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Abstract

Conversational Al systems are gaining a lot
of attention recently in both industrial and
scientific domains, providing a natural way
of interaction between customers and adap-
tive intelligent systems. A key requirement
in these systems is the ability to efficiently
parse user queries, understand the intent be-
hind each query, and provide adequate re-
sponses to users. Therefore, many applications
such as conversation bots and smart IoT de-
vices has a natural language understanding
(LU) service integrated within. One of the
greatest challenges of language understanding
services is efficient utterance (sentence) repre-
sentation in vector space, which is an essential
step for most ML tasks. In this paper, we pro-
pose a novel approach for generating vector
space representations of conversational utter-
ances using pair-wise similarity metrics. The
proposed approach uses only a few corpora to
tune the weights of the similarity metric with-
out relying on external general purpose ontolo-
gies. Our experiments confirm that the gener-
ated vectors can improve the performance of
LU services in unsupervised, semi-supervised
and supervised learning tasks over state-of-
the-art prior works.

1 Introduction

Challenges of conversational Al systems: Con-
versational Al systems empower virtual assistants
in many applications such as conversation bots
(also known as Chatbots) and smart IoT devices.
Their ability to understand user spoken commands
and identify the user’s intent(s) is one of their
main benefits. However, this is a very challeng-
ing task due to the diversity of domains and lan-
guages they are required to support. For example,
Microsoft LUIS! currently supports 12 languages,
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whereas IBM Watson 2 supports 10 languages in
their language understanding services. Moreover,
conversational text queries are often very short and
sparse, which hinders conventional text represen-
tations such as Bag-of-words (BOW) from captur-
ing adequate features of the utterance.

In LU services, a language understanding ap-
plication is often represented as a group of intents
and entities that serve a specific business applica-
tion. For example, a restaurant application may de-
fine intents such as Order Food, Show Menu and
Cancel Order. The task of the language under-
standing service then is to classify newly received
queries (utterances) into one (or more) of the de-
fined intents.

Although many prior works were focused on
constructing word-level vector representation such
as (Mikolov et al., 2013) and (Pennington et al.,
2014), generating an utterance-level vector repre-
sentation is still a challenging task. Existing lan-
guage modeling (LM) based approaches such as
Para2Vec (Le and Mikolov, 2014) rely on deep
neural networks to generate vector representa-
tions for the paragraph-level. However, these ap-
proaches are normally trained with an abundance
of utterances to achieve the required performance,
which is usually not present in the conversational
text domain (Boyanov et al., 2017). Moreover, pre-
trained vectors (i.e., vectors generated from an ex-
ternal corpus) provide the same vector represen-
tation for all domains (i.e. static). The desirable
characteristic on the other hand is that for the same
utterance to have different vector representations,
and correspondingly, different intents, in differ-
ent domains. Additionally, the current approaches
make the embeddings more prone to bias towards
the domain of the training data (Bolukbasi et al.,
2016).

2www.ibm.com/watson/
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We propose a vector representation method,
SIMVECS that generates dynamic utterance-level
vector representations for different LU applica-
tions. With SIMVECS, each utterance is repre-
sented as a vector of similarity scores to a set
of automatically identified “representative utter-
ances” within the same application. This way the
same utterance can have different representations
depending on the application. As an example: the
utterance ”I want a large pizza” can be of type
Order Food for a restaurant application, while
the same utterance can be of type None (i.e.,
outlier) for a bus-tracking application. Therefore,
application-determined vector representations are
essential for capturing the semantics of utterances
in LU services and hence accurate mapping to
user-defined intents.

The following list represents our key contribu-
tions:

1. A novel approach to combine multiple sim-
larity sub-metrics into one metric, automati-
cally adjusting the weight for each sub-metric
to the overall similarity score.

A novel approach for the vector representa-
tion of each utterance in a conversational Al
system.

. A semi-supervised algorithm for refining the
vector representations based on user’s feed-
back.

The rest of the paper is organized as follows.
Section 2 covers related work and separates our
approach from existing solutions. Section 3 gives
an overview of the main components in our pro-
posed solution. Section 4 describes how we calcu-
late the similarity scores between utterances and
generate the vector representations. Sections 5, 6,
and 7 evaluate the generated vectors in unsuper-
vised, semi-supervised, and supervised learning
tasks respectively and compares the performance
of SIMVECS to several baselines.

