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Abstract

A typical architecture for end-to-end entity
linking systems consists of three steps: men-
tion detection, candidate generation and en-
tity disambiguation. In this study we inves-
tigate the following questions: (a) Can all
those steps be learned jointly with a model for
contextualized text-representations, i.e. BERT
(Devlin et al., 2019)? (b) How much entity
knowledge is already contained in pretrained
BERT? (c) Does additional entity knowledge
improve BERT’s performance in downstream
tasks? To this end, we propose an extreme
simplification of the entity linking setup that
works surprisingly well: simply cast it as a
per token classification over the entire entity
vocabulary (over 700K classes in our case).
We show on an entity linking benchmark that
(i) this model improves the entity representa-
tions over plain BERT, (ii) that it outperforms
entity linking architectures that optimize the
tasks separately and (iii) that it only comes
second to the current state-of-the-art that does
mention detection and entity disambiguation
jointly. Additionally, we investigate the use-
fulness of entity-aware token-representations
in the text-understanding benchmark GLUE,
as well as the question answering benchmarks
SQUAD V2 and SWAG and also the EN-DE
WMT14 machine translation benchmark. To
our surprise, we find that most of those bench-
marks do not benefit from additional entity
knowledge, except for a task with very small
training data, the RTE task in GLUE, which
improves by 2%.

1 Introduction

The goal of entity linking is, given a knowledge
base (KB) and unstructured data, e.g. text, to detect
mentions of the KB’s entities in the unstructured
data and link them to the correct KB entry. The
entity linking task is typically implemented by the
following steps:

• Mention detection (MD): text spans of poten-
tial entity mentions are identified,

• Candidate generation (CG): entity candidates
for each mention are retrieved from the KB,

• Entity disambiguation (ED): (typically) a mix
of useful coreference and coherence features
together with a classifier determine the entity
link.

Durrett and Klein (2014) were the first to propose
jointly modelling MD, CG and ED in a graphical
model and could show that each of those steps are
interdependent and benefit from a joint objective.
Other approaches only model MD and ED jointly
(Nguyen et al., 2016; Kolitsas et al., 2018), thus
these architectures depend on a CG step after men-
tion detection. Hachey et al. (2013); Guo et al.
(2013); Durrett and Klein (2014) showed the influ-
ence of CG on entity linking, because it can be the
coverage bottleneck, when the correct entity is not
contained in the candidates for ED. Yamada et al.
(2016, 2017) use a precomputed set of entity candi-
dates published by Pershina et al. (2015) for their
experiments on the CoNLL03/AIDA benchmark
dataset (Hoffart et al., 2011), and due to this their
experiments are comparable across studies with
regards to the CG step. MD has a similar impact
on entity linking performance, as it determines the
upper bound of linkable mentions.

BERT (Devlin et al., 2019) is a deep self-
attention-based architecture which is pretrained on
large amounts of data with a language modelling
objective. This model provides very rich linguis-
tic text-representations that have been shown to
be very useful for many NLP tasks. Since its ap-
pearance, BERT is being analyzed and applied in
various domains (Beltagy et al., 2019; Lee et al.,
2019). A recent study found that BERT automati-
cally learns the NLP pipeline (Tenney et al., 2019),
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i.e. a stack of increasingly higher level linguistic
functions. Zhang et al. (2019) investigated inject-
ing entity knowledge from noisy1 automatic entity
linking into the pretraining of BERT and they could
show that this improves relation extraction.

In this study we investigate the following ques-
tions:

(a) Can BERT’s architecture learn all entity
linking steps jointly? We propose an extreme
simplification of entity linking and cast it as a
per token classification over the entire entity vo-
cabulary, thus solving MD, CG and ED simulta-
neously (see Fig. 1). The entity vocabulary is
based on the 700K top most frequent entities in
English Wikipedia and the training data was de-
rived from English Wikipedia texts. We first trained
BERT-base-uncased on English Wikipedia (dubbed
BERT+Entity) and then fine-tuned and evaluated it
on an entity linking benchmark. We found that this
worked surprisingly well for entity linking, even if
we do not have any supervision on mention-spans,
i.e. BIO tags. An error analysis with validation
data revealed that only 3% of errors are purely due
to span errors, while most errors are due to wrong
Nil predictions which often coincided with entities
being infrequent.

