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Abstract

The Specialized Information Service Biodiver-

sity Research (BIOfid) has been launched to

mobilize valuable biological data from printed

literature hidden in German libraries for over

the past 250 years. In this project, we anno-

tate German texts converted by OCR from his-

torical scientific literature on the biodiversity

of plants, birds, moths and butterflies. Our

work enables the automatic extraction of bi-

ological information previously buried in the

mass of papers and volumes. For this pur-

pose, we generated training data for the tasks

of Named Entity Recognition (NER) and Taxa

Recognition (TR) in biological documents. We

use this data to train a number of leading ma-

chine learning tools and create a gold standard

for TR in biodiversity literature. More specif-

ically, we perform a practical analysis of our

newly generated BIOfid dataset through vari-

ous downstream-task evaluations and establish

a new state of the art for TR with 80.23% F-

score. In this sense, our paper lays the founda-

tions for future work in the field of information

extraction in biology texts.

1 Introduction

Data is the gold to any machine learning (ML).

Most ML approaches to Natural Language Pro-

cessing (NLP) address modern, high-resource lan-

guages (such as English or Chinese) rather than

historical, low-resource languages. As a conse-

quence, feasible ML-tools for processing histori-

cal documents are still rare. In this paper we con-

sider corpora of historical German texts in order

to extract useful information about biological sys-

tems in the past (e.g. species, biotopes etc.).

As a contribution to closing the gap between

NLP of modern and of historical languages, we

present the newly annotated BIOfid dataset for

Named Entity Recognition (NER) and for Taxa

Recognition (TR) in the domain of biology, the

first of its kind concerning the German language.

Our approach is especially designed to address the

exploration of biodiversity data1 from historical

documents. We perform a large-scale annotation

of scanned texts converted by OCR from histori-

cal scientific books on the biodiversity of plants,

birds, moths and butterflies, thereby creating the

necessary training data to accomplish the task of

biological NER and TR using various ML algo-

rithms. Our work facilitates an automatic extrac-

tion of biological information so far buried in the

bulk of papers and volumes (see Table 1). Over-

Input sentence:

Ahmed observes that Iris grows in Mai in Frankfurt.

TR output:

Ahmed observes that [Iris]TAXON grows in Mai in
Frankfurt.

Biological NER output:

[Ahmed]PER observes that [Iris]TAXON grows in
[Mai]TIME in [Frankfurt]LOC.

Table 1: Example for our selected tasks.

all, our newly generated dataset provides a gold

standard and hereby lays the foundations for future

work, such as relation extraction and classification

based on extracted biological named entities and

taxa.

We perform a practical analysis of our dataset

via various downstream-task evaluations. First,

we generate a baseline for recognizing taxo-

nomic entities by constructing a sequence tagger

based on skip-n-grams and external knowledge re-

sources (i.e. WikiData). Secondly, we apply the

best publicly available word embeddings for Ger-

man and use them alongside our BIOfid dataset as

an input for training high-performing neural mod-

1Biodiversity is the science which measures the variability
and diversity of animals and plants.
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els for NER, namely BiLSTM, ELMo, Flair and

BERT (Ahmed and Mehler, 2018; Peters et al.,

2018; Akbik et al., 2018; Devlin et al., 2018). By

using the optimized BiLSTM model we achieve a

new best F-score of 80.23% regarding the recog-

nition of taxonomic entities.

The remainder of the paper is organized as fol-

lows: Section 2 reviews related work. Section 3

describes the source texts and the preprocessing

pipeline. Section 4 describes the annotation guide-

lines, process and environment for producing the

BIOfid dataset, and methods (n-gram-based se-

quence tagger, neural models) for evaluating the

practical quality of our annotated dataset. Section

5 presents the experimental results. Finally, Sec-

tion 6 draws a conclusion.

2 Related Work

2018 was a vital year for the task of German

NER, following a saturation period from when

the last major progress was made by Lample et

al. (2016). With the grammar-specific morpho-

logical processing and resource-optimization pre-

sented by Ahmed and Mehler (2018), the gap be-

tween English and German NER was closed. In

the same year, with the emergence of multilin-

gual language models such as ELMo, Flair and

BERT (Peters et al., 2018; Akbik et al., 2018;

Devlin et al., 2018), the performance of various

NLP tasks, including NER, was notably improved.

Hence, the task of German NER has benefited

from these developments.