2 Related Work

2.1 Similarity metrics

Measuring the similarity between natural lan-
guage sentences is crucial in many tasks such
as: Question-answering systems (Achananuparp
et al., 2008b) and information retrieval (Li et al.,
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2006; Zahran et al., 2015). Authors in (Achananu-
parp et al., 2008a) provide an evaluation for 14 dif-
ferent similarity metrics. The authors reported the
best metric found was a composite between word-
order and ontology-based similarity. However, the
weights for how much each of the two sub-metrics
contributes to the overall similarity metric is se-
lected based on human intuition. Such selection
becomes harder when several sub-metrics are con-
sidered and multiple domains have to be satisfied.
We consider these weights as hyper-parameters
and hence use an automated technique that ap-
plies Genetic-Algorithms (GA) (Mitchell, 1996)
to find the optimal weights as it has been used in
multiple hyper-parameter tuning tasks such as in
(Friedrichs and Igel, 2005), (Lam et al., 2001), and
(Mahgoub et al., 2017).

2.2 Vector Representation

One of the most common vector representation
for both documents and sentences is the Bag-of-
Words (BOW) model (Harris, 1954). In BOW, the
sentence is represented as a binary vector that do-
nates the existence or absence of individual words
(i.e. vocabulary) in that sentence. One of the major
disadvantages of BOW representation is the loss of
word order. Consequently, two sentences with to-
tally different meaning can have very close repre-
sentation just because they use similar vocabulary.
A variation of the model is bag-of-ngrams (Mc-
namee and Mayfield, 2004), which aims at pre-
serving the word order. However, both represen-
tations are very sparse and generate vectors with
very high dimensions. (Mikolov et al., 2013) pro-
posed a technique that uses deep neural-networks
to learn efficient representations for the word level.
Although the trained vectors capture many seman-
tic features, generating a sentence-level represen-
tation from individual words vectors is still a chal-
lenging task. One simple approach is to represent
the sentence as weighted average of all the words
in the document. However, this approach has the
same weakness of not preserving the word or-
der (Le and Mikolov, 2014). A recent approach
proposed by (Le and Mikolov, 2014) generates
both word-level and paragraph-level representa-
tions. However, the approach relies on training the
network with a large corpus with billions of to-
kens, which is rarely available in the conversa-
tional text domain. Moreover, the generated vec-
tors can still suffer from being biased by the train-



ing data domain and cannot generalize for differ-
ent domains. (Dai and Le, 2015) proposed an ap-
proach to improve the vector representations with
pre-trained recurrent neural networks. The pro-
posed approach showed significant improvement
over both BOW and Paragraph vectors. SIMVECS
uses only a few corpora to tune the weights of the
similarity metric without relying on external gen-
eral purpose ontologies.

3 Overview of SIMVECS

SIMVECS relies on pair-wise similarity metrics.
Each metric serves as a function that assigns sim-
ilarity (or distance) scores to a pair of utterances.
Many similarity metrics have been proposed in the
literature. Although we use only six, our solution
is generic and can incorporate any additional sim-
ilarity sub-metrics.

3.1 Similarity sub-metrics definition

The six similarity sub-metrics which SIMVECS
uses are:

(1)Unigrams: measures similarity based on the
inverse-document-frequency (IDF) scores of com-
mon unigrams. The resulting score is then normal-
ized by dividing over the sum of IDF scores of all
unique words in the two utterances:

ZweUmUj IDF[U)]
Zw/GUiUUJ‘ IDF[’(U/]

(2)Character N-grams: measures similarity
based on the overlapping character n-gram to-
kenization. We use an equation similar to the
unigram except that words (and their correspond-
ing IDF scores) are replaced by overlapping
character N-grams. We use tokens of size n=4
as recommended by literature (Mcnamee and
Mayfield, 2004).

(3)Bigrams: similar to unigram except that it uses
tokens of two adjacent words. For each bigram,
we set the IDF score to be the max between the
two words in the token (presented as I.D Fy;).
(4)Trigrams: similar to bigrams except that it
uses tokens of three adjacent words.

