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Abstract

In the field of metaphor detection, deep learn-
ing systems are the ubiquitous and achieve
strong performance on many tasks. However,
due to the complicated procedures for manu-
ally identifying metaphors, the datasets avail-
able are relatively small and fraught with com-
plications. We show that using syntactic fea-
tures and lexical resources can automatically
provide additional high-quality training data
for metaphoric language, and this data can
cover gaps and inconsistencies in metaphor an-
notation, improving state-of-the-art word-level
metaphor identification. This novel applica-
tion of automatically improving training data
improves classification across numerous tasks,
and reconfirms the necessity of high-quality
data for deep learning frameworks.

1 Introduction

Humans use metaphors to conceptualize abstract
and often difficult concepts by employing knowl-
edge of more concrete domains. They are preva-
lent in speech and text, and allow us to communi-
cate more effectively and more imaginatively. The
fact that they are commonplace and easily under-
stood by humans makes appropriate interpretation
of them essential for high quality natural language
processing applications.

The primary linguistic and cognitive theory of
metaphor is conceptual metaphor theory (Lakoff
and Johnson, 1980; Lakoff, 1993), which theo-
rizes that metaphors are primarily a mental activ-
ity, and the language is merely a side effect of
these ”conceptual” metaphors. From this, it is
posited that metaphors are agnostic with regard to
syntactic structure: a conceptual mapping can be
expressed through whatever syntax the speaker de-
sires. This is apparent from evidence that many
metaphoric predications have the same syntactic
properties as their literal counterparts. Goldberg

(1995) observes that metaphorical ditransitive sen-
tences like ”It gave me a headache” do not dif-
fer syntactically from literal ditransitive sentences
like ”She gave me the account.” Accordingly, to
find syntactic hallmarks of metaphorical meaning
we do not look generally for particular syntactic
constructions, but rather for mismatches of vari-
ous kinds between specific verbs’ ordinary syntac-
tic behavior and their behavior under metaphoric
interpretation.

Perhaps the primary source of verbal syntactic
variability is the set of argument-structure con-
structions identified by Goldberg (1995). One
such construction is Caused Motion (CM), illus-
trated by the sentence ”They pushed it down the
hall”. CM can augment the array of semantic
roles supplied by the verb, as in ”They laughed
me out of the room”. Augmentation often entails
a metaphoric construal: here the verb ”laugh”,
otherwise a single-argument verb, is paired with
both a theme argument (the direct object) and a
PP location argument, and the resulting predica-
tion expresses metaphorical rather than literal mo-
tion (Hwang, 2014).

Despite this connection between verbal syntax
and metaphoric properties, most computational
approaches to metaphor eschew syntax for more
semantic features. While these have proven effec-
tive, metaphor detection remains a difficult task.
This could be due to many factors, but a primary
reason is the lack of adequate training data. An-
notation of metaphor has proven to be extremely
difficult, as is evident by the variety of schemes
used to attempt to achieve consistent annotation.1

This has led to a lack of “big data” for training
models, as well as inconsistencies and gaps in the
data that is available.

In this work, we show that syntactic properties

1For a review of systems, see Veale et al. (2016)
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can be used to improve training data, which is
beneficial to metaphor processing systems. Deep
learning models require sufficient quality data,
which is lacking for many metaphorical expres-
sions. We automatically fill gaps in metaphor
training data by exploiting syntax in two ways:
first, we use the syntactically-motivated lexical re-
source VerbNet to identify additional data through
metaphoric and literal sense identification, and
second, we use syntactic properties of certain lex-
emes, which allow us to identify relevant sen-
tences via dependency parses. These methods
yield training data that improves performance for
metaphor classification across a variety of tasks.

2 Related Work

While most computational metaphor processing
methods rely heavily on lexical semantics, many
previous approaches also employ syntactic struc-
tures to varying degrees. Most prior work involv-
ing argument structure is based on the idea of se-
lectional preferences: certain verbs prefer certain
arguments when used literally, and others when
used metaphorically. This idea is captured by de-
termining what kinds of arguments fill syntactic
and semantic roles for specific verbs.

