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Abstract

Grounding referring expressions to objects in
an environment has traditionally been consid-
ered a one-off, ahistorical task. However,
in realistic applications of grounding, multi-
ple users will repeatedly refer to the same
set of objects. As a result, past referring ex-
pressions for objects can provide strong sig-
nals for grounding subsequent referring ex-
pressions. We therefore reframe the ground-
ing problem from the perspective of corefer-
ence detection and propose a neural network
that detects when two expressions are referring
to the same object. The network combines in-
formation from vision and past referring ex-
pressions to resolve which object is being re-
ferred to. Our experiments show that detecting
referring expression coreference is an effective
way to ground objects described by subtle vi-
sual properties, which standard visual ground-
ing models have difficulty capturing. We also
show the ability to detect object coreference
allows the grounding model to perform well
even when it encounters object categories not
seen in the training data.

1 Introduction

Grounding referring expressions to objects in an
environment is a key Artificial Intelligence chal-
lenge spanning computer vision and natural lan-
guage processing. Past work in referring expres-
sion grounding has focused on understanding the
ways a human might resolve ambiguity that arises
when multiple similar objects are in a scene –
for example, by referring to visual properties or
spatial relations (Nagaraja et al., 2016; Hu et al.,
2017). However, most previous work treats it as
an ahistorical task: a user is presented with an im-
age and a referring expression and only features
from the current referring expression are used to

∗Equal contribution.

Utterances from a User:
(1) The open text book.
(2) Page with a dark border and images of two people

at the bottom.
(3) The open book with typed pages.
(4) Pages of handwritten notes under the open book.

Figure 1: An example where a single user repeatedly
refers to objects in the same scene. The color identifies
which bounding box is being referred to.

determine which object is being referred to. How-
ever, in many scenarios where a grounding system
can be deployed, grounding is not an isolated one-
off task. Instead, users will repeatedly refer to the
same set of objects. In a household environment,
a robot equipped with a grounding system will re-
peatedly be asked to retrieve objects by the people
who live there. Similarly, during a cooperative as-
sembly task, a robot will repeatedly be asked for
various parts or tools. Even in non-embodied sys-
tems, such as conversational agents, a user will re-
peatedly refer to different relevant entities.

These scenarios present new challenges and op-
portunities for grounding referential expressions.
When people in the same environment commonly
interact with each other (as in a household or
workplace), lexical entrainment will likely occur
(Brennan and Clark, 1996). That is, users of the
system will come to refer to objects in similar
ways to how they have been referred to in the past.
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Thus, it is important that the grounding system can
adapt to the vocabulary used where it is deployed.

Even if each object is being repeatedly referred
to by a set of people who do not interact with each
other, the agent can still learn general information
about the objects by remembering how they have
been referred to in the past. This is useful as it
provides a way for the model to learn properties
of objects that are otherwise hard to detect such
as subtle visual properties which cannot easily be
captured by standard visual grounding systems.

To include past referring expressions in a
grounding model, we formulate grounding as a
type of coreference resolution – are a new phrase
and a past phrase (known to identify a specific ob-
ject) referring to the same object? To compare a
new referring expression with past referring ex-
pressions, we need to learn a type of compatibil-
ity metric that tells us whether two expressions
can both describe the same object. Detecting ob-
ject coreference involves distinguishing between
mutually exclusive object attributes, recognizing
taxonomic relations, and permitting unrelated but
possibly co-existing properties.

Our contribution is to demonstrate that ground-
ing accuracy can be improved by incorporating a
module that has been trained to perform corefer-
ence resolution to previous referring expressions.
We introduce a neural network module that learns
to identify when two referring expressions de-
scribe the same object. By jointly training the
system with a visual grounding module, we show
how grounding can be improved using information
from both linguistic and visual modalities.

We evaluate our model on a dataset where users
repeatedly refer to objects in the same scene (see
Figure 1). Given the same amount of training
data, our coreference grounding model achieves
an overall increase of 15% grounding accuracy
when compared to a state-of-the-art visual ground-
ing model (Hu et al., 2017). We show that the
coreference grounding model can better general-
ize to object categories and their descriptions not
seen during training – a common difficulty of vi-
sual grounding models. Finally, we show that
jointly training the coreference model with a vi-
sual grounding model allows the joint model to
use object properties not stated in previous re-
ferring expressions. As an example application,
we demonstrate how the coreference grounding

paradigm can be used with a robotic platform.1

2 Technical Approach

The task of grounding referring expressions is to
identify which object is being described by a query
referring expression, Q. The input to this problem
is a set of N objects, O = {o1, o2, . . . , oN}.2 Each
object, oi, is represented by its visual features, vi
(i.e., pixels from the object’s bounding box), and a
referring expression, ri, that was previously used
to refer to that object (ri may not always be avail-
able). The grounding problem can then be mod-
elled as estimating the distribution over which ob-
ject is being referred to: p(x|Q, v1:N , r1:N ) where
x is a random variable with domain O.