(S)Utterance Length: this captures the similarity
between a pair of utterances based on their num-
ber of tokens. Although this might be a dangerous
feature to rely on individually, it becomes very
useful in the domain of conversational text when
combined with other features. For example, Table.
1 shows the average utterance lengths per intent in
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the WebApp corpus. We observe a large variance
in utterance lengths of different intents. This is
because one might need more tokens to specify
a complex intent such as booking a flight (which
requires lots of details) than simpler intents like
asking for help or canceling a request. We use the
following formula for utterance length similarity:

Simien (U;.Uj)

@

min(Length(U;), Length(Uj;))
maz(Length(U;), Length(U;))

(6)Word order: measures the normalized differ-
ence of word order between the two utterances.

_ i =7l

Simwo UZU :]. N N
Gl =1 =5

3)
where ¢ and rj are word order vectors (a vec-
tor which represents the order of each word in
the utterance) of utterances U; and U; respectively.

3.2 IDF scores calculation

The first 4 metrics (i.e. unigram, bigram, trigrams,
and character N-grams) rely on pre-calculated IDF
scores. All these IDF scores are pre-calculated
from a large corpus of conversational text gener-
ated from Cortana virtual assistant®. This corpus
contains 18M utterances that resembles conversa-
tions between a user and Cortana in different do-
mains. With the calculated IDF scores, these sub-
metrics can be calculated and used to calculate a
composite similarity metric as follows:

Simeomp(U;.Uj, W) = W
[ Simyni (Ui Uj)

Sim

= [W1..W6] 4)

where W;’s are normalized weights which repre-
sent the collaboration of each sub-similarity met-
ric to the overall metric. W;’s serve as hyper-
parameters that control the quality of the com-
posite similarity metric. The different sub-metrics
have different relative importances in detecting
similarities between utterances within the applica-
tion. Therefore, the weights should be tuned auto-
matically according to the LU application.

*https://www.microsoft.com/en-us/cortana



3.3 Application-based weights tuning

In this section, we describe our method in tun-
ing the weight (W;) for every sub-metric in Eq.
4. First, we use 15 real-world applications from
a popular language understanding service to serve
as our training and testing data set. These appli-
cations represent different domains (e.g. restau-
rants, flight booking services, smart homes, etc.)
and they are created by system admins. Therefore,
they contain a user-defined label for every utter-
ance, which serves as our ground truth. For every
pair of utterances with the same label, we assign
a similarity score of 1 (max similarity). Similarly,
for every pair of utterances with different labels,
we assign a similarity score of O (min similarity).
Now the task of tuning the weights for the sub-
metrics can be viewed as an optimization problem,
which is given by the following formula:

W = arg{ninzRMSE(Simgt(Ui.Uj),
Vi,j
SiMeomp(U;.Uj, W) (5

Where Simg; is the ground truth similarity (ei-
ther 0 or 1), RMSEFE is the root mean square
error between the estimated similarity score and
the ground truth. Therefore, the target of equa-
tion 5 is to find the vector of weights that mini-
mizes the differences between the estimated sim-
ilarity scores and the ground truth similarly pro-
vided by application users. We use genetic algo-
rithms (GA) to find the best values of W*. GA is
a metaheuristic optimization algorithm that is in-
spired by biological evolution. It has the nice fea-
ture of balancing between exploration (a.k.a mu-
tation) and exploitation (a.k.a crossover) of differ-
ent solution candidates (a.k.a chromosome) in the
search space (Crepinsek et al., 2013). GA is fa-
vorable in solving optimization problems which
convexity is not known, since it does not rely on
derivative information in finding good search di-
rections (i.e. derivative-free). We used all pair-
wise utterances from the 15 applications to train
and validate our approach. Each candidate solu-
tion in GA simply represents a vector of weights
in Eq. 4, and the fitness function is the resulting
sum or RMSEs across all pairs of utterances (the
lower the better). We perform 5-fold cross valida-
tion on the 15 applications and take the average of
the best vectors of each fold. The resulting vector
is then used for all subsequent experiments.
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H Intents Avg. Tokens  Std. Tokens H
Change Password 8.625 1.4
Delete account 7.35 1.11
Download video 7 0
Export data 10.2 2.28

Table 1: Average number of tokens per utterance for the
WebApp Corpora.