(b) How much entity knowledge is already con-
tained in pretrained BERT? To investigate this
question, we froze BERT and only trained the entity
classifier of BERT+Entity on Wikipedia (dubbed
Frozen-BERT+Entity), i.e. the resulting entity clas-
sifier is adjusted for entity mentions for which plain
BERT already does assign distinct token repre-
sentations, such that correct entity classification
is possible. Then we fine-tuned and evaluated
Frozen-BERT+Entity on an entity linking bench-
mark. We find that the performance of Frozen-
BERT+Entity is 6% below BERT+Entity, show-
ing that BERT+Entity has learned additional entity
knowledge.

(c) Does additional entity knowledge improve
BERT’s performance in downstream tasks?
Due to training BERT+Entity with a per token
classification, the model is forced to assign dis-
tinct entity specific features to each token of an
entity mention. Downstream tasks could exploit
this, if additional entity information is necessary
for them. We evaluated BERT+Entity in the natural

1TagMe’s performance on various benchmark datasets
ranges from 37% to 72%. F1 (Kolitsas et al., 2018)
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Figure 1: Illustrating the simple neural end-to-end en-
tity linking setup. BERT+Entity predicts entity links
per token, where ”O” denotes a Nil prediction. The ex-
ample shows how context can help to link “Thor” to
Thor (Marvel Comics).

language understanding benchmark GLUE (Wang
et al., 2018), the question answering (QA) bench-
marks SQUAD V2 (Rajpurkar et al., 2018) and
SWAG (Zellers et al., 2018), and the machine trans-
lation benchmark EN-DE WMT14. We confirm
the finding from Zhang et al. (2019) that additional
entity knowledge is not beneficial for the GLUE
benchmark. To our surprise, we also find that ad-
ditional entity knowledge is neither helpful for the
two QA datasets nor for machine translation. The
only exception is the RTE task in GLUE in which
BERT+Entity improves 2%. This dataset has just
0.5-2% of the training data of the two larger natural
language inference datasets in GLUE.

Our contributions are: We are the first to study
the latter questions. We are also the first to propose
a fully neural model, that does MD, CG and ED
all in one model, i.e. performing entity linking
without any pipeline or any heuristics. We are also
the first to propose to model entity linking as a
token classification and show that this seems to be
a viable option. We also uncover that there is a lack
of tasks that evaluate additional entity knowledge
in pretrained language models.
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2 Related Work

Entity Linking Durrett and Klein (2014) is the
work that is closest to our approach, although not
neural. In their approach they model interactions
between the MD, CG and ED tasks jointly. They
find that the joint objective is beneficial, such that
each task improves. They also note that there is
no natural order of the tasks and they should in-
teract freely. Their approach to CG is to learn to
generate queries to the KB. Nguyen et al. (2016)
also propose jointly modelling MD and ED with
a graphical model and show that it improves ED
performance and is more robust. Kolitsas et al.
(2018) recently published their study in which they
propose the first neural model to learn MD and ED
jointly. Their proposed method is to overgenerate
mentions and prune them with a mention-entity
dictionary. The ED step reasons over the remain-
ing mentions if and to what they link to. However,
modern approaches for solving natural language
tasks operate on neural text-representations, and
the approaches discussed so far only yield entity-
links. Yamada et al. (2016, 2017) was the first to
investigate neural text representations and entity
linking, but their approach is limited to ED.