The CorMet system (Mason, 2004) employs
this paradigm, and is similar to ours in their col-
lection of key verbs and analysis of syntactic ar-
guments and semantic roles. They automatically
collect documents for particular domains based
on key words, and identify selectional preferences
based on the WordNet hierarchy for verbs in these
particular domains. For example, they find that as-
sault typically takes direct objects of the type for-
tification in the MILITARY domain. This allows
them to make inferences about when selectional
preferences are adhered to, and they can then iden-
tify mappings between different domains. While
their task is fundamentally different, their usage
of syntactic frames to identify relevant arguments
is very similar to our work. However, rather than
identify preferences, we are using syntactic frames
to identify whether the verbs are possibly used
metaphorically. Our methods require less adher-
ence to semantic properties, which they retrieve
from WordNet. Our methods are also inherently
somewhat more noisy: while there is evidence that
syntactic frames can be indicative of metaphoric
properties, these properties are rarely observed de-
terministically.

Gedigian et al. (2006) use FrameNet and Prop-
Bank annotation to collect data, focusing on the
FrameNet frames MOTION and CURE. They use
PropBank argument annotations as features, re-
sulting in metaphoric classification accuracy on
these domains of over 95%, although this is only
slightly above the most frequent class baseline
(92%). They collect data from lexical resources
and then annotate it for metaphoricity, which is
similar to our approach of analyzing the resources
and word senses for metaphors.

Shutova et al. (2013) also employs selectional
preferences based on argument structure, identi-
fying verb-subject and verb-direct object pairs in
corpora. They begin with a seed set of metaphoric
pairs, similar to our methods of collecting in-
stances based on syntactic information. They use
these seed pairs to identify new metaphors, sim-
ilar to our usage of syntactic patterns to identify
training data. Their methods are based on the se-
lectional preferences of verbs, and thus are less
concerned with the variety of syntactic patterns
metaphors can participate in. We will identify
much more complex syntactic patterns, and we
then use the data for training metaphor systems
rather than identifying selectional preferences.

Stowe et al. (2018) use syntactic structures di-
rectly for feature-based machine learning meth-
ods. They highlight the distribution of various
syntactic patterns in corpora, and extract features
based on dependency parses to improve classifier
performance. While their results outperform lexi-
cal baselines, they still lag behind other metaphor
detection systems, with F1 scores of 53.1 for verbs
and 50.5 for nouns on the Vrije Universtat Ams-
terdam Metaphor Corpus (VUAMC) (Steen et al.,
2010). We improve on their work by employing
deep learning architecture while still attempting
to leverage syntactic information. As many deep
learning algorithms (including the recurrent neural
networks used here) natively capture long-distance
dependencies, direct inclusion of syntactic fea-
tures is likely not productive. By capturing ad-
ditional data, we can take advantage of linguistic
analysis to improve deep learning-based metaphor
detection.

With regard to datasets and tasks, metaphor pro-
cessing has suffered from a lack of consistent eval-
uation methods. The metaphor shared task pro-
vided a standard evaluation procedure that has
greatly helped with system comparison (Leong
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et al., 2018). They use the VUAMC, providing
a train/test split that has been used to regular-
ize the evaluation of metaphor identification sys-
tems. For both sections of the task (identifying all
metaphoric words and identifying verbs), four of
the top five systems use some form of long short-
term memory network (LSTM). The system of Wu
et al. (2018) performed best on both tasks (F1 of
.651 on all parts of speech, and .672 for verbs) us-
ing a combination of a convolutional neural net-
work (CNN) and bidirectional LSTM.

Since the shared task, a variety of other ap-
proaches have been developed using similar deep
learning techniques. Most recently, the work of
Gao et al. (2018) achieved state-of-the-art perfor-
mance on the shared task data as well as a vari-
ety of other datasets, including the TroFi (Birke
and Sarkar, 2006) and Mohammad et al. (2016)
datasets, using Bi-LSTM models coupled with
GloVe (Pennington et al., 2014) and ELMo (Pe-
ters et al., 2018) embeddings. For the VUAMC
shared task, they report F1 scores of .726 for all
parts of speech and .697 for verbs. For the Mo-
hammad et al. dataset, they report an average F1
score of .791, and for the Trofi they report an F1
score of .72, slightly lower than the current state
of the art (.75 of Köper et al. (2017)).

Despite recent advances in evaluation and algo-
rithm performance, the task still remains difficult,
with the highest F1 scores nearing only .73 on the
VUAMC data. This is likely due to the relatively
small dataset size (app. 200,000 words), which
is in part caused by difficulties in annotation. We
aim to overcome some of this difficulty by auto-
matically extracting additional training data with
lexical and syntactic methods.