However, with respect to the availability of a

variety of resources, there has not been much

progress made until now. Regarding the standard

task of NER based on four categories (PERSON,

LOCATION, ORGANIZATION, OTHER), the first

choice of resources for German is still the Ger-

mEval dataset (Benikova et al., 2014), followed

by the datasets of CoNLL and TüBa-D/Z (Tjong

Kim Sang and De Meulder, 2003; Telljohann

et al., 2012). However, their potential for pur-

poses outside of theoretical ML is limited. These

datasets do not contain any annotations for taxo-

nomic and temporal entities which are of key in-

terest for biodiversity researchers.

For biological NER in the German language,

there are no predecessor resources available to

the knowledge of the authors; only an English

counterpart exists, namely the Copious dataset

(T.H. Nguyen et al., 2019), which has been re-

Figure 1: Flowchart showing the data cleaning steps

within our preprocessing pipeline.

cently published during our ongoing work. This

confirms our research endeavors and shows the

necessity of more data in this field. We take the

English counterpart as the baseline and compare

its dataset and results with our own. Overall, our

work constitutes the first effort on enabling a state-

of-the-art performance for neural representation

learning to biological NER.

3 Source Texts & Preprocessing Pipeline

BIOfid Corpus The BIOfid Corpus is a collec-

tion of historical scientific books on central Euro-

pean biodiversity. It was assembled by a group of

German domain experts, denoting a potential pool

of relevant print-only journals and publications for

historical biodiversity science. However, mainly

due to license issues, not all publications could be

considered for the corpus.

The available publications were scanned by an

external service and subsequently paginated with

the software Visual Library. Subsequently, every

high-resolution page (400 dpi) was digitized with

ABBYY FineReader 8.0 (2005) to ABBYY-XML,

which includes structural information like para-

graphs, bold/italic text, images, and table blocks.

OCR Parser The raw OCR data contained var-

ious errors, e.g. delivering typical OCR errors

such as confusing letters (ß → b), or delivering
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gibberish due to the wrong recognition of non-

textual elements in scans such as images, figures,

or tables. Furthermore, species names or their ap-

pended author citation were frequently recognized

incorrectly, e.g. ”Lepidium ruderale L.” → ”Lep-

idium rüderale I.”.

We built the following preprocessing pipeline

(see Figure 1) to clean the source data and increase

its overall quality. First, the raw OCR data was

passed to a parser (labeled ”OCR Parser” in Figure

1). This parser read a given ABBYY-XML into

a UIMA CAS, while retaining all structural infor-

mation in a custom UIMA type system, which was

tailored to the ABBYY-XML output.

Using a set of heuristics, the structural infor-

mation was used to detect erroneous parts in the

parsed text, such as page numbers, image and fig-

ure blocks mislabeled as text, text margins and ta-

ble lines parsed as the characters ”I” or ”-”, and ta-

bles containing merely non-word characters such

as counts of observations2.

The parser performed further fundamental text

segmentation using the information given by the

ABBYY-XML, such as tokenization and para-

graph splitting. The ABBYY-XML contains to-

kenization information on the character basis, de-

noting whether a character is marking the begin-

ning of a word. This information was used along-

side plain whitespaces to tokenize the raw text,

while further splitting words from non-word char-

acters. All this information was stored in a UIMA

CAS using the aforementioned type system and

passed down the UIMA pipeline.

Document Structure The BIOfid corpus com-

prises about 15 journal titles including approxi-

mately 410 books. 201 of these books containing

969 articles were selected by domain experts as

a representative sample from the entire corpus to

generate training data for biological NER.

Sentence Boundary Detection In biological lit-

erature, author citations are commonly abbrevi-

ated (e.g. Carl von Linné in ”Fagus sylvatica L.”)

as well as species names (e.g. ”F. sylvatica” af-

ter the first definition). Therefore, standard rule-

based tools often fail to detect the correct sen-

tence boundaries in such unstructured raw text

documents. Hence, for this task we included the

LSTM-based sentence boundary detector Deep-

EOS (Schweter and Ahmed, 2019) in our prepro-

2An example of such pages is given in Appendix C.

cessing pipeline and trained it with 1,361 sen-

tences, which were manually extracted from the

BIOfid corpus. The total amount of training sen-

tences was increased from a preliminary size of

300, since the first experimental results revealed

that the SBD is crucial for the performance of our

downstream-task.