Pretrained Language Models ULM-
FIT (Howard and Ruder, 2018), ELMO (Peters
et al., 2018), BERT (Devlin et al., 2019) and
GPT-2 (Radford et al., 2019) are modern language
models that are very deep and wide (for NLP)
and are pretrained on large amounts of data.
They provide very rich text representations that
have shown to improve many NLP tasks by just
replacing the static word embeddings with deep
contextualized word embeddings. As Peters
et al. (2019) show, further training the deep
language models alongside the model that uses
the embeddings as input can be helpful, for which
the term “finetuning” is used. The current trend
in research is to investigate all aspects of these
language models, seeking insights in their inner
workings (Tenney et al., 2019), or their application
to various domains (Beltagy et al., 2019; Lee et al.,
2019). In this study, we investigate the factual
information in form of entities that is contained in
BERT, seeking to understand to what degree this
information is already identifiable in BERT and if
the entity knowledge can be improved.

3 End-To-End Neural Entity-Linking

In this section we describe the BERT+Entity, which
is a is straightforward extension of BERT, however,
as with the original BERT, the main challenge lies
in designing the training scheme, i.e. in our case
the creation of the training data. Our goal for the
experiments is to evaluate, if we can learn candi-
date generation, thus a desiderata is to make the
entity vocabulary as large as possible to be compa-
rable to other studies. The text data and the entity
linking annotations are derived from Wikipedia by
exploiting intra-Wikipedia links. This yields the
challenge that the annotations for entity links from
Wikipedia are assumed to be incomplete, i.e. not
every entity mention in Wikipedia is linked, which
we hypothesize can be detrimental during training.

3.1 Model

Our model is based on BERT, which is a deep
self-attention-based architecture (Vaswani et al.,
2017) that was trained on large amounts of text. Its
training objective is two-fold: (a.) predict missing
tokens from sentences, and (b.) classify if a second
sentence was an adjacent sentence. The input and
output token vocabulary are sub-words, i.e. the
vocabulary is computed from the training data by
determining the 30K most frequent character se-
quences, excluding spaces. Devlin et al. (2019)
made several pretrained BERT models publicly
available. They differ in size — i.e. token em-
bedding size and self-attention layer depth — and
whether the token vocabulary is cased or uncased.
BERT+Entity is a straightforward extension on top
of BERT, i.e. we initialize BERT with the publicly
available weights from the BERT-base-uncased
model and add an output classification layer on
top of the architecture. Given a contextualized to-
ken, the classifier computes the probability of an
entity link for each entry in the entity vocabulary.
Formally, let d be BERT’s token embedding size,
and E ∈ R|KB|×d the entity classification layer,
with |KB| being the number of entities in the KB,
V is the sub-word vocabulary, ci = BERT (h)[i]
is the i-th contextualized token computed by BERT
from context h = [v1, v2, ..., vi−1, vi, vi+1, ..., vm]
with each v ∈ V . Consequently, the probability
p(j|v, h) of word v — which is the i-th token in
context h — linking to entity j is computed by
σ(Ejci), where σ is the sigmoid function.
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3.2 Training Data

The entity vocabulary and training data are de-
rived from English Wikipedia texts2. We used
an extended version of WikiExtractor3 to extract
the text spans that are associated with an inter-
nal Wikipedia link to use as annotation, e.g. in
the sentence “The first Thor was all about intro-
ducing Asgard”, the text span “Thor” links to
https://en.wikipedia.org/wiki/Thor (film). BERT
is originally trained with sentences. However, for
entity linking, a larger context can help to disam-
biguate entity mentions, which is why we select
text fragments of such a length, that they span mul-
tiple sentences. For later use we collect (m, e) tu-
ples of entities e and their mentionm. This yields a
setM of potentially linkable strings and also lets us
compute the conditional probability p(e|m) based
on the #(m, e) counts.

