established deep learning methods. We show
how linguistic features combined with deep learn-
ing algorithms offer interpretability. We find that
the bidirectional LSTM with feature-based inputs
and character-based convolutional embeddings us-
ing multilayer perceptron yield the best perfor-
mance in position identification, and the model
with similar mechanisms except with conditional
random field has better performance in detect-
ing whether a source sentence contains a slang
term. For unknown tokens, character-based con-
volutional embeddings improve the model in han-
dling novel slang terms. We demonstrate that fea-
tures combined with distributed word embeddings
help machine detection of slang in general, and
that Part-of-Speech among others is a prominent
feature of slang usage. Our work provides a basis
for locating slang from its flexible and unconven-
tional syntactic word uses and offers opportunities
for slang processing in downstream tasks in natu-
ral language processing.
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