3 Methods

We aim to improve training data for metaphor pro-
cessing by performing linguistic analysis on diffi-
cult verbs to uncover the syntactic properties that
can potentially influence their metaphoricity. Our
work is focused on verbs: they form the foun-
dation of many metaphoric expressions, and evi-
dence from construction grammar and frame se-
mantics has shown that syntactic properties can of-
ten influence the types of metaphors that are pro-
duced (Sullivan, 2013). We show that identifica-
tion of anomalous syntactic structures can provide
evidence towards metaphoricity, and can be lever-
aged to automatically extract training data that im-

proves classification performance.
This is done through two paths: first, we explore

the lexical semantic resource VerbNet, an ontol-
ogy of English verbs that contains rich syntactic
and semantic information. From VerbNet we ex-
plore verb senses that can potentially be determin-
istically metaphoric or literal, and extract train-
ing data from existing VerbNet annotation. Sec-
ond, we analyze syntactic patterns from Wikipedia
data. We identify patterns that indicate metaphoric
or literal senses of verbs, and then extract addi-
tional data based on these patterns.

3.1 Finding Difficult Verbs
First, we need to select verbs to analyze. Our goal
is to find verbs that are likely difficult for classi-
fiers, as well as those that are frequent enough to
have a significant impact. This is accomplished
through two avenues: first, we examine all the
verbs in the training data, and analyze those that
have the most even class balance between literal
and metaphoric uses. We refer to these verbs as
our most “ambiguous” verbs. For our preliminary
experiments, we selected the ten most ambiguous
verbs which occurred at least ten times in the train-
ing data.

Second, we employed the metaphor detection
system of Gao et al. (2018). We trained the system
on the provided VUAMC shared task training data
and ran it on their validation set. We then analyzed
which verbs were most frequently misclassified in
the validation data, to determine where additional
data would be most effective. We chose to use the
VUAMC data for this task due to its size and sta-
tus as the standard for metaphor identification. As
with the most ambiguous verbs, we selected the
ten verbs with the lowest F1 score that occurred at
least ten times in the data for analysis. The verbs
chosen through these analyses are shown in Table
1. In theory, expanding the number of verbs ana-
lyzed would yield more data and improve perfor-
mance, but as an experimental baseline ten verbs is
sufficient for analysis and classifier improvement.

For each of these verbs, we performed two
kinds of analysis. First, we explored their
metaphoric and literal usage in VerbNet. Sec-
ond, we examined their syntactic properties for
metaphoric and literal patterns.

3.2 VerbNet
VerbNet is a lexical resource that currently cate-
gorizes 6,791 verbs into 329 verb classes based
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Most Ambiguous Verbs Most Misclassified Verbs
Verb Met Tokens Lit Tokens % Met Verb FP FN Correct % Correct
encourage 6 6 .5 spend 7 0 4 .363
blow 5 5 .5 include 8 1 10 .526
conduct 5 5 .5 play 3 3 8 .571
show 34 33 .49 hold 3 3 8 .571
find 60 62 .49 stop 7 1 12 .600
fall 18 19 .51 reduce 2 2 6 .600
hold 28 30 .52 get 15 21 74 .673
bring 36 33 .48 suggest 4 0 9 .692
put 57 52 .48 meet 2 1 7 .700
allow 19 21 .48 discuss 1 2 7 .700

Table 1: Difficult Verbs from the VUAMC data: on the left, the verbs with the most even split between literal and
metaphoric. On the right, verbs in the validation set that were most misclassified. Restricted to verbs where count
≥ 10.

on their syntactic and semantic behavior (Kipper-
Schuler, 2005).2 These verb classes are based
on the work of Levin (1993), who shows that for
many verbs their semantics can be determined by
the syntactic alternations they participate in, argu-
ing that ”the behavior of a verb, particularly with
respect to the expression and interpretation of its
arguments, is to a large degree determined by its
meaning.” (pg 1)

VerbNet is primarily composed of verb
”classes”: these classes are a hierarchically struc-
turing of verb senses based on their syntactic and
semantic behavior. Each class contains a list of
verb senses, the syntactic frames that these verbs
can participate in, a first-order semantic predicate
representation for the class’s meaning, and the
thematic roles the verb takes as arguments. These
thematic roles, which are fairly coarse-grained
roles such as Agent, Theme, and Patient, are often
marked with selectional restrictions. For example,
many classes have Agents that are marked as
+ANIMATE, indicating the Agent of the verb must
be an animate entity.