Handling incomplete annotation A challenge
in using the Wikipedia links as annotation is that
most entities do not have all their mentions an-
notated, i.e. often only the first appearance in
an article is linked. We hypothesize that learn-
ing a classifier on such skewed data would yield
a skewed model. Our approach to counter miss-
ing annotations is two-fold: (i) We only select text
fragments that contain a minimum count of anno-
tated Wikipedia links. (ii) To account for unlinked
mentions in the fragments we use a Trie-based
matcher4 to annotate all occurrences of linkable
strings that we collected in M . As entity links we
annotate all possible entities this mention could
link to but only with the conditional probability
p(e|m), with the goal that the model remembers
a context independent entity prior. One issue is
that due to the incomplete annotation, the #(e,m)
counts yield p(Nil|“United States”) > 0, i.e. the
mention “United States” has a large non-zero prob-
ability to link to nothing. Based on the assump-
tion that the mentions of the most popular entities
should always link to something, we compute the
average of the probability of linking to Nil for the
k = 1000 most frequent entities

p̄Nil =
1

k

∑
j

#(mj , Nil)

#mi
.

2From a enwiki Wikipedia dump from 20.06.2017.
3https://github.com/samuelbroscheit/wikiextractor-

wikimentions
4https://github.com/vi3k6i5/flashtext

and use #(mi, Nil) − p̄Nil
(1−p̄Nil)

∗ #(mi, e∗)

to discount #(mi, Nil) such that
p(Nil|“United States”) ≈ 0, i.e. the model
should always link “United States” and men-
tions of less frequent entities get an increase in
probability to link to something.

4 Entity Linking Experiments

In the experiments we want to investigate how
the simple neural end-to-end entity linking model
BERT+Entity performs, i.e. if it learns something
additional on-top of BERT. Additionally, we inves-
tigated if the entity-aware token-representations are
useful for downstream tasks. We also discuss the
main engineering challenges training with such a
large entity vocabulary.

4.1 Data

Wikipedia We report two settings which differ in
size of the entity vocabulary, size of the fragments
and minimum number of entities per fragments.
The first setting was the initial study, and the sec-
ond one is a follow up study in which we changed
settings that potentially could improve entity link-
ing performance.

Setting I: We keep the 700K top most frequent
entities from the ≈ 6M entities in Wikipedia,
i.e. we chose the entity vocabulary as large as
it was technically feasible with regards to mem-
ory and training speed. To put it into context, the
CoNLL03/AIDA entity linking benchmark con-
tains 23, 5K entities in 1300 documents. We are
missing 30 entities from CoNLL03/AIDA that only
appear less than 10 times in the Wikipedia training
data. We chunk the Wikipedia texts into fragments
with a length of 110 tokens and an overlap of 20
tokens with the previous and following fragment.
We only keep fragments that contain at least 1 in-
frequent linked entity or at least 3 frequent ones.
This yields 8, 8M training instances from which
we take 1000 each for validation and testing.

Setting II: We keep the 500K top most frequent
entities, which is comparable to the entity vocab-
ulary of Kolitsas et al. (2018) and we have to add
≈ 1000 entities from CoNLL03/AIDA to the entity
vocabulary to be able to evaluate our model on that
benchmark. We increase the fragment size to 250
tokens and keep fragments that contain at least 1
linked entity but keep at most 500 fragments per
entity. This yields 2, 4M training instances from
which we take 500 each for validation and testing.
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Figure 2: Per token classification InKB scores on
the validation data during training on the Wikipedia
dataset in Setting II for 40 days. The jump at the 4-th
epoch happens when we switch from training Frozen-
BERT+Entity to BERT+Entity, i.e. when we start fine-
tuning BERT.

Entity Linking Benchmark To evaluate on
a commonly used benchmark dataset we use
CoNLL03/AIDA. It is the biggest manually an-
notated ED dataset. It contains 946 documents
in training, 216 in validation (testa/AIDA-VALID)
and 231 in test (testb/AIDA-TEST).

4.2 Training
We use a multi-class classification over the entity
vocabulary, i.e. the label y vector for one token vi
is defined by

yij = p(j|vi), for j ∈ {1, .., ||KB||}.