4 BIOfid Dataset & Methods

4.1 Annotation Guidelines

Named Entities NEs are real-world objects in a

given natural language text which denote a unique

individual with a proper name (e.g. Frankfurt,

Africa, Linnaeus, BHL). This stands in contrast to

the class of common names which refer to some

kind of entities (e.g. city, continent, person, cor-

poration) and not a uniquely identifiable object.

The standard task of NER focuses on the former

class of proper names. However, it is often not

easy to differentiate between both classes. Hence,

to support the annotators in making the right de-

cision, we created guidelines which demonstrated

the rules for annotations. We gradually developed

this document in collaboration with the annotators,

until finalizing it as the guidelines for annotating

the BIOfid corpus. The appendix shows the mate-

rial which was provided to the team of annotators.

First, in Appendix A some introductory examples

from the BIOfid corpus are given. Next, in Ap-

pendix B the general guidelines used for produc-

ing the NER dataset are shown.

As we essentially extend the standard task of

NER to our scope of biodiversity, our guidelines

are built upon those used for producing the Ger-

mEval dataset (Benikova et al., 2014). For this, we

take the original German text and extend it with

the important adjustments described in the next

paragraphs for the context of biodiversity. In con-

trast to Benikova et al. (2014), we do not consider

derivative or partial NEs as a separate category. As

the recent work of Ahmed an Mehler (2018) has

shown, discarding subtle details is even beneficial,

whereas fine-graded feature engineering for deep

neural networks usually deteriorates the final per-

formance.

Time In the standard task of NER, temporal in-

formation is not captured by the four base enti-

ties. However, the aspect of time is important for

the research on biodiversity which is constantly

evolving. Therefore, we annotated every text unit
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Dataset Sentence PERSON LOCATION ORGANIZATION OTHER TIME TAXON

CoNLL 018,933 05,369 06,579 04,441 03,968 N/A N/A
GermEval 031,300 10,807 17,275 08,303 04,557 N/A N/A
TüBa-D/Z 104,787 55,746 28,582 32,224 12,865 N/A N/A
Copious 026,277 02,889 09,921 0N/A 0N/A 2,210 12,227

BIOfid 015,833 05,393 06,785 01,085 07,849 5,197 15,085

Table 2: Statistics for German NER datasets together with the English biological NER dataset Copious

(T.H. Nguyen et al., 2019).

which denotes a specific temporal entity with the

tag TIME (e.g. [13.02.1835]TIME, see more in

Appendix B: Table 9). For text units which de-

scribe a time interval, we marked the starting and

ending points as two distinct temporal entities.

Taxonomy Taxonomy is a field in biology that

deals with the systematic classification of organ-

isms by morphological, phenotypic, behavioral

and phylogenetic characteristics. Based on a vari-

ety of common traits, a group of organisms forms

a so-called taxon. A well-known example of this

are the Darwin’s finches, endemic birds in the

Galápagos Islands. The different species (each

species represents a taxon) are distinguished pri-

marily by the size and shape of their beaks and the

associated specialized diets.

Taxa are classified according to international

nomenclature codes3,4,5,6 and are delineated at

different hierarchical levels, also known as tax-

onomic ranks. Most of us are well acquainted

with the distinction between the animal and plant

kingdoms, although there are other kingdoms e.g.

fungi or bacteria. Subordinate to a kingdom are

many more ranks such as phylum, class, order,

family, genus and species. According to this,

the hierarchical classification of the bird species

Struthio camelus, the common ostrich, from the

lowest to the highest taxonomic rank is as fol-

lows: Struthio camelus (species), Struthio (genus),

Struthionidae (family), Struthioniformes (order),

Aves (class), Chordata (phylum), Animalia (king-

dom). Each scientific name mentioned here along

with its taxonomic rank (in parentheses) repre-

sents a taxon, meaning a group of organisms with

a set of common characteristics being indicative

for a common ancestry.

Due to differing and evolving methods of clas-

3
http://iczn.org/code

4
http://www.iapt-taxon.org/nomen/main.php

5
http://www.the-icsp.org/

6
http://talk.ictvonline.org/taxonomy/

sification, taxonomies are subject to constant

change. This also applies to taxonomic nomen-

clature. Therefore, among others, synonymy and

homonymy also play an important role in biol-

ogy (e.g. there is a plant genus with the name

”Paris”). The relevance of taxonomy for biodi-

versity research and conservation is fundamental

(Thomson et al., 2018), consequently, we consid-

ered it justified to introduce the NE-category of

TAXON into the process of NER.