There has been a lot of work in grounding refer-
ring expressions (Hu et al., 2017), many of which
use only visual features and no interaction history.
Most of the proposed models have the form:

p(x = oi|Q, v1:N ) = S (Wvis · fvis (Q, v1:N ))i

=
exp (Wvis · fvis (Q, vi))

N∑
j=1

exp (Wvis · fvis (Q, vj))

where fvis (Q, vi) is a low dimensional represen-
tation of the visual features vi and the query Q,
Wvis is a learned linear transformation, and S(·)i
is the ith entry of the softmax function output.

We introduce a similar model for coreference
grounding which uses past referring expressions
to decide which object oi is being referred to:

p (x = oi|Q, r1:N ) = S (Wcoref · fcoref (Q, r1:N ))i

where fcoref (Q, ri) is an embedding of a past re-
ferring expression and the query expression, and
Wcoref is a learned linear transformation.

Finally, we introduce a joint model which fuses
representations fvis and fcoref by a function g:

p (x = oi|Q, v1:N , r1:N ) =

S (g (fcoref (Q, r1:N ) , fvis (Q, v1:N )))i (1)

Note that fvis can come from any visual ground-
ing model that associates text to visual features ex-
tracted from the objects’ bounding boxes.

1The dataset, code, and demonstration videos can
be found at https://mike-n-7.github.io/
coreference-grounding.html.

2Object proposal networks (e.g., Faster R-CNN) can be
used to extract object bounding boxes from an image.

https://mike-n-7.github.io/coreference-grounding.html
https://mike-n-7.github.io/coreference-grounding.html
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Figure 2: (a) A visual grounding model only takes in images to resolve the query expression and outputs a categor-
ical distribution over the objects. (b) We propose a model that uses past referring expressions to resolve the new
expression. (c) These models can be combined to fuse visual and linguistic information.

Our contributions are the coreference and joint
grounding models. Both models learn to ground
a new referring expression by computing compat-
ibility with past referring expressions of candidate
objects. We describe fcoref in detail in Section 2.1
and the joint model in Section 2.2. For a visualiza-
tion of the model, see Figure 2.

2.1 Coreference Grounding Model
Given a query referring expression Q and an ex-
pression ri for each object (each represented by
a sequence of M words: {w1, w2, . . . , wM}), we
define a joint representation of these two expres-
sions, fcoref , as follows:

fcoref (Q, ri) = fenc(Q)� fenc(ri)

where fenc produces referring expression embed-
dings for the given phrase of dimension l× 1, and
� is the elementwise multiplication operator. Note
the same encoder is used to embed both ri and Q.
In Section 4.3, we evaluate various referring ex-
pression embedding methods described below.
LSTM Embeddings The final output state of an
LSTM (Hochreiter and Schmidhuber, 1997) is
used as the referring expression embedding.
BiLSTM Embeddings For the bidirectional
LSTM, forward and backward LSTMs are run
over the input sequence, and their outputs for each
word are concatenated. An expression embedding
is computed by the dimension-wise max across
words (Collobert and Weston, 2008).
Attention Embeddings Attention encoders (Lin
et al., 2017) learn a weighted average of BiLSTM
outputs as the referring expression representation.

They output an attention score that is used to com-
pute a weighted average of the BiLSTM outputs.

InferSent Embeddings Recently, InferSent (Con-
neau et al., 2017) was proposed as a general pur-
pose sentence embedding method. InferSent is
similar to the BiLSTM model but was trained
using the Natural Language Inference task with
the intuition that this task would require the sen-
tence embeddings to contain semantically mean-
ingful information. The authors showed that their
sentence representation generalized well to other
tasks. The pretrained encoder from the InferSent
model is used to embed a referring expression.

2.2 Integrating Vision and Coreference

The coreference model can learn the complexities
of coreference with past expressions, but if certain
properties are not mentioned in a previous expres-
sion, the model will have difficulty deciding which
object is being referred to. If the referenced prop-
erty could have been learned by a visual grounding
model, we would like to include this representa-
tion in our model. In this section, we show how we
can take an existing visual grounding model and
combine it with a coreference grounding model.
We generate representations fvis from an existing
grounding model, and fcoref from our coreference
grounding model. These representations are fused
using a function g(·), which is used to compute
the most likely referred object using Equation 1.
We experiment with two choices of g, which we
describe in the following subsections.
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2.2.1 Addition
One approach is to take the sum of the scores
of component visual and coreference grounding
models. The function g(·) can be written as (ar-
guments of functions removed for brevity):

g = Wvis · fvis(·) +Wcoref · fcoref (·)

where Wvis,Wvis ∈ R1×l are learned parameters
which transform their respective feature vectors of
size l into scalar scores.