However, computing the loss over the whole entity
vocabulary would be infeasible, because the entity
mention vocabulary is very large and the gradi-
ents for the entity classifier would exceed our GPU
memory. Thus, to improve memory efficiency and
increase convergence speed, we use negative sam-
pling. After sampling text fragments for a batch
b, we collected the set N+b of all true entities —
according to the annotations discussed in Sec. 3.2
— that occurred in those text fragments. Ideally
we would update the representations of those en-
tities that do not occur in the set N+b which the
model is erroneously the most confident about. To
achieve this, we first performed a prediction for the
text fragments in the current batch and collected
for each token the top k predicted entities. We ag-
gregated the entities’ logits over the whole batch
and sorted the entities by their aggregated logits
into the list Nb− and removed from it any entity
contained in Nb+. We join Nb = Nb+ ∪ Nb−
and truncate Nb− such that |Nb| equals a given

maximum size. Each label vector yi for token ci
from fragment C in batch b was now defined over
the entities in Nb. Thus, we only predict over the
corresponding subset of the entity embedding table,
i.e. Ê = E(Nb). The loss for one fragment C in
batch b was computed by

L =
1

|Nb| ∗ |C|

|C|∑
i

|Nb|∑
j

−[yij · log σ(Êjci)

+(1− yij) · log(1− σ(Êjci))].

For training on Wikipedia we used Adam
(Kingma and Ba, 2015) with mini batch size 10,
gradient accumulation over 4 batches, maximum
label size 10240, the learning rate for BERT was
5e-5 and for the entity classifier 0.01. In Setting I
we train the model for 4 epochs, one epoch took
five days with two TitanXp/1080Ti. In the first
1.5 epochs we train Frozen-BERT+Entity and then
BERT+Entity. In Setting II we train the model for
14 epochs and one epoch took three days. In the
first 3 epochs we train Frozen-BERT+Entity and
then BERT+Entity.

For training on CoNLL03/AIDA we used Adam
(Kingma and Ba, 2015) with mini batch size 10,
gradient accumulation over 4 batches, maximum
label size 1024, learning rates for BERT 5e-5,
dropout in BERT 0.2, and we freeze the token
embeddings, the first two layers of BERT and
the entity classifier. We train the remaining pa-
rameters for up to 30 epochs and perform early
stopping according to strong match (see next Sec-
tion). One epoch took seven minutes with one
TITAN Xp/1080 Ti.

4.3 Performance Metrics

We compute the Micro InKB Precision, Recall and
F1 metrics and we only consider entities as true, if
they are in our KB. We compute a strong match, i.e.
every token in the gold annotated span has to be
classified correctly. We also report a weak match,
which we define as at least one token in the gold
annotated span having to link to the correct entity.
This setting accounts for annotation inconsisten-
cies, e.g. when the model and the annotation do not
agree on which mention “U.S. army” or “U.S.” to
annotate (can be either way). We also report strong
ED Precision@1, i.e. we ignore Nil predictions of
the model and only evaluate the top ranked entity
only for spans that have a gold entity.
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AIDA/testa AIDA/testb
strong F1 weak F1 ED strong F1 weak F1 ED

Kolitsas et al. (2018) indep. baseline 75.7 76.0 - 73.3 73.9 -
Kolitsas et al. (2018) 86.6 87.2 92.4 82.6 83.2 89.1

BERT 63.3 66.6 67.6 49.6 52.4 52.8

Setting I Frozen-BERT+Entity 76.8 79.6 80.6 64.7 68.0 68.6
BERT+Entity 82.8 84.4 86.6 74.8 76.5 78.8

Setting II Frozen-BERT+Entity 76.5 80.1 79.6 67.8 71.9 67.8
BERT+Entity 86.0 87.3 92.3 79.3 81.1 87.9

Table 1: Comparing entity linking results on CoNLL03/AIDA. strong F1 and weak F1 denote InKB F1 scores. ED
is Precision@1 for InKB. Kolitsas et al. (2018) also study a neural model, however, they only model MD and ED.
The independent baseline shows how their model performs when they use mentions detected by Stanford NLP. In
Frozen-BERT+Entity BERT is not trained and only the entity classifier on-top is trained.