For organisms of all taxonomic ranks, we con-

sidered scientific names (both accepted and syn-

onyms) and vernacular names, if referring to a cer-

tain taxon, as NEs (e.g. [Struthio camelus]TAXON

or [common ostrich]TAXON, [Mirza zaza]TAXON

or [northern giant mouse lemur]TAXON, see more

in Appendix B: Table 7). Author citation and year,

usually appended to the scientific name of a taxon,

were tagged as NEs of the categories PERSON

and TIME, respectively (e.g. [Falco]TAXON [Lin-

naeus]PER [1758]TIME). Both author and tem-

poral information embedded within the scientific

name, were included in the NE TAXON (e.g.

[Carex praecox [Jacq.]PER var. distans]TAXON

[Appel]PER).

4.2 Annotation Process

We performed a single major series of annotations.

Instead of just focusing on some inter-agreement

value, we performed double checks on existing an-

notations on given articles through biological ex-

perts. This strategy removed the time overload

associated to multi-annotations while ensuring a

high quality of data.

For this scheme, a group of annotators consist-

ing of two researchers from the project team were

employed. Both researchers were native speakers

of German, and, additionally had a profound back-

ground in biology. Besides, two further student

assistants with similar profiles were employed to

provide further assistance.

http://iczn.org/code
http://www.iapt-taxon.org/nomen/main.php
http://www.the-icsp.org/
http://talk.ictvonline.org/taxonomy/
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Figure 2: Working environment for annotating the BIOfid corpus (figure taken from (Abrami et al., 2019)).

4.3 Annotation Environment

We used the TextAnnotator (Abrami et al., 2019),

a browser-based annotation tool specifically ad-

justed for this project. Figure 2 shows the working

environment which was provided to the annota-

tors. On the left-hand side of the QuickAnnotator

view, the raw OCR text from the BIOfid corpus is

displayed, separated from the choice of annotation

tags on the right-hand side. As sentence splitting

was part of the annotation task, we did not provide

a sentence view. Instead, we provided the whole

article, further allowing the annotators to use con-

textual information while making their decisions.

4.4 Quality of Data

4.4.1 Quantitative Characteristics

Table 2 shows the total amount of annotated sen-

tences along their six NE-categories and compares

this with the three major public datasets for Ger-

man NER. For our BIOfid dataset, we can see the

high value of TIME and TAXON entities which, so

far, do not exist for any publicly available dataset.

4.4.2 Data Format

We use the 4-column CoNLL-format which writes

each word of a sentence horizontally along its

lemma, POS tag and gold label, separating each

sentence by an empty new line. For the tag-

ging scheme, we opt for BIO (IOB2). Listing 1

shows an excerpt of the train file in which the en-

tities TIME, PERSON, LOCATION, TAXON

are marked by our team of annotators for a given

sentence from the BIOfid corpus.

Listing 1: Sample sentence from BIOfid dataset

Mein mein PPOSAT O
Sohn Sohn NN O
ko nn te kö nnen VMFIN O
am an APPRART O
3 3 CARD B−TME
. −− $ . I−TME
1 1 CARD I−TME
. −− $ . I−TME
23 23 CARD I−TME
den d e r ART O
F a b r i k a n t e n F a b r i k a n t NN O
W a l t e r W a l t e r NE B−PER
Schmidt Schmidt NE I−PER
aus aus APPR O
G e i t h a i n G e i t h a i n NE B−LOC
b e i b e i APPR O
einem e i n ART O
S p a z i e r g a n g S p a z i e r g a n g NN O
a u f a u f APPR O
dem d e r ART O
R o c h l i t z e r R o c h l i t z e r NN B−LOC
Berge Berg NN I−LOC
a u f a u f APPR O
e i n e e i n ART O
Ringamse l Ringamse l NN B−TAX
, −− $ , O
Turdus Turdus NN B−TAX
t o r q u a t u s t o r q u a t u s ADJD I−TAX
L L NN B−PER
. −− $ . O
, −− $ , O
h i n w e i s e n h i n w e i s e n VVINF O
. $ . −− O

We split the BIOfid dataset into train, dev, test

files by the common ratio of 80:10:10 percentages

after randomizing its order of sentences. These fi-

nal data files are utilized for training and evaluat-

ing our models, which are described in the next

section.
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4.5 Methods

For the evaluation of the BIOfid dataset, we use six

different approaches and compare each others re-

sults: one classic rule-based model and five high-

performing embedding-based models.