VerbNet has practical applications for word
sense disambiguation and semantic role labelling,
and numerous annotation projects have been done
to tag data with the correct VerbNet senses. Our
goal is to identify which particular VerbNet senses
are typically metaphoric or literal, and extract sen-
tences tagged with these VerbNet senses.

For each verb, we examined the VerbNet classes
in which it appears. We looked at VerbNet anno-
tation, the example sentences, the selectional pref-

2https://verbs.colorado.edu/verbnet/

erences on the class’s thematic roles, and the se-
mantic predicates. From this we assessed whether
the sense of the verb in each class was typi-
cally metaphoric or literal. Consider the verb
”grow”. It is present in two particular VerbNet
classes: GROW-26.2 and CALIBRATABLE COS-
45.6. The GROW-26.2 class has an animate
Agent role, and produces a concrete Product out
of a concrete Material:

1. A private farmer in Poland is free to buy and
sell land, hire help, and decide what to grow.

2. It’s the kind of fruit that grew freely and that
you could help yourself to.

We note from the semantics and annotated ex-
amples, we expect this sense of grow to typically
be literal. However, in the CALIBRATABLE COS-
45.6 class, it contains a Value role that moves
along a scale by a certain Extent. These examples
all appear to be metaphoric, evoking the MORE IS

UP mapping3:

1. Exports in the first eight months grew only
9%.

2. Non-interest expenses grew 16% to $496
million.

This allows us to extract new training data us-
ing these classes. We use a repository of manu-
ally annotated VerbNet senses, containing approx-
imately 150,000 annotated verbs (Palmer et al.,

3Examples from the VerbNet annotation data from Palmer
et al. (2017)

https://verbs.colorado.edu/verbnet/
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2017). We found all annotated instances of
”grow” in the GROW-26.2 class, and considered
them to be literal, and all instances of ”grow”
from CALIBRATABLE COS-45.6 were consid-
ered metaphoric. This process was completed for
all of the verbs in Table 1. This analysis only
includes the particular verb in question. We be-
lieve ”grow” in the GROW-26.2 class is typically
literal, and ”grow” in the CALIBRATABLE COS-
45.6 class is typically metaphoric, but this does
not necessarily extend to other verbs in these
classes. We will discuss the possibility of expand-
ing this analysis to include all verbs for particular
classes in Section 6.

Note that we only consider the verbs in these in-
stances: we have no knowledge of the metaphoric-
ity of the verbs’ arguments. For each verb, we ex-
tracted up to 100 annotations for each sense that
we determined to be largely metaphoric or literal.

3.3 Syntactic Patterns

As a second path for finding additional data, we
explore the syntactic properties of metaphoric ex-
pressions. While metaphors are traditionally seen
as cognitive, and relatively unaffected by sur-
face syntactic realizations, there is recent evi-
dence based in construction grammar that syn-
tactic structures can influence the source and tar-
get domain elements of metaphoric expressions
(Sullivan, 2013; David and Matlock, 2018; David,
2017). We expand on this idea: we believe that
not only can syntactic structures indicate source
and target elements, but they can also indicate
metaphoricity.

We see this in English with verbs like hemor-
rhage, which is almost always used metaphorically
when it is used transitively4:

• GM was supporting this event even as they
were hemorrhaging cash.

• For 30 straight years, American organized la-
bor has been hemorrhaging members.

When used intransitively, hemorrhage is almost
always literal:

• Cerebral AVMs often have no symptoms un-
til they rupture and hemorrhage.

• Michael hemorrhaged and sustained a mas-
sive stroke to the left side of his brain.

4Examples from SketchEngine (Kilgarriff et al., 2014)
http://www.sketchengine.eu/

This is likely due to the fact that literal use of
“hemorrhage” contains an understood argument,
blood, which is the most natural object of the verb.
If the use is intended in a less literal way, which
requires on over syntactic object, the null “blood”
object needs to be overridden. While not all verbs
have this direct relation between argument num-
ber and metaphoricity, we believe that the type and
number of syntactic arguments of a verb can be in-
dicative of unmarked usage, and may be utilized as
a method for automatically extracting training data
for metaphor classification. This analysis doesn’t
reflect linguistic facts: it is possible to construct
sentences in which the intransitive use of ”hem-
orrhage” is metaphoric (”after the stock market
crashed, the company hemorrhaged”), as well as
transitive usages that are literal (”after the surgery,
the patient hemorrhaged blood”). However, we
find that in the majority of cases, metaphoricity
aligns with the argument structure, and these con-
trived examples are exceedingly rare.