2.2.2 Concatenation
Simple addition might not capture all interdepen-
dencies between different modalities. We propose
an approach where we concatenate the represen-
tations fvis and fcoref , and add a two layer feed
forward network to output the final score,

g = Wc1(ReLU(Wc2(ReLU([fvisfcoref ]).

For our visual grounding model, we use
the Compositional Modular Network (Hu et al.,
2017), which is one of the top performing mod-
els in several benchmark referring expressions
datasets. We train the joint model end-to-end so
that it can learn how to properly merge the visual
and coreference information.

3 Dataset

Our goal is to ground a referring expression to
an object in the environment using past referring
expressions and visual features. Existing refer-
ring expression datasets do not contain at least
two referring expressions for each object. Since
this is a requirement to learn and evaluate mod-
els that can utilize past expressions, we create
two new datasets for the task – a large Diagnostic
dataset where past expressions are algorithmically
assigned, and a smaller Episodic dataset created to
capture more realistic interaction scenarios.

3.1 Diagnostic Dataset

In this dataset, artificial scenes are created by
grouping similar objects, and each referring ex-
pression for an object is collected independently.
This form of dataset allows us to easily scale up
the amount of data used for training and cap-
ture more descriptive language by introducing
category-level ambiguity into the scene. We use
images from the MSCOCO dataset (Lin et al.,
2014), which contains bounding boxes for each

object in an image. We randomly group together
four object images from the same category. We
randomly label one object as the goal object and
the remaining three as distractor objects. Anno-
tators from the Figure Eight platform3 are shown
these images with the goal object labeled by a red
bounding box. They are asked to write an English
expression to refer to the goal object so that it can
be easily distinguished. Two expressions are col-
lected for each object, each time with different dis-
tractor objects.

To ensure the model can distinguish between
objects of different categories, we randomly select
half the data, and replace two distractor objects in
the group with two objects from a different cate-
gory. Since these objects are from a different cate-
gory, we expect the referring expression to still be
able to correctly identify the goal object.

Each instance, or dataset sample, now consists
of four objects (represented by images) with a
query expression referring to the goal object. To
associate each object with a past expression, we
use expressions that were used to reference that
object in other instances. Each instance now has
a set of objects associated with a past expression
and an image. In addition, the goal object is la-
beled and a query referring expression is provided
for the goal. We randomly split the data into train,
development and test sets in a 60/20/20 ratio. We
refer to this split as STANDARD.

To evaluate the ability of grounding models to
disambiguate objects from categories not seen dur-
ing training, we create an alternative split of the
Diagnostic dataset. This split ensures that no ob-
ject category in the test set is present in the train-
ing or development splits. We refer to this split as
HARD. More details of dataset construction and
verification are present in the supplementary ma-
terial.

3.2 Episodic Dataset

The Diagnostic dataset uses cropped images of
objects from MSCOCO images and programmati-
cally assigned past expressions. In order to cap-
ture nuances of realistic interaction, we collect
a smaller Episodic dataset where annotators are
shown a full scene and repeatedly asked to re-
fer to objects within that scene. We select scenes
from the MSCOCO dataset which have three to
six objects of the same category. We prune ob-

3https://www.figure-eight.com/

https://www.figure-eight.com/
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ject bounding boxes with area less than 5% or over
50% of the image area. Extremely small objects
are often not distinguishable, and large bound-
ing boxes often correspond to a cluster of objects
rather than a single object in cluttered scenes.

Each annotator is shown the same scene 10
times in a row. Each time one of the ambiguous
objects is marked with a red bounding box. The
annotator is asked to provide an English referring
expression to uniquely identify the marked object.
Our interface does not allow the user to view re-
ferring expressions once it has been entered. As a
result, if the same object is marked again in the se-
ries, the user will have no way to look up what they
had written before. This process simulates how a
user will refer to objects in the same environment
over a period of time. As the annotators do not
communicate with each other, the dataset will not
capture between-user entrainment. For each im-
age, we collect two such series of 10 expressions
from two different users. We create examples for
the Episodic dataset in two ways:
SAME USER: For each scene and annotator, we
order the expressions in the same order they were
provided by the annotator. Each expression forms
an example where it is the respective query expres-
sion and the candidate objects are all the objects in
the scene. All previous referring expressions for
this scene and annotator are assigned to the respec-
tive objects as past referring expressions. These
examples capture the scenario where the interac-
tion history is provided by a single user.
ACROSS USERS: Similar to the SAME USER

dataset, we create a new example each time the an-
notator refers to an object. However, the past ex-
pressions come from the other annotator who was
displayed the same scene. These examples rep-
resent cases where interaction history is acquired
from people who do not interact with each other.