4 Similarity-based utterance
representation

We estimate all pair-wise similarity scores using
Eq. 4 and store them in a matrix of size NxN
where N is the number of utterances. We then ap-
ply Principal Component Analysis (PCA) (Wold
et al., 1987) to reduce the dimensionality of this
matrix. This pair-wise similarity matrix, SimMa-
trix for short, is then used to generate the vector
representation for each utterance. Consider the ex-
ample shown in Fig. 1. On the left hand, we show
10 utterances (selected from (Coucke et al., 2018))
and their corresponding intents. On the right hand,
we show the corresponding SimMatrix (before we
apply PCA). The resulting matrix is a symmet-
ric matrix with all its diagonal values = 1, repre-
senting maximum similarity. Then we use PCA to
reduce the number of columns, loosely speaking,
creating a set of representative utterances in a data-
driven manner. At this point, we use each row as
the vector representation of the corresponding ut-
terance. Thus, each representative utterance serves
as a dimension in the vector space, allowing utter-
ances with similar neighbors to have similar vector
representations.

This approach has a number of advantages
over conventional vector representations (such
as BOW) and LM based techniques (such as
Para2Vec) in the domain of conversational text un-
derstanding. The data collected by (Braun et al.,
2017) shows that conversational text tends to be
very short with an average of 7.8 tokens per utter-
ance. Moreover, 80% of the collected utterances
are shorter than 9 tokens. This makes BOW rep-
resentation very sparse. Also for LM-based tech-
niques, it is hard to learn efficient vector represen-
tations because of the shortness of the context se-
quences used for training. Another advantage of
SIMVECS is the easier detection of utterances that
have no intent (i.e. the "None” intent utterances).
As shown Fig. 1, the “None” intent utterances are
expected to have similarity scores close to zero to



all other utterances, including other “None” utter-
ances. This makes them located closer to the origin
in SIMVECS’s vector space and allows distance-
based clustering techniques (such as K-means) to
group “None” intent utterances in the same clus-
ter. The second advantage is representative vec-
tor lengths: instead of using vectors of arbitrary
lengths or length equal to the vocabulary size, we
use vectors of length equal to the number of repre-
sentative utterances in the given application. This
can reduce the size of the generated vector repre-
sentation significantly, especially when large vo-
cabularies are used, while the LU application it-
self may have only a few tens or hundreds of utter-
ances.

5 Unsupervised learning with
conversational text

The problem of applying unsupervised learning
techniques to text documents has been studied
by many researchers in several domains such as
(Beil et al., 2002),(Aggarwal and Zhai, 2012), and
(Huang, 2008). The problem becomes more chal-
lenging with conversational text because of the
shortness and the sparsity of the documents (Chen
et al., 2011). We can categorize these techniques
based on the input they need to perform cluster-
ing into two categories: 1) Techniques that require
a vector representation for the data points, such
as K-means and SVD. 2) Techniques that require
a similarity (distance) function such as Affinity-
Propagation (Frey and Dueck, 2007) and DB-
SCAN (Ester et al., 1996). However, the second
category still requires an efficient vector represen-
tation to estimate the distances between pairs of
utterances. We evaluate the efficacy of SIMVECS
generated vectors in the unsupervised learning
task against several baselines. We vary the vector
representation while the clustering algorithm itself
(K-means) remains the same. We show a compar-
ison against the following techniques:

Spherical K-means (Buchta et al., 2012): This
baseline uses BOW representation for the utter-
ances and cosine-similarity as a distance function.
LDA (Blei et al., 2003): This baseline represents
documents as probability distributions over latent
topics. Documents with similar topic assignments
are grouped together. Similar to K-means, it takes
the number of latent topics (clusters) as an input.
We set the number of topics to the number of in-
tents in the corpus and then assign each utterance
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H Corpora | #Intents # Utterances # Tokens H

AskUbuntu 5 162 1289
Chatbot 2 200 1539
WebApp 8 89 717

Combined 15 451 3545

Table 2: Conversational text corpora details.

to the cluster with the maximum probability.
LDA + K-means: Here we use LDA’s latent topic
distribution as a vector representation to the utter-
ance. Then we apply K-means for clustering the
utterances.

Seq-Auto-encoder + K-means (Dai and Le,
2015): A Neural-network based technique using
recurrent language models. The network is trained
on a large corpus of conversational text generated
from the same Cortana corpus used for generating
the IDF scores. Afterwards, the network is used to
encode each utterance of the test data in a vector
of length 1024. K-means is then used to cluster the
utterances.

Fast-text + K-means (Joulin et al., 2016): Also
a Neural-network based technique that incorpo-
rates several features such as BOW and N-gram
features. The model generates word-level vectors
which are averaged together to form sentence-
level representations. We used English pre-trained
word vectors*. These vectors are pre-trained with
16 billion tokens collected from Wikipedia 2017,
UMBC webbase corpus and statmt.org news.
SIMVECS+ K-means: K-means applied to our
similarity-based vectors.