For each verb in our list, we analyzed all the
sentences from the VUAMC training data as well
as 50 additional sentences from Wikipedia that
contained the verb, and attempted to discover syn-
tactic patterns that are indicative of metaphoric-
ity. We examined argument structure, active vs
passive voice, prepositional complements, aspect,
idiomatic combinations and other surface syntac-
tic properties. We created a short list of the most
likely candidates for literal and metaphoric syntac-
tic patterns. We then extracted up to 100 sentences
from Wikipedia that matched these syntactic pat-
terns.

A brief overview of the syntactic patterns and
VerbNet class analysis is shown in Table 2; the full
extraction rules, code, and data will be released
upon publication.

Note that for many cases, it was difficult to de-
termine what was literal and what was metaphoric.
Highly polysemous verbs like ”get” in particu-
lar are problematic: they contain many different
meanings and usages that can often be annotated
inconsistently, so strong metaphoric or literal pat-
terns were impossible to identify.

As with the ”hemorrhage” examples above,
these patterns are not deterministic. The syntac-
tic structures analyzed aren’t always metaphoric or
literal, but they are consistent enough to be useful
for extracting additional training data. For each
verb we attempted to extract up to 100 samples

http://www.sketchengine.eu/


367

Verb Lit. Syn. Patterns Met. Syn. Patterns Lit. VerbNet Classes Met. VerbNet Classes
encourage NP V NP {TO} VP NP V NP advise-37.9 amuse-31.1

find NP V PRO VP
find out, find dead NP V NP {TO BE} ADJ get-13.5.1 declare-29.4

fall NP V ADV, NP V
WH NP V

fall in, fall to escape-51.1

calibratable cos-45.6
convert-26.6.2

long-32.2
acquiesce-95.1

die-42.4

spend NP V
NP V {ON} NP

spend time
spend life pay-68 consume-66

spend time-104

play NP V PP
play with -

meet-36.3
performance-36.7

play-114.2

trifle-105.3
use-105.1

suggest negation - say-37.7 reflexive appearance-48.1.2

meet NP V
meet for/at/to - contiguous location-47.8 satisfy-55.7

Table 2: Example analysis of syntactic patterns and VerbNet classes.

From VerbNet From Syn. Patterns
Verb Count % Met Count % Met
encourage 86 .611 200 .497
blow - - 99 .946
conduct - - 200 .503
show - - - -
find 407 .300 255 .047
fall 314 .601 600 .749
hold 913 .445 487 .560
bring - - 500 .601
put - - - -
allow 2 1 300 .334
spend 439 .630 341 .553
play 52 .196 343 0
stop 482 .208 - -
reduce - - - -
suggest 307 .003 12 0
meet 455 .229 399 0
Total 3985 .442 3736 .424

Table 3: Total samples extracted from VerbNet classes
and syntactic patterns, along with the percentage of ex-
tracted samples that are metaphoric.

for each VerbNet sense and each syntactic pattern.
This is to prevent the extracted data becoming sat-
urated with extremely common senses or patterns.
Many senses and patterns are rare, and fewer than
100 instances were collected. A summary of the
extracted data by verb is shown in Table 3.

In total, we extracted 3,985 samples from Verb-
Net annotation and 3,736 samples from Wikipedia
based on syntactic samples for our analyzed verbs.
Each sample is an entire sentence containing the
verb in question, for which we can provide au-
tomatic annotation based on our VerbNet and
syntactic analyses. We can treat this as dis-
tantly supervised data: we have beliefs about the
metaphoric and literal labels for the verbs in each
sentence extracted, but these aren’t always de-

terministic: errors in syntactic pattern matching,
anomalous examples, and other factors introduce
inaccuracies in these samples.

4 Tasks

In order to show the efficacy of our extracted data,
we add this data to the standard datasets and eval-
uate performance on a variety of metaphor pro-
cessing tasks. For a relevant comparison to con-
temporary research, we evaluate our results using
the baseline system of Gao et al. on five differ-
ent tasks. As per their work, we experiment with
two different models: a sequence based model
(dubbed ”SEQ”) that performs best when all parts
of speech contain metaphor tags, and a ”classifica-
tion” model (”CLS”), which tags individual verbs
as metaphoric or not.