4.5.1 N-Gram Tagger for TR

We develop a naive sequence tagger as a base-

line for the recognition of taxonomic entities in

the BIOfid dataset. The baseline is only for a sub-

task of the full task of biological NER, described

in the previous Section 4.1. Our sequence tag-

ger is built on the k-skip-n-grams (with k = 1)

which are constructed from the tokens of taxo-

nomic entries in the comprehensive Latin and Ger-

man gazetteers of biology. Both gazetteers con-

sist of 83,348 taxonomic entries from various bi-

ological systematics such as of aves, lepidoptera

and vascular plant. In addition, we consider Wiki-

Data7 and construct an additional gazetteer by ex-

tracting 2,663,995 German and Latin taxonomic

entries from the online resource by selecting all

entries from a XML-dump that are subjects (?s)

in the following two SPARQL triple patterns8:

• ?s instance-of taxon.

• ?o subclass-of taxon.

?s instance-of ?o.

For each gazetteer entry consisting of at least

three tokens (n ≥ 3), we take all tokens as an

input and create a list of 1-skip-n-grams. For

example, for the taxonomic entry iris kashmiri-

ana b., we create four n-grams (iris kashmiriana),

(iris b.), (kashmiriana b.) and (iris kashmiriana

b.). In this way, we construct 3,023,270 unique n-

grams in total from 2,682,959 merged taxonomic

entries, while dropping 140,432 duplicate n-grams

entirely. Next, we map all these n-grams to the

BIOfid test file by standard string matching and

thus find the taxonomic occurrences in the target

set of text data.

4.5.2 Neural Models for NER

Our neural models consist of two separately

trained components: a) foundational word em-

beddings, modeling the general knowledge from

large unlabeled text corpora, and b) various task-

specific neural architectures, modeling the domain

7
http://www.wikidata.org/

8All results can be acquired with the following WikiData
queries: http://w.wiki/3u3 and http://w.wiki/3ud

knowledge from the labeled training data. In this

section, both components are presented briefly.

Word Embeddings The language model of con-

tinuous space word representations (word2vec)

(Mikolov et al., 2013) and its variations by (Levy

and Goldberg, 2014; Komninos and Manandhar,

2016) are the foundations of most ongoing re-

search in NLP with neural networks. Based on

the context, the model embeds words, phrases

or sentences into high dimensional vector spaces.

We use the model of Wang2vec (Ling et al.,

2015) and its morphological extension (Ahmed

and Mehler, 2018) which explores syntactic data

specific for German and, thus, better suites the

task of NER. We use the recently published Ger-

man language word embeddings from the TTLab9

which are pre-trained with the morphological ex-

tension of the Wang2vec algorithm on the COW

corpus (Schäfer, 2015), the largest collection of

German texts extracted from web documents with

over 617 Mio. sentences. Out of the six published

variants of embeddings, we opt for token-based

embeddings (COW.lower.wang2vec), as they de-

livered the best results for German NER according

to the publishers.

BiLSTM We provide a brief overview of the

configurations for the five neural models which we

use throughout this paper. The model BiLSTM-

CRF is similar to the one used in (Ahmed and

Mehler, 2018), which goes back to the work of

(Lample et al., 2016). The neural network con-

sists of stacked LSTM and CRF layers. The base

layer combines for a given word its (pre-trained)

word embedding with its character-based embed-

ding. These features are forwarded to the predic-

tion layer which produces the final NE tag.

Model Emb. Language Model Train Data

BiLSTM-a COW N/A BIOfid
Flair Wang2v. COW PCE BIOfid
Flair ELMo COW PCE+Leipzig BIOfid
Flair BERT COW PCE+BERT-Base BIOfid
BiLSTM-b COW N/A All

Table 3: Overview of the model inputs. For BiLSTM-

b we consider all merged training data (i.e. BIOfid +

GermEval + CoNLL)

Flair Wang2vec We further train a sequence la-

beling model using Flair10. We build the model in

9
http://www.texttechnologylab.org/resources2018/

10
http://github.com/zalandoresearch/flair

http://www.wikidata.org/
http://w.wiki/3u3
http://w.wiki/3ud
http://www.texttechnologylab.org/resources2018/
http://github.com/zalandoresearch/flair
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the same fashion as used by (Akbik et al., 2018)

following the guide given by the authors for the

task ”CoNLL-03 Named Entity Recognition (Ger-

man)”, while keeping the pooled contextualized

embeddings (PCE) and exchanging the GloVe em-

beddings employed by the authors with Wang2vec

embeddings trained on the COW corpus.