To make the comparison fair, K-means algorithm
with the same number of clusters (K*) is used for
the all techniques (Except LDA). Here K* is the
number of intents in the corpora. For LDA, we set
number of latent topics to be also K*.

5.1 Dataset description

We use the conversational text dataset presented
in (Braun et al., 2017)°. The dataset represents a
collection of three corpora, two corpora were ex-
tracted from StackExchange (Ask Ubuntu & We-
bApp), while the third one was extracted from a
Telegram chatbot. Combined is a corpus that com-
bines the intents of all three. Table 2 shows the
number of intents, number of utterances, and num-
ber of tokens for each corpus in the dataset.

*https://fasttext.cc/docs/en/english-vectors.html
>The dataset is publicly available and can be obtained
here: https://github.com/sebischair/NLU-Evaluation-Corpora



Uy U, Us Uy Us Us U; Ug Uy U
Utterance
D Intent Utterance Uy 03 | 0.03 |0.03|003 002 01 012 O 0
Ul AddToPlaylist add the current tune, to my, Rock Gaming, playlist UZ 0.3 . 0.03 | 003 | 0.03 001 003 004 0 0
AddToPlaylist add villotta, to The MetalSucks Playlist, playlist
U2 Y Y P U3 0.03 | 0.03 . 0.23  0.03 | 0.01 | 0.03 | 0.03 0 0
SearchCreative Please look up the Atheist Manifesto: The Case Against
u3 o U
Wi iy, elawim, 4 003|003 023 003 001 003003 0 | 0
ua SearchCreative Please look up the painting, Beyond Iconic:
Work Photographer Dennis Stock, . U5 0.03 | 0.03 | 0.03 | 0.03 . el ooz | o1 0 0
us BookRestaurant book a spot for 8, at Thezlél?t,(;hln, on october the 13th,
- . Us 002 o001 001 001 0.9 0.06 007 0 0
ue BookRestaurant Book a reservation for 8, at a restaurant, that serves
chicken fried bacon, in Aruba, U
Give the current, book, im reading zero, points, out of 7 |0 0.03 | 0.03 | 0.03 | 0.08 {0.06 0.41 0 0
u7 RateBook s
US 0.12 | 0.04 | 0.03 | 0.03 0.1 | 0.07 0.41 0 0
us RateBook rate the current, book, three, out of 6,
U,
U9 None PayPal 9 0 0 0 0 0 0 0 0 0.01
U
u10 None OkCupid 10 0 o 0 | o0 0o | o 0 0 | o001

Figure 1: An example showing extracting the vector representation for each utterance. The table on the left shows
10 utterances (examples) for 5 different intents, whereas the table on the right shows the corresponding SimMatrix
for the 10 utterances. Each row (or column) is then used as the vector representation for the corresponding utterance

5.2 Unsupervised learning results

In this section, we show the efficacy of
SIMVECS’s vector representation and compare to
other baseline techniques. We collected both pu-
rity and normalized mutual information (NMI)
scores for the generated clusters. We omit NMI
scores for space reasons as it shows the same trend
as purity. As shown in table 3, SIMVECS shows
better performance (in terms of Purity) in compari-
son to other baseline except in one corpors, ”Chat-
bot”. Our solution (SIMVECS+ K-means) outper-
forms all baselines by at least 10% on average.
Fast-text, Seq-Auto-Encoder, and BOW have very
similar performance. We also notice that LDA+K-
means outperforms LDA by 9%, suggesting that
using topic distributions as vector representations
is more efficient than mapping the utterance to the
topic with the maximum corresponding probabil-
ity. We also notice that Fast-text outperforms all
other techniques (including SIMVECS) in one cor-
pus (Chatbot). The reason is that Fast-text through
training on billions of words, can find similari-
ties between words that belong to the same do-
main. For example: the vector representation for
the words “Pizza” and ”Burger” have a cosine-
similarity of 0.63 using Fast-text vectors as both
words are very frequent in the “Restaurants” do-
main. Although this might be useful in some situ-
ations, it can be very misleading in others, caus-
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ing non-similar utterances to have high silimar-
ity scores. For instance, a particular restaurant
might only serve burgers while any pizza orders
are not supported and therefore should be con-
sidered outliers (i.e. "None” intent). This means
the similarity between the two words will cause
an overlap between these two intents ("Order” and
”None”), driving the clustering algorithm to mis-
takenly combine the two intents into one cluster.
This behavior is highlighted in the poor perfor-
mance of Fast-text in all other corpora compared
to SIMVECS.