4.3.1 Results

In Table 1 we compare our results to the most re-
cent results by Kolitsas et al. (2018) who studied a
neural approach that does joint modelling of MD
and ED, but not CG. They also provide a baseline
in which they show how their classifier performs
when MD and ED are independent, i.e. linking
mentions detected by Stanford NLP.

For the reported results denoted only with BERT,
the entity classifier is trained from scratch on
CoNLL03/AIDA and BERT is finetuned. This
shows the lower bound on this dataset, i.e. the
amount of information that we can learn with BERT
only from the CoNLL03/AIDA training data. Note,
that this cannot generalize to entities that are not
contained in training. The difference between
BERT and Frozen-BERT+Entity shows the amount
of entity knowledge that plain BERT already had,
which it transferred in the entity classifier during
training on Wikipedia. Finally, BERT+Entity is
the proposed model, in which both BERT and the
entity classifier have been trained on Wikipedia.

4.3.2 Discussion

Comparing BERT+Entity and Frozen-
BERT+Entity we see that there is a significant
amount of entity knowledge that BERT+Entity
learns additionally to Frozen-BERT+Entity,
i.e. training BERT+Entity increases the scores
between 6%-10% depending on the score and
dataset. However, it should also be noted that
Frozen-BERT+Entity already shows an increase
of 13%-16% over BERT, thus it already learns
for many entities distinct features that enable the

Reason for error #

no prediction 57
different than gold annotation

no obvious reason 13
semantic close 4
lexical overlap 5
nested entity 5

gold annotation wrong 12
span error 3
unclear 1

100

Table 2: Investigating the types of strong preci-
sion errors of BERT+Entity trained in Setting I on
CoNLL03/AIDA (testa) on 100 randomly sampled
strong precision errors from the validation dataset.

entity classifier to identify them. The improvement
of Frozen-BERT+Entity in contrast to BERT
on CoNLL03/AIDA shows that this pretraining
generalizes to validation and test data. We can
also observe that Setting II improves by a large
margin over Setting I and comes very close to the
results of Kolitsas et al. (2018). We conjecture
that the biggest impact on the performance from
changing the training from Setting I to Setting II,
was due to the downsampling of the training data
in favor of less frequent entities. This reduction
of training data in Setting II — caused by capping
the maximum amount of examples per entity —
enabled us to run more epochs in less time, which
might have improved the representations of less
frequent entities.
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Task Metric BERT-BERT-Ensemble BERT+Entity-Ensemble

CoLA Matthew’s corr. 59.92 59.97
SST-2 accuracy 92.73 92.43
MRPC F1/accuracy 89.16 90.13
STS-B Pearson/Spearman corr. 89.90 89.60
QQP accuracy 91.64 91.21
MNLI matched acc./mismatched acc. 84.96 84.78
QNLI accuracy 91.21 91.15
RTE accuracy 71.48 73.64
WNLI accuracy 56.33 56.33

SQUAD V2 matched/mismatched 76.89/73.83 76.36/73.46

SWAG accurracy 80.70 80.76

WMT14 EN-DE BLEU 22.51 22.20

Table 3: Experiments on downstream tasks with BERT+Entity trained in Setting I. The first group are the GLUE
tasks, then followed by SQUAD V2 and SWAG (for which only the dev set results are reported), and the results
for machine translation WMT14 EN-DE.