We create train and development sets with both
types of examples. For testing, we create one set
corresponding to each of the previously mentioned
types. Validation details are in the supplementary
material.

The statistics for both datasets are given in Ta-
ble 1. We report a metric called Lexical Overlap
to denote the extent of similarity between training
and test data. The Lexical Overlap is the fraction
of word types in the test set that also appear in the
training set. As seen in Table 1, the HARD split has
lower Lexical Overlap compared to STANDARD.

Dataset
Diagnostic Episodic

STANDARD HARD SAME ACROSS
USER USERS

# Train 10133 9855 2656 2656
# Dev 3889 4170 714 714
# Test 3796 3793 1686 1686
Objects per Example 4.0 4.0 5.64 5.64
Expressions per Object 0.47 0.47 0.5 1.94
Lexical Overlap 0.71 0.63 0.47 0.47

Table 1: Statistics for the various datasets used. Unless
otherwise mentioned, the numbers are reported from
the test set. Low lexical overlap for HARD indicates
more unseen words in the test set. The ACROSS USERS
test set of Episodic dataset has more past expressions
for each object compared to other splits.

This means that a greater number of novel words
appear in the HARD dataset.

4 Experiments

We run multiple experiments to evaluate the pro-
posed grounding models and characterize the ad-
vantages of using coreference along with visual
features for grounding. Specifically, we consider
the following questions:

1. Which method performs best for coreference
grounding and the joint model? (Section 4.3)

2. How does grounding with different types of
information (visual, coreference) transfer to
new object categories? (Section 4.4)

3. How does grounding performance vary when
past expressions are acquired from the same
(or entrained) users, as opposed to users un-
known to each other? (Section 4.5)

All quantitative evaluation can be found in Table
2. As our datasets contain examples where the ob-
ject being referred to may or may not have a pre-
vious referring expression, we report overall test
set accuracy (All), as well as accuracy grouped by
the number of past referring expressions belong-
ing to the ground truth object (0, 1, or, 2). This
allows us to more accurately evaluate the corefer-
ence models as they are not expected to perform
well without a previous referring expression.

We show how coreference grounding is used in
practice by demonstrating its use on the Baxter
robot. Namely, we show how a system can keep
track of past referring expressions and associate
them with objects.

4.1 Model Descriptions
We compare against the following unsupervised
coreference baselines (i.e., not trained on the re-
ferring expression task). All these methods use a
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similarity score between the input expression and
the past referring expression to make a prediction.

Word Overlap Baseline: Compute the Jaccard
similarity between two expressions.
Word Averaging Baseline: Each expression is
represented by the average of the word vectors of
constituent words. Similarity is computed as co-
sine similarity between vectors.
Paragram Phrase: Uses the paraphrase model
proposed by Wieting et al. (2016) to compute sim-
ilarity between past and input expressions.
InferSent Unsupervised: Each expression is rep-
resented by its pretrained InferSent embedding
and similarity is computed as cosine similarity.

We also consider supervised models for the re-
ferring expression grounding task:

Vision: The Compositional Modular Network (Hu
et al., 2017) which grounds an input expression to
a bounding box’s visual features.
Coreference: The proposed model that grounds
an expression to objects represented by previous
referring expressions. We evaluate the LSTM,
BiLSTM-Max, Attention, and InferSent Encoders.
Joint: Jointly trains the Vision and Coreference
components of the model. This model uses only
the InferSent encoder. We evaluate both addition
and concatenation methods for information fusion.

4.2 Implementation Details

Since the Episodic dataset is much smaller in size,
all models (except joint with concatenation) are
first trained on the Diagnostic training set until the
validation error stops decreasing, and then trained
on the Episodic train set. For the joint model with
concatenation, we found that tuning only the fu-
sion parameters, while holding the others fixed, on
the Episodic data performs better.

The large Diagnostic dataset contains at most
one past expression for each object. We cannot
expect our models trained on the Diagnostic data
to handle multiple past referring expressions. As a
result, when an object is associated with multiple
past expressions, we only consider the expression
most similar to the query expression according to
the Unsupervised InferSent model.