Flair ELMo In addition to the previous model,

we train a Flair Sequence Tagging model by stack-

ing an ELMo embedding layer on top of the Flair

Wang2vec model. The ELMo embeddings were

trained on a section of the Leipzig Corpora Col-

lection (Goldhahn et al., 2012) containing 100,000

sentences from Wikipedia using default parame-

ters.

Flair BERT Similarly, we added BERT (Devlin

et al., 2018) to the Flair Wang2vec model. We

used the recently published BERT-Base, Multilin-

gual Cased11 pre-trained model for this purpose.

Hyperparameters We take the original neural

models and keep the hyperparameters as described

in their references. The only adjustments we make

to the models are on the input level, i.e. we per-

form variations for the pre-trained word embed-

dings, the pre-trained language models, and the

training data (see Table 3).

5 Results

We evaluate the performance of all models with

the official script from the shared task of CoNLL

2003 (Tjong Kim Sang and De Meulder, 2003).

All our experiments were run on Nvidia’s GTX

1080 Ti GPUs.

5.1 Baseline for TR

N-Gram Tagger Applying the gazetteer to the

BIOfid test file gives us the respective baseline for

the recognition of taxonomic entities. For evalua-

tion, we use the CoNLL-script and contrast it with

easing the conditions by evaluating only the NE

predictions and ignoring the prefixed BIO-tagging

scheme to every NE. The evaluation does not take

into account the other words and is based only on

the actual words annotated as TAXON.

Table 4 displays the results for the n-gram tag-

ger. We can nicely see that the increase in size

of gazetteers leads to an increase in the final

performance. More specifically, for the eased

11
http://github.com/google-research/bert

Gazetteer CoNLL-Eval Pr. [%] Re. [%] F1 [%]

Lat. standard 61.50 34.71 44.37
Lat.+Ger. standard 65.83 45.42 53.75
WikiData standard 69.05 53.91 60.55
Lat. eased 92.48 46.04 61.06
Lat.+Ger. eased 92.94 54.55 67.70
WikiData eased 95.55 58.87 72.85

All standard 69.20 55.75 61.75
All eased 95.57 60.72 74.26

Table 4: Baseline for TR on the BIOfid test file with

the N-Gram sequence tagger.

condition, every incremental step from Latin to

Latin+German, and the next step to All (i.e.

Latin+German+WikiData) leads to an increase of

+6.64% and +6.56% F-scores, respectively. This

matter of fact demonstrates that for the n-gram tag-

ger the resource-size matters.

Furthermore, for the eased condition, we see

very high scores for precision, however, the recall

values are relatively low. This result demonstrates

a classic problem of rule-based approaches; as

there is no learning process involved, we assume

that the performance of the n-gram tagger is highly

limited on the features extracted from the source

of knowledge (i.e. the amount of information con-

tained in the gazetteer). Besides, no transfer learn-

ing is possible from related resources, demonstrat-

ing the downsides of non-learning methods.

5.2 Biological NER

We report here the results of our comprehen-

sive survey of five current embedding-based high-

performers for biological NER in historical biodi-

versity literature12.

The Gold Standard Table 5 contains a detailed

summary of all results. In that table, we the re-

port the results which are given by T.H. Nguyen

et al. (2019). For the optimized BiLSTM Tagger,

we achieve excellent results and establish a new

state-of-the-art for the first task of TR with 80.23%

F-score (see Table 5: BiLSTM-a). For biological

NER, we outperform the English counterpart Co-

12Our manual inspection of the training data showed that
the annotations are content-wise homogeneous, except for the
category OTHER. The annotators reported its usage as a resid-
ual NE-category for everything which is biologically interest-
ing (e.g. morphology, animal behavior, reproduction, devel-
opment) but does not fall under the definition of the five major
categories. Initial experimental results confirmed its hetero-
geneous quality. Therefore we omitted OTHER (3,143 sen-
tences) from our further experiments which in turn increased
the final performance of NER.

http://github.com/google-research/bert
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Model Scores [%] TAXON PERSON LOCATION ORGANIZATION TIME Overall

Precision 77.42 58.92 85.05 N/A 70.67 77.49
Copious Recall 69.67 48.44 85.63 N/A 54.36 71.89
Nguyen (2019) F1 73.34 53.17 85.34 N/A 61.45 74.58

Precision 81.33 63.19 66.20 60.24 91.16 75.62
BiLSTM-a Recall 79.16 77.45 57.35 67.57 88.16 74.98