When we compare BERT+Entity with the two
results from Kolitsas et al. (2018), we observe
that BERT+Entity improves over the baseline that
models MD, CG and ED independently, and that
BERT+Entity comes second to the current state-of-
the-art in end-to-end entity linking. What can also
be observed is that the performance of all mod-
els drops from AIDA/testa to AIDA/testb. For
BERT+Entity, however, the drop is more severe,
obviously the model overfits to some patterns in
the training data that are present in the validation
data, but not in the test data. We hypothesize that
this might be due to some sport specific documents
that make roughly 1/4 of the dataset’s mentions.
However, without spoiling the test-set we cannot
know for sure.

In Table 2 we performed an error analysis for
the experiments for Setting I to learn what kind
of strong precision errors are responsible for the
performance of BERT+Entity. The largest source
of errors was that BERT+Entity did predict Nil in-
stead of an entity. We hypothesized that most of
the no prediction errors are because those entities
have only a low frequency in the training data, i.e.
this could be solved by increasing the model size
and improving the training time. Another source
of error we observed was that the context size was
too small due to the fragment size. A surprisingly
positive result from the error analysis was that in
only 3% a wrong span caused the error. Motivated
by the observations we devised the follow-up ex-

periment Setting II (see Section 4.1) in which we
changed some of the settings to potentially solve
the observed issues.

5 Downstream Tasks Experiments

In this section we discuss the downstream task re-
sults. We performed evaluations on the natural lan-
guage understand task GLUE, the question answer-
ing tasks SQUAD V2 and SWAG and the machine
translation benchmark EN-DE WMT14. We found
that only in one of the subtasks of GLUE —the nat-
ural language inference tasks RTE— BERT+Entity
performs better than BERT, for all other we can
observe no such effect. The reported results are for
Setting I, however, we repeated the experiments
with Setting II and observed the same outcomes.

5.1 Model

For the tasks GLUE, SQUAD V2 and SWAG
we extend hugginface’s implementation5 and con-
catenate the outputs of BERT and BERT+Entity
(dubbed BERT+Entity-Ensemble) or two BERTs
(dubbed BERT-BERT-Ensemble). For EN-DE
WMT14 we use BERT (dubbed BERT-2Seq) or
BERT+Entity (dubbed BERT+Entity-2Seq) as en-
coder and use a Transformer decoder by adapting
fairseqs Pytorch Seq2Seq Transformer implemen-
tation (Ott et al., 2019).

5https://github.com/huggingface/pytorch-pretrained-
BERT
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5.2 Training
For the GLUE benchmark, SQUAD and SWAG we
train the BERT+Entity-Ensemble and BERT-BERT-
Ensemble for 3 epochs and use the default hyper-
parameters from the implementation. The models
BERT-2Seq and BERT+Entity-2Seq we train for
4 epochs, with Adam as optimizer and learning
rate 5e-5, max 1000 tokens per batch, clip gradient
norm 0.1, dropout 0.2, label smoothing 0.1, and we
keep the encoders BERT and BERT+Entity fixed
for the first epoch and then train it together with
the decoder.

5.3 Results
We find that the additional entity knowledge is not
helpful in the evaluated tasks. The results in Table
3 show that, except for RTE, there seems to be no
advantage in having additional entity knowledge.
The question is, if this is (a) due to the entity over-
lap in training and testing such that also an entity
unaware model can learn the necessary model, or
(b) the entities are too scarce in the training data to
make a difference, or (c) the tasks themselves do
not require entity knowledge, i.e. other textual cues
are enough. We leave those questions for future
research.

6 Conclusion

In this study we investigated an extremely sim-
plified approach to entity linking that worked sur-
prisingly well and allowed us to investigate entity
knowledge in BERT. Even when there is a gap to
the current state-of-the-art in entity linking, we hy-
pothesize that this gap can be closed with larger
hardware capacity to scale up the model size and
effective training time. Apart from that, the model
is the first that performs entity linking without any
pipeline or any heuristics, compared to all prior
approaches. We found that with our approach we
can learn additional entity knowledge in BERT that
helps in entity linking. However, we also found
that almost none of the downstream tasks really
required entity knowledge, which is an interest-
ing observation and an open question for future
research.
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