The models are implemented in PyTorch
(Paszke et al., 2017). All models for the Diag-
nostic dataset are trained with the Adam optimizer
(Kingma and Ba, 2015), and the best model is se-
lected based on the performance on the develop-

ment set. We use GloVe vectors (Pennington et al.,
2014) and a pretrained VGG19 model to extract
visual features (Simonyan and Zisserman, 2015).

4.3 Coreference and Joint Model Evaluation

We evaluate the performance of the coreference
and joint models on the STANDARD split of the Di-
agnostic dataset (see column STANDARD of Table
2). First, we observe that all unsupervised coref-
erence methods perform poorly when the goal
object does not have past referring expressions.
However, when past expressions are present, all
the coreference baselines outperform the vision
model. Coreference using pretrained InferSent
embeddings performs the best among the unsuper-
vised methods, possibly because InferSent embed-
dings have been pretrained on the SNLI dataset.
SNLI was created from image captions, making
the domain similar to that of referring expressions.

Learned models of coreference start performing
better on cases where the goal object has no past
referring expression. Note that in the 0-column,
the 0 only refers to the ground-truth object not
having a referring expression – the other objects
may have expressions associated with them. Thus
the supervised models can better determine when
two expressions are incompatible, leading to the
model choosing an object without any previous re-
ferring expression. However, when a past refer-
ring expression is present, they are typically infor-
mative and the Word Overlap model performs the
best amongst unsupervised and supervised meth-
ods (see the 1-column). InferSent (Unsupervised)
still achieves strong performance yet fine-tuning to
the task still helps. We use the coreference model
with the InferSent encoder for the joint models.

The jointly trained models achieve high accura-
cies in both cases where the ground truth object
has previously been referred to (1-column) and
those where it has not (0-column). This indicates
that the models can successfully utilize informa-
tion from both vision and coreference modalities.
The concatenation fusion method outperform sim-
ple shallow addition of component scores.4

The joint model consistently outperforms the
vision model. This is because people usually pro-
vide information relevant to how the object can be
referred. If this information is available, which is

4Note that different objects in a scene might have different
number of past expressions. At test time, we will not know
the goal object, and hence, we cannot use the number of past
expressions to determine which model to use at test time.
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Diagnostic Episodic (s. 4.5)
STANDARD (s. 4.3) HARD (s. 4.4) SAME USER

ACROSS
USERS

0 1 All 0 1 All 0 1 2 All
57% 43% 56% 44% 49% 33% 15%

Vision 64.2 66.1 65.0 59.6 60.6 60.0 32.1 32.1 29.4 31.5 31.5

U
ns

up
er

vi
se

d Word Overlap 3.5 74.2 34.1 4.0 72.6 34.3 5.3 85.4 87.3 37.6 58.1
Word Averaging 3.5 69.6 32.1 4.0 67.8 32.2 5.3 77.8 80.2 42.7 51.8
Paragram Phrase 3.5 71.3 32.8 4.0 71.3 33.7 5.3 81.1 83.7 44.3 56.9
InferSent 8.8 73.8 36.9 9.2 73.6 37.6 5.9 85.0 85.7 46.3 47.7

Su
pe

rv
is

ed LSTM 28.2 41.1 33.8 28.2 40.3 33.5 6.0 69.4 63.9 37.2 46.8
BiLSTM-Max 30.0 60.8 43.3 27.0 57.8 40.6 7.0 75.7 74.6 41.8 53.1
Attention 29.2 61.6 43.2 26.8 56.0 39.7 10.1 67.0 63.9 38.4 47.4
InferSent 27.9 70.5 46.3 28.8 68.6 46.4 5.8 82.5 85.3 45.4 61.3

Jo
in

t Addition 65.3 69.4 67.1 62.0 62.3 62.1 22.3 63.8 60.3 42.6 48.7
Concatenation 68.6 71.3 69.8 58.0 70.7 63.6 19.0 84.7 86.1 52.7 62.7

Table 2: Grounding accuracy under different conditions. Best scores in bold. The columns labeled 0, 1, and
2 correspond to test examples where the goal object has 0, 1 and 2 past expressions respectively (percentage
indicates fraction of test examples applicable for that column). All refers to the score on the entire test set. Most
examples in ACROSS USERS have large number of past expressions, so we only report score on the entire test set.

true in many realistic scenarios, it is beneficial to
utilize coreference grounding.

With more data, the vision model could achieve
higher performance. However, we argue that as
ambiguity between objects increases, the proper-
ties that distinguish objects become more subtle
and a large dataset would be necessary to learn
these intricacies.