6 Semi-Supervised learning with
conversational text

In this section, we evaluate the efficacy of
SIMVECS vector representations in semi-
supervised learning tasks. One of the main
requirements in language understanding services
is to improve their performance during operation
using active learning techniques. This is achieved
by adapting to different user perspectives in
different domains. Moreover, it is hard in many
cases to perform clustering efficiently without
taking the user perspective into consideration. For
instance, Fig. 2 shows an example of two groups
of utterances that can be clustered at different
levels of granularity based on the user’s needs. In
many such cases, the same set of utterances can be
clustered in different ways according to different



H Corpora Combined AskUbuntu Chatbot WebApplications Average H
Spherical Kmeans 61% 63% 61% 64% 62%
LDA 46% 59% 61% 35% 50%
LDA-+Kmeans 55% 67% 62% 54% 59%
Seq-Auto-encoder+Kmeans 65% 64% 62% 57% 62%
Fast-Text+Kmeans 53% 56% 94 % 49% 63%
SIMVECS+Kmeans 71% 83% 61% 76 % 73%

Table 3: Purity scores for SIMVECS vs several baselines

criteria. Moreover, it is not known which criteria
is to be used by the clustering algorithm with-
out user feedback. Therefore, semi-supervised
learning is typically used in directing SIMVECS
to the correct context-sensitive clustering. In this
section, we evaluate the ability of SIMVECS in
a semi-supervised learning mode, compared to
several baselines.

In semi-supervised clustering, few data points
are labeled and used as constraints to the cluster-
ing technique. These constraints are of the form
“Must-Link” and “Cannot-Link” for pairs of
data points. A “Must-Link” constraint arises when
the user indicates that two utterances belong to the
same intent, while a “Cannot-Link” constraint is
when to the user indicates two utterances as be-
longing to different intents. We propose a sim-
ple algorithm to refine SIMVECS vectors based
on the provided constraints: Whenever a “Must-
Link” constraint is provided for a pair of points,
we collapse their 2 vectors into one vector in the
space. This is achieved by taking the max value
of each entry of the corresponding indexes. Thus,
the resulting vector is closer to neighbors of both
points, shrinking the distances between neighbors
of both utterances.Moreover, because each feature
(dimension) in the space is a representative utter-
ance, after the collapsing of two utterances, we
perform PCA to come up with the new dimensions
after the user is done with the labeling.

On the other hand, whenever a “Cannot-Link”
constraint is provided, the similarity score be-
tween the two utterances is set to zero in the cor-
responding entry in SimMatrix. This increases the
distance between the two points and transitively,
between the neighbors of these two points.

To evaluate the effieciency of the resulting vec-
tore, we vary the amount of user-labeled data
points and estimate the corresponding cluster-
ing purity scores. As shown in Fig. 3, semi-

supervised learning can significantly improve the
performance of the clustering algorithm. We com-
pare the performance of SIMVECS to BOW, Seq-
Auto-encoder, and Fast-text. We use constrained
K-means (COP-Kmeans) (Wagstaff et al., 2001) as
the semi-supervised learner for SIMVECS as well
as all baseline techniques. We see that SIMVECS
achieves its maximum gain against other tech-
niques when the proportion of labeled data is
small. This is very useful in our problem as it re-
duces the labeling effort required from the user
side to assist the clustering algorithm. The results
show improvements over all three baselines, while
the difference between the approaches shrinks
with more labeled data points as expected. Also
we notice that with few labeled data points (from
10% to 30%), Seq-Auto-encoder and Fast-text
representations are performing better than BOW.
However, with more labeled data (> 50%) BOW
starts to perform better. The reason is that with
more labeled data points, the training examples
(constraints) start to cover most of the expressions
that can be used for a particular intent.