4.1 Sequential Model (SEQ)

The sequential model takes as input sentences
from VUAMC data, each with a binary metaphor
tag. They represent each word as the concatena-
tion of a 300 dimension GloVe embeddings with
an ELMo vector. These are then input to a bidirec-
tional LSTM. These sequential models are partic-
ularly useful for encoding relations among distant
words, and have proven effective on a large num-
ber of tasks for which each word in a sentence has
a tag.

4.2 Classification Model (CLS)

The classification model represents each verb in
the VUAMC data as its own instance, maintaining
the sentential context, and these each retain their
annotation as either metaphoric or not. As with the
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sequential model, they are input to a bidirecitonal
LSTM using GloVe and ELMo vectors. They also
include an index embedding and attention layer to
encode the location of the target word.5

These models are used over a variety of
datasets: the dataset from Mohammad et al.
(2016), the Trofi dataset (Birke and Sarkar, 2006),
and the VUA metaphor corpus which is the ba-
sis for the metaphor shared task (Steen et al.,
2010). They use a section of the Mohammad et al.
dataset dubbed ”MOH-X”, consisting of 636 ex-
ample sentences from 214 verbs taken from Word-
Net, annotated as metaphoric or literal. The Trofi
dataset contains 3,737 sentences from 50 differ-
ent verbs which were automatically clustered into
metaphoric or literal clusters. The sequence tag-
ger shows best performance when all words in
the sentence are metaphoric, as is the case with
the VUAMC data. The classification model per-
forms best when only a single word is metaphoric,
as in the MOH-X and Trofi datasets. While the
VUAMC is the basis of our analysis, we will
also examine how adding additional impacts re-
sults on the MOH-X and Trofi datasets; their setup
as classification tasks more accurately mirrors the
additional data, as there is only one potentially
metaphoric word per sample.

4.3 Architecture
We replicate the architectures of Gao et al., us-
ing the same experimental set-up. For the clas-
sification model, we can include our extra data as-
is, with metaphor annotations based on our anal-
ysis. For the sequential model, we consider only
the verb analyzed as metaphoric, leaving the rest
of the words tagged as literal. In order to judge
performance, we run three experimental setups:
one with the additional VerbNet samples, one with
the additional samples generated via syntactic pat-
terns, and one with both. We experimented with
tuning hyperparameters (learning rate, dropout,
and the size of the hidden layer), but found no
significant improvements over their experimental
setup. We did make one modification: we in-
creased the amount of training epochs in propor-
tion to the amount of training data added. This
allows for the model to be sufficiently trained over
all the data.

The VUAMC data has been split into training
5Full details and code for each of these mod-

els can be found at https://github.com/gao-g/
metaphor-in-context/

and test sections for the shared task, and these sec-
tions are also used by Gao et al. We will adopt this
split. For the MOH-X and Trofi datasets, they run
10-fold cross validation and report the mean F1
score. Due to the variable nature of neural mod-
els and the relatively small dataset size, we include
experiments to calculate the statistical significance
of our methods. We split these datasets into 75%
training, 25% test, mirroring the VUAMC data,
and ran classification 10 times. We then calcu-
lated the means and standard deviations. We also
ran bootstrap estimation for all tasks, reevaluat-
ing using random replacement over 106 iterations
(Efron, 1979; Berg-Kirkpatrick et al., 2012). We
consider improvement significant when the mean
and standard deviation from both methods yield p
values of less than .01.

5 Results

The results from our additions on the original tasks
are shown in Figure 1, and the improvements over
the baseline for each method are outlined in Table
4. For each task, we display the results of the orig-
inal Gao baseline, along with the addition of Verb-
Net samples, syntactic pattern-based samples, and
both. For each of these, we show the mean and
standard deviation from running the task 10 times.

We find that adding VerbNet samples, syntac-
tic patterns, and both datasets all always pro-
duces a significant improvement over the baseline.
Adding this additional data outperforms the Gao et
al. sequence tagging algorithm on the VUA shared
task data for both verbs and all parts of speech. We
also see improvements in the classification model,
and on the Trofi dataset. It is important to note
that the extreme variability in the results for these
smaller datasets. We found our improvements on
the Trofi dataset to be significant, while the MOH-
X results were not significant. This is likely due
to the size of the dataset: the MOH-X data con-
tains only 636 samples, leading to high variance
in performance. Further evaluation is necessary to
determine the consistent effect of this data.