F1 80.23 69.60 61.46 63.69 89.63 75.30

Precision 75.94 61.25 67.58 61.64 90.59 73.58
Flair Wang2vec Recall 81.37 76.09 62.89 58.11 85.24 75.89

F1 78.08 71.89 62.63 56.95 87.89 74.30

Precision 75.64 67.16 58.31 56.82 90.49 73.05
Flair ELMo Recall 79.92 79.89 65.06 60.81 86.02 76.50

F1 77.88 69.34 66.30 61.22 88.25 75.01

Precision 76.63 65.30 66.96 58.00 92.21 74.98
Flair BERT Recall 77.38 81.02 61.89 58.00 90.33 76.22

F1 77.01 72.31 64.32 58.00 91.26 75.59

Precision 80.45 88.61 72.72 81.21 87.63 79.35
BiLSTM-b Recall 76.65 89.40 84.02 70.74 81.17 75.38

F1 78.50 89.00 77.96 75.61 84.27 77.31

Table 5: Results for the task of German biological NER with various neural networks models along the English

baseline on the Copious dataset (T.H. Nguyen et al., 2019). All models are trained on the BIOfid dataset and

evaluated with the official CoNLL-2003 eval script.

pious for all categories except for LOCATION. For

the latter category, the Copious dataset contains

9,921 training samples whereas ours has 3,136

fewer samples. We assume that this lower amount

results into the lower performance.

With the popular deep language models Flair,

ELMo and BERT, we interestingly stay below the

performance of the BiLSTM model (except for

TIME). Although we utilize the same pre-trained

COW word embeddings for all models, we assume

that the lower performance arises due to the lan-

guage models themselves being trained on only

a relatively small corpus (ELMo: 100,000 sen-

tences). However, for training ELMo on larger

corpora, such as the COW corpus, we would re-

quire many months of training time. For the

pre-trained Flair and BERT, we can only fine-

tune the last tagging layer, not the whole lan-

guage model itself. This stands in contrast to

the BiLSTM model which can be wholly targeted

to our domain-specific training data. Hence, this

demonstrates the downside of such heavy lan-

guage models; although they might deliver the

top performances, it is difficult to adjust them for

lightweight processes, making them impractical

for the context of low-resources scenarios.

Data Merging for BiLSTM Tagger For

BiLSTM-a, it can be noted that the perfor-

mance of the standard categories PERSON,

ORGANIZATION, and, especially LOCATION

is inferior. Therefore, we performed resource-

optimization by merging high quality data with

our BIOfid dataset in order to increase the training

samples for the low performing categories. We

merge the datasets of GermEval and CoNLL

with our annotated sentences, resulting in train,

dev, and test sizes of 46,857, 6,629, and 9,437

sentences, respectively. Table 5: BiLSTM-b

shows the improvements in performance with the

increased dataset. Our results demonstrate the

effectiveness of our approach; we do not need to

modify the model, rather it is sufficient to perform

data-driven optimization. Considering the overall

performance, we outperform the English counter-

part by +2, 73% F-Score and thus establish a new

state-of-the-art for the task of biological NER.

Error Analysis We manually analyze the errors

made by the ensemble of neural models. We ob-

serve three major issues that compose the absolute

majority of errors: a number of missing annota-

tions from our experts, OCR erros in the raw text

and rare words that occur frequently in our test

dataset. An example of an OCR error is the anno-

tated text span [1, Juni 1967]TIME which is mis-

classified by all models as 1, [Juni 1967]TIME

due to the comma in the date format. Another

example is [KLeebend]LOC which is not tagged

due to the capital ”L”. Further, the word [Venn-
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fußfläche]LOC occurs 17 times in the test dataset,

but only twice in the training set. It is a three word

compound of the words Venn, Fuß and Fläche,

that describes a part of the landscape Vennvorland

in Germany. We conclude that the preprocess-

ing pipeline has to be further refined to remove

the OCR errors, while a re-annotation of the data

could solve the missing annotations and a more

thorough shuffle may solve the rare word issue.

6 Conclusion

In this study, we presented a newly annotated

BIOfid dataset for German NER in historical bio-

diversity literature and performed a comprehen-

sive evaluation of the quality of our dataset with

five competing neural models. We come to the

conclusion that the value of our dataset does not

rely solely on the two new entities of TIME and

TAXON. By generating domain-related annotation

data typical for historical biodiversity literature,

we increase the potential performance for biologi-

cal NER, even for the four standard NE categories.