When does Joint perform better than Vision
and Coreference? Our Joint model performs bet-
ter than models trained on single modality (Vision,
Coreference). The joint model can use visual fea-
tures when the past referring expressions are not
sufficient to discriminate between objects. In 25%
of examples, the Coreference model predicts the
wrong object whereas the Joint model selects the
correct object. A majority of these cases are exam-
ples where the goal object has no past expression
associated with it. In 8% of examples, the Joint
and Coreference models are correct even though
the Vision model is wrong. Finally, for only 7% of
the examples, the Joint model predicts the correct
object when both the Vision and Coreference mod-
els predict incorrectly. This indicates that the Joint
model is primarily merging the gains of the Vision
and Coreference models; most correct decisions of
Joint correspond to correct decisions either from
Vision or Coreference. Figure 3 shows a break-
down of how often the various models outperform
each other. Figure 4 shows examples where Joint
outperforms models trained on a single modality.

Figure 3: Proportion of examples of the STANDARD
test set where different subsets of the systems ground
correctly (green) or incorrectly (red). Instances are ar-
ranged along the x-axis.

4.4 Generalizing to New Object Categories

To evaluate how the various models handle gen-
eralization to unseen object categories, we use the
HARD split of the Diagnostic dataset. The test set
of this split contains object categories which have
not explicitly been seen during training. We hy-
pothesize that due to pretrained word embeddings
(which include embeddings for words describing
the unknown categories), the coreference models
will be able to successfully ground to new object
categories. On the other hand, the performance of
the Vision model will decrease in the HARD split,
because the pretrained visual features of the new
objects are not well aligned with representations
of unseen words. As seen in Table 2, this is indeed
the case as the Vision model’s performance drops
between the STANDARD and HARD datasets. On
the other hand, the coreference models’ perfor-
mance on the HARD split is comparable to those
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of the STANDARD split. Although the aggregate
performance is low, the coreference models per-
form strongly on examples where the goal object
has past expressions (see 1-column). In particular,
Coref Supervised with InferSent achieves 70.5%
on the STANDARD split, which reduces only to
68.6% on the HARD split. This can be explained
by observing that the representation of the object
(its past referring expression) and a new referring
expression are already aligned within the same
vector space (pretrained InferSent embeddings).

4.5 Performance on Episodic Dataset

As the Diagnostic dataset is somewhat artificial in
the way objects and properties are grouped, we
also evaluate these models on the Episodic dataset.
As described in Section 3.2, the key differences in
this dataset are that all candidate objects in an ex-
ample are from the same scene, and previous refer-
ring expressions are added sequentially as the user
refers to more objects in the scene (thus a previous
referring expression truly did occur previously).

We find similar trends in the performance on
the Episodic dataset (see the Episodic columns of
Table 2). Since the same user is referring to the
same object multiple times, we expect expressions
for the same object to be similar. This leads to
the high performance of coreference models in the
SAME USER split of the Episodic dataset (see the
1-column). Even the word-overlap model does
particularly well due to the correlation between
expressions from the same user (over 85% accu-
racy when the goal object has past expressions).

If the past expressions were not provided by the
same user, but by users unknown to each other, we
can still see improvement over not having any past
expressions (see the ACROSS USERS column). In
this split, past expressions are always associated
with objects as we assume other users have in-
teracted with the system. In the ACROSS USERS

split, even though the Coreference models are less
effective than in the SAME USER split, they still
outperform the Vision model (e.g., the Supervised
InferSent model achieves 61.3%, whereas a pure
vision model achieves only 31.5%). This is be-
cause users unknown to each other still provide
useful knowledge about the properties of objects.

The Joint models benefit from using both
modalities, which is particularly important in re-
alistic scenarios as most objects initially will not
have any previous referring expressions. Note

Query: the stuffed bear with blue clothes
Coref, Joint Vision

the brown a stuffed
teddy bear animal
with a bow in blue

Query: its a cup of coffee
Coref Vision, Joint

a coca cola the glass
cup tumbler with

a drink

Figure 4: Examples where the Joint model accurately
grounds the query, but either Vision or Coreference
does not. The past expression is mentioned below each
object image. The correct object has a green border and
a model’s name appears above its predicted object.

that the performance of the Vision model on the
Episodic dataset is much lower than its perfor-
mance on the Diagnostic dataset. This loss in
performance is due to the images in the Episodic
dataset being more cluttered and annotators of-
ten using spatial relationships to refer. As the
Diagnostic training dataset does not contain spa-
tial information, our models cannot handle these
cases. We can train on existing referring expres-
sion datasets to learn spatial relationships, but we
do not explore this as it is not central to this paper.
More analysis is added to the appendix.