For verb sequence tagging, the VerbNet data
yielded the best performance, while for all parts
of speech the additional syntactic data performed
best. This may be because the VerbNet data
comes specifically from VerbNet annotation, re-
lying strictly on VerbNet senses. VerbNet is
grounded in syntactic alternations, but individu-
ally VerbNet senses occasionally encode metaphor

https://github.com/gao-g/metaphor-in-context/
https://github.com/gao-g/metaphor-in-context/
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Task
Additional Data MOH-X Trofi VUA CLS (Verbs) VUA SEQ (Verbs) VUA SEQ (All)
Baseline .653 .658 .665 .682 .728
+VN Data .681* .672 .673 .696 .736
+SYN Data .704* .672 .677 .694 .738
+Both .683* .684 .679 .695 .735

Table 4: Mean F1 scores over 10 iterations, for each model and dataset added. Bootstrap sampling indicated that
these improvements are all significant over the baseline, excepting the MOH-X dataset. Due to high variability,
the MOH-X results (*) were not significant improvements over the baseline (p > .01)

.

Figure 1: Results for each task. Results shown are the mean with standard deviations from running 10 iterations of
each model for each task.

without direct relation to the verb’s arguments.
The syntactic data directly relies on patterns which
include other parts of speech: arguments, preposi-
tions, and idiomatic expressions. These extra com-
ponents of the analysis may make the data more
broadly applicable to all parts of speech, driving
the improvement in the sequence tagging of all
words.

Adding both distantly supervised datasets im-
proved performance over adding either individu-
ally only for the classification-based tasks, where
only one word per sentence has a tag (the Trofi and
VUAMC verb classification tasks). Only on the
Trofi dataset was the improvement from adding
both datasets significantly higher than the im-
provement from adding the best individual dataset.
For the sequence-based tagging of the VUAMC,
adding both yielded negligible improvements. As
adding both datasets was effective for classifica-
tion tasks, we believe the difficulty in combin-
ing both datasets in the sequence models is due

to excessive noise from the non-target words of
the samples. We default to marking every word
other than the target verb in the sentence as literal,
so the additional data is understandably less infor-
mative for sequence tagging problems. It is likely
that the combination of VerbNet data and syntac-
tic pattern-based data caused additional noise: the
two datasets may in places be contradictory, par-
ticularly with regard to these non-target elements.

6 Conclusions

We show that using external data found through
syntactic structures and lexical resources can
be used to improve deep learning methods for
metaphoric classification. This is due to regular
syntactic patterns of metaphoric usage, and the
idea that the semantics of verbs can be depen-
dent on the syntactic patterns that it participates in.
For future improvements, there are other resources
available that could be leveraged in the same way.
PropBank (Palmer et al., 2005), FrameNet (Baker
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et al., 1998), and WordNet (Fellbaum, 2010) all
offer some syntactic and/or semantic information,
and data annotated with these resources could
prove another valuable source of additional sam-
ples.

We also only examine some basic syntactic pat-
terns for a small number of verbs, and this was
done manually. Improved methods for automati-
cally detecting relevant syntactic patterns as well
as further effort in manual identification of syn-
tactic properties of metaphoric samples could in-
crease the amount of data extracted. Further lin-
guistic analysis of constructions that either re-
quire or prohibit metaphoric interpretations could
improve both automatic metaphor processing and
our broader understanding of linguistic metaphors.
Additionally, we only look at specific verbs within
VerbNet classes. All verbs within VerbNet classes
share syntactic and semantic properties, so it is
likely that we can extend our verb-level analysis
to a broader class-level analysis. A straightfor-
ward extension of this work would be to analyze
VerbNet classes as being metaphoric or literal, and
extracting data for all verbs within a given class.

Finally, while they have proven invaluable for
the standardization of metaphor processing, there
are still gaps and inconsistencies in our metaphor
datasets. Extracting additional training data based
on syntactic patterns likely was effective in this
case in part due to the idiosyncrasies of the pre-
vious datasets, which may over-annotate possible
metaphors. This procedure yields a large number
of conventional metaphors, which lack novelty,
are very frequent, and are perhaps more amenable
to being discovered via syntactic patterns. More
data annotated for metaphor is essential to im-
prove deep learning methods for metaphor pro-
cessing, and while we are attempting to overcome
these gaps with outside resources, further quality
metaphor annotation would prove especially valu-
able to the field.
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