7 Supervised learning with
conversational text

Supervised learning is critical to language un-
derstanding services in order to identify both in-
tents and entities in new utterances coming in the
stream. We compare the performance of intent
classifiers when SIMVECS is used against BOW,
Seq-auto-encoders, and Fast-text vector represen-
tations. For all corpora, a linear SVM classifier is
trained per intent in one-vs-all fashion. For each
intent, the utterances that belong to that intent rep-
resent the positive class, whereas all other utter-
ances represent the negative class. We apply 5-
fold cross validation and calculate the average F1-
Score across all runs. Fig. 4 shows the improve-
ment in F1-Score with both variants over baseline
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4 What's the weather in Waretown, Lebanon
5 What's the weather like in Saint Regis Falls, ND
6 Tell me the weather forecast for Carmichaels, , Gambia, at one am

1 Will it get warmer, in Holy Cross Wilderness
2 Will it be warmer, in five years, in Slemp, Kansas
3 Will it be warm, in Powersville, Guam, 23 hours from now

Figure 2: Example of clustering with different levels of granularity. Without user feedback, it is not clear whether
the clustering algorithm should put all the utterances in the same cluster (Get Weather) or split them into two

separate clusters (Is Worm & Weather Update).

100%
95%
90%
85%
80%
75%

Purity

70%
65%

60%
55%

50%
10%

60%

20% 30% 40% 50% 70% 80% 90% 100%

Percentage of labeled data

o-Seq-Autoencoder - - Fast-Text -@-SIMVECS

——BOW

Figure 3: Improvement on clusters Purity using
SIMVECS with COP-Kmeans vs several baselines

techniques. An improvement of 29% is observed
over Fast-text representation, whereas an improve-
ment of 13% over Seq-Auto-encoder representa-
tion is observed. SIMVECS is only slightly better
than BOW (3% improvement on average). Addi-
tionally, we introduce a variant of SIMVECS that
doesn’t use the automatically tuned weights shown
in Eq. 4. Instead, we concatenate all 6 similar-
ity sub-metrics with all other utterances into one
vector and use the resulting vector as the utter-
ance representation (called Expanded-SIMVECS).
Notice that this approach generates vector repre-
sentations of size 6X compared to SIMVECS. We
notice that using SIMVECS with our pre-trained
weights is achieving better results than Expanded-
SIMVECS across all corpora. The reason is that as
Expanded-SIMVECS increases the number of di-
mensions, it also increases the sparsity of the space
and hence requires more training data, which is
known as the curse of dimensionality” (Poggio
et al., 2017). We also notice that the performance
gain is proportional to the number of intents in
the corpus. The peak gains of 8%, 25%, and 48%
over BOW, Seq-Auto-encoder, and Fast-text re-
spectively are observed with ”Combined” corpora
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Figure 4: Improvement on classification accuracy using
SIMVECS vs several baselines.

(which combines the 15 intents in all three cor-
pora).

8 Background

In this section, we give the formulas used to es-
timate our evaluation metrics: Purity (Manning
et al.) and F1-Score (Sasaki et al., 2007).

8.1 Purity:

is evaluated by the given formula:

k
Purity = % Z Max;|Cs Nty (6)

i=1

Where N is the number of data points, k is the
number of clusters, C; is a generated cluster, and
t; is the intent which represents the majority in Cj.

8.2 F1-Score:

is evaluated by the given formula:

_2P*R

P =2.
! P+R

@)

Where P is the precision, and R is the recall.



9 Discussion

One of the practical challenges in implementing
SIMVECS can be the size of the SimMatrix, partic-
ularly when the number of utterances grows very
large. Currently, this is not be a critical issue for
current LU services as they tend to limit the num-
ber of utterances per application to a few thou-
sands. But the maximium number of supported ut-
terances is expected to grow in the future. For ex-
ample, IBM Watson currently limits the number
of utterances to 25,000 per workspace (applica-
tion) whereas Microsoft LUIS limits the number
of utterances to 15,000 per application. One ap-
proach to improve the scalability of SIMVECS is
by constraining further the number of dimensions
of the vector space thus reducing the memory re-
quirements for storing SimMatrix. For reducing
the computational time, multi-threading can be
used to calculate similarity scores between dif-
ferent pairs of utterances concurrently and hence
speedup the matrix construction process.

10 Conclusion

This paper introduces SIMVECS, a similarity-
based vector representation technique designed to
overcome prior work limitations in the field of
conversational Al. We discussed the main chal-
lenges in vector representation for conversational
Al applications and how SIMVECS overcomes
these challenges. Through evaluation on differ-
ent corpora and for different learning tasks, we
showed the efficacy of vector representations gen-
erated by SIMVECS over several baselines.
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