4.6 Robot Demonstration

One of the motivations of this work was to en-
able robots to use past referring expressions to
aid grounding in human-robot interactions. In this
section, we provide a demonstration of how our
coreference grounding system can be integrated
with the Baxter robotic platform. To benefit from
coreference grounding, the system must have a
natural way to keep track of past referring expres-
sions of an object. We demonstrate such an inter-
face in Figure 5.

We focus on a scenario where a human asks the
robot to pick up specific objects. If the robot incor-
rectly identifies the object being referred to, on the
next turn, the user can correct the robot by indicat-
ing the correct object (Figure 5b). The referring
expression can then be associated with the correct
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Figure 5: Demonstration of a coreference grounding system on the Baxter robot. (a) The cup being identified. (b)
A user refers to the cup and the robot grounds incorrectly. The user corrects the robot and associates the referring
expression with that object. (c) When a new user refers to the same object, the system’s output is correct.

object and this association can be maintained with
a tracking system. Future users (with no knowl-
edge of the first user) can then successfully refer
to the object (Figure 5c).

5 Related Work

Grounding Referring Expressions There has
been a lot of recent work on resolving referring
expressions to objects (Mao et al., 2016; Yu et al.,
2016; Shridhar and Hsu, 2018; Nagaraja et al.,
2016; Cirik et al., 2018). In contrast to these ap-
proaches which are static once trained, our model
leverages past referring expressions, which per-
mits an interface to add information during exe-
cution. Our task is related to Visual Dialogue (Das
et al., 2017; Kottur et al., 2018), where an agent
interactively answers questions about visual prop-
erties of a scene where the answers only exist in
the image and not in the dialogue context. In con-
trast, we focus on using complementary knowl-
edge from past referring expressions. There has
also been work to learn a compatibility metric dic-
tating whether two words can refer to the same ob-
ject (Kruszewski and Baroni, 2015). Our work fo-
cuses on coreference between entire referring ex-
pressions instead of atomic words.
Lexical Choice in Interactions A large body
of work in psycholinguistics (Clark and Wilkes-
Gibbs, 1986; Brennan and Clark, 1996; Picker-
ing and Garrod, 2004) show that participants in a
conversation collaboratively come up with lexical
terms to refer to objects and consequently, get en-
trained with each other and start using similar ex-
pressions to refer to objects. These works form the
motivation for our problem formulation. Recently,
the PhotoBook Dataset has been proposed to in-
vestigate shared dialogue history in conversation
(Haber et al., 2019). The dataset differs from ours

in that expressions refer to entire scenes instead of
objects within a scene. The authors’ conclusions
support our findings that using past expressions is
useful for resolving referring expressions.
Interaction History for Human Robot Interac-
tion Paul et al. (2017) maintains knowledge pro-
vided by users, using a closed set of predicates.
In constrast, we use raw past referring expressions
to handle an open domain of knowledge. There
has been work on grounding in dialogue for robots
(Tellex et al., 2014; Whitney et al., 2017; Thoma-
son et al., 2017; Padmakumar et al., 2017). In
contrast to our work, they focus on refinement or
clarification, and hence past expressions only help
within the same dialogue episode.

6 Conclusion

In this work, we reformulated the grounding prob-
lem as a type of coreference resolution, allowing
for the inclusion of past referring expressions that
are typical in many real-world scenarios. We pro-
posed a model that can use both linguistic features
from past expressions and visual features of the
object to ground to a new expression. We showed
that this model outperforms a purely vision-based
model as it can use past descriptions of salient fea-
tures that the vision-based model may have diffi-
culty learning with limited data. It further benefits
from having a vision model that can fill in infor-
mation not provided in past expressions.

Acknowledgements

We gratefully acknowledge funding support in
part by the Honda Research Institute and the Toy-
ota Research Institute. However, this article solely
reflects the opinions and conclusions of its au-
thors.



439

References
Susan E. Brennan and Herbert H. Clark. 1996. Con-

ceptual pacts and lexical choice in conversation.
In Journal of Experimental Psychology: Learning,
Memory, and Cognition.

Volkan Cirik, Taylor Berg-Kirkpatrick, and Louis-
Philippe Morency. 2018. Using syntax to ground
referring expressions in natural images. In Proceed-
ings of the 32nd AAAI Conference on Artificial In-
telligence (AAAI).

Herbert H. Clark and Deanna Wilkes-Gibbs. 1986.
Referring as a collaborative process. Cognition,
22(1):1–39.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: deep
neural networks with multitask learning. In Pro-
ceedings of the 25th International Conference on
Machine Learning (ICML).

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP).