This was demonstrated by the limited scope of the

rule-based approach which could not come close

to the performance delivered by the neural models

and which, in turn, established a new state-of-the-

art for both of our selected tasks of TR and NER.

In the course of the annotation process, we dis-

covered that there are further information entities

in the BIOfid corpus which do not fall into the

definition of standard NE-categories, albeit they

are useful from the perspective of biodiversity re-

searchers. For future work, we plan to increase

the semantic granularity of the BIOfid dataset by

mapping and re-annotating the existing six NE-

categories to the top-level hierarchy of WordNet

(Miller, 1995). This includes 26 categories that

can be either abstract entities or concrete entities

(i.e. NE) and can be assigned to specific biological

entities, such as morphology, habitat, reproduc-

tion, behavioral traits, or species community. By

re-annotating the dataset we additionally plan to

deliver an inter-agreement value for both the cur-

rent NER-dataset and the much smaller WordNet-

dataset (which is planned to contain an up to 9

times higher amount of annotated information per

sentence). Furthermore, we plan to extract all bi-

ological entities with the trained neural models

from the BIOfid corpus and perform on them the

task of relation extraction based on current em-

bedding methods.

Overall, our work mobilizes data from undigi-

tized literature leading to huge potentials for bio-

diversity researchers. It enables cartographic re-

search on the distribution of Central European bio-

diversity ranging from the pre-modern time up to

our current ever increasingly digitizing age.
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Dr. G. Kasperek, Dr. A. Hausinger, Dr. T.

Hörnschemeyer and further project members for

supporting the annotation process.

References

Giuseppe Abrami, Alexander Mehler, Andy Lücking,
Elias Rieb, and Philipp Helfrich. 2019. TextAn-
notator: A flexible framework for semantic anno-
tations. In Proceedings of the Fifteenth Joint ACL
- ISO Workshop on Interoperable Semantic Annota-
tion, (ISA-15), ISA-15.

Sajawel Ahmed and Alexander Mehler. 2018.
Resource-Size matters: Improving Neural Named
Entity Recognition with Optimized Large Corpora.
In Proceedings of the 17th IEEE International
Conference on Machine Learning and Applications
(ICMLA).

Alan Akbik, Duncan Blythe, and Roland Vollgraf.
2018. Contextual String Embeddings for Sequence
Labeling. In Proceedings of the 27th International
Conference on Computational Linguistics, pages
1638–1649, Santa Fe, New Mexico, USA. Associ-
ation for Computational Linguistics.

Darina Benikova, Christian Biemann, and Marc
Reznicek. 2014. NoSta-D Named Entity Annotation
for German: Guidelines and Dataset. In LREC.

Armin Burkhardt. 2004. 2004. Nomen est omen? :
zur Semantik der Eigennamen. In Landesheimat-
bund Sachsen-Anhalt e. V. (Hrsg.): ”Magdeburger
Namenlandschaft” : Orts- und Personennamen der
Stadt und Region Magdeburg.

Hai Leong Chieu and Hwee Tou Ng. 2002. Named En-
tity Recognition: A Maximum Entropy Approach

13
http://biofid.de/en/

14
https://github.com/texttechnologylab/BIOfid

http://biofid.de/en/
https://github.com/texttechnologylab/BIOfid


880

Using Global Information. In Proceedings of the
19th International Conference on Computational
Linguistics - Volume 1, COLING ’02, pages 1–7. As-
sociation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. arXiv preprint arXiv:1810.04805.

Dirk Goldhahn, Thomas Eckart, and Uwe Quasthoff.
2012. Building large monolingual dictionaries at
the leipzig corpora collection: From 100 to 200 lan-
guages. In LREC.

Alexandros Komninos and Suresh Manandhar. 2016.
Dependency Based Embeddings for Sentence Clas-
sification Tasks. In HLT-NAACL, pages 1490–1500.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural Architectures for Named Entity Recognition.
In NAACL-HLT.

Omer Levy and Yoav Goldberg. 2014. Dependency-
Based Word Embeddings. In ACL (2), pages 302–
308.

Wang Ling, Chris Dyer, Alan Black, and Isabel
Trancoso. 2015. Two/Too Simple Adaptations of
word2vec for Syntax Problems. In NAACL-HLT.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

George A Miller. 1995. WordNet: a lexical
database for English. Communications of the ACM,
38(11):39–41.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proc. of NAACL.
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