Abhishek Das, Satwik Kottur, Khushi Gupta, Avi
Singh, Deshraj Yadav, José M.F. Moura, Devi
Parikh, and Dhruv Batra. 2017. Visual Dialog. In
Proceedings of Computer Vision and Pattern Recog-
nition (CVPR).

Janosch Haber, Tim Baumgärtner, Ece Takmaz, Lieke
Gelderloos, Elia Bruni, and Raquel Fernández.
2019. The photobook dataset: Building common
ground through visually-grounded dialogue. In Pro-
ceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics (ACL).

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Ronghang Hu, Marcus Rohrbach, Jacob Andreas,
Trevor Darrell, and Kate Saenko. 2017. Modeling
relationships in referential expressions with compo-
sitional modular networks. In Proceedings of Com-
puter Vision and Pattern Recognition (CVPR).

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceed-
ings of the 3rd International Conference on Learn-
ing Representations (ICLR).

Satwik Kottur, José M. F. Moura, Devi Parikh, Dhruv
Batra, and Marcus Rohrbach. 2018. Visual corefer-
ence resolution in visual dialog using neural mod-
ule networks. In Proceedings of the 15th European
Conference on Computer Vision (ECCV).

Germán Kruszewski and Marco Baroni. 2015. So sim-
ilar and yet incompatible: Toward the automated

identification of semantically compatible words. In
HLT-NAACL.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie,
Lubomir D. Bourdev, Ross B. Girshick, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. 2014. Microsoft coco: Com-
mon objects in context. In Proceedings of the 13th
European Conference on Computer Vision (ECCV).

Zhouhan Lin, Minwei Feng, Cícero Nogueira dos San-
tos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. 2017. A structured self-attentive sentence
embedding. In Proceedings of the 5th International
Conference on Learning Representations (ICLR).

Junhua Mao, Jonathan Huang, Alexander Toshev, Oana
Camburu, Alan Yuille, and Kevin Murphy. 2016.
Generation and comprehension of unambiguous ob-
ject descriptions. In Proceedings of Computer Vi-
sion and Pattern Recognition (CVPR).

Varun K. Nagaraja, Vlad I. Morariu, and Larry S.
Davis. 2016. Modeling context between objects for
referring expression understanding. In Proceedings
of the 14th European Conference on Computer Vi-
sion (ECCV).

Aishwarya Padmakumar, Jesse Thomason, and Ray-
mond J. Mooney. 2017. Integrated learning of di-
alog strategies and semantic parsing. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics
(EACL).

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.
In NIPS-W.

Rohan Paul, Andrei Barbu, Sue Felshin, Boris Katz,
and Nicholas Roy. 2017. Temporal grounding
graphs for language understanding with accrued
visual-linguistic context. In Proceedings of the 26th
International Joint Conference on Artificial Intelli-
gence (IJCAI).

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP).

Martin J. Pickering and Simon Garrod. 2004. Toward
a mechanistic psychology of dialogue. Behavioral
and Brain Sciences, 27(2):169–190.

Mohit Shridhar and David Hsu. 2018. Interactive vi-
sual grounding of referring expressions for human-
robot interaction. In Proceedings of Robotics: Sci-
ence and Systems (RSS).

Karen Simonyan and Andrew Zisserman. 2015. Very
deep convolutional networks for large-scale image
recognition. In Proceedings of the 3rd International
Conference on Learning Representations (ICLR).



440

Stefanie Tellex, Ross Knepper, Adrian Li, Daniela Rus,
and Nicholas Roy. 2014. Asking for Help Using In-
verse Semantics. In Proceedings of Robotics: Sci-
ence and Systems (RSS).

Jesse Thomason, Aishwarya Padmakumar, Jivko
Sinapov, Justin Hart, Peter Stone, and Raymond J.
Mooney. 2017. Opportunistic active learning for
grounding natural language descriptions. In Pro-
ceedings of the 1st Conference on Robot Learning
(CoRL).

David Whitney, Eric Rosen, James MacGlashan, Law-
son Wong, and Stefanie Tellex. 2017. Reducing Er-
rors in Object-Fetching Interactions through Social
Feedback. In Proceedings of the 2017 IEEE In-
ternational Conference on Robotics and Automation
(ICRA).

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2016. Towards universal paraphrastic sen-
tence embeddings. In Proceedings of the 4th Inter-
national Conference on Learning Representations
(ICLR).

Licheng Yu, Patric Poirson, Shan Yang, Alexander C.
Berg, and Tamara L. Berg. 2016. Modeling context
in referring expressions. In Proceedings of the 14th
European Conference on Computer Vision (ECCV).


