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Abstract
In this paper, we study how word-like units are
represented and activated in a recurrent neu-
ral model of visually grounded speech. The
model used in our experiments is trained to
project an image and its spoken description in
a common representation space. We show that
a recurrent model trained on spoken sentences
implicitly segments its input into word-like
units and reliably maps them to their correct
visual referents. We introduce a methodology
originating from linguistics to analyse the rep-
resentation learned by neural networks – the
gating paradigm – and show that the correct
representation of a word is only activated if the
network has access to first phoneme of the tar-
get word, suggesting that the network does not
rely on a global acoustic pattern. Furthermore,
we find out that not all speech frames (MFCC
vectors in our case) play an equal role in the
final encoded representation of a given word,
but that some frames have a crucial effect on
it. Finally, we suggest that word representation
could be activated through a process of lexical
competition.

1 Introduction

Neural models of Visually Grounded Speech
(VGS) sparked interest in linguists and cognitive
scientists as they are able to incorporate multi-
ple modalities in a single network and allow the
analysis of complex interactions between them.
Analysing these models does not only help to un-
derstand their technological limitations, but may
also yield insight on the cognitive processes at
work in humans (Dupoux, 2018) who learn from
contextually grounded speech utterances (either
visually, haptically, socially, etc.). This is with
this idea in mind that one of the first computa-
tional model of visually grounded word acquisi-
tion was introduced by Roy and Pentland (2002).
More recently, Harwath et al. (2016) and Chrupała
et al. (2017) were among the first to propose neural
models integrating these two modalities.

While Chrupała et al. (2017) and Alishahi et al.
(2017) focused on analysing speech representa-
tions learnt by speech-image neural models from
a phonological and semantic point of view, the
present work focuses on lexical acquisition and the
way speech utterances are segmented into lexical
units by a neural model.

More precisely, we aim at understanding how
word-like units are processed by a VGS architec-
ture. First, we study if such models are robust
to isolated word stimuli. As such networks are
trained on raw speech utterances, robustness to
isolated word stimuli would indicate that a seg-
mentation process was implicitly carried out at
training time. We also explore which factors in-
fluence the most such word recognition. In a
second step, to better understand how individual
words are activated by the network, we adapt the
gating paradigm initially introduced to study hu-
man word recognition (Grosjean, 1980) where our
neural model is inputted with speech segments
of increasing duration (word activation). Finally,
as some linguistic models assume that the first
phoneme of a target word activates all the words
starting by the same phoneme, we investigate if
such a pattern holds true for our neural model as
well (word competition). As far as we know, no
other study has examined patterns of word recog-
nition, activation and competition in models of
VGS.

This paper is organised as follows: section 2
presents related works and section 3 details our
experimental material (data and model). Our con-
tributions follow in section 4 (word recognition),
section 5 (word activation) and section 6 (word
competition). Section 7 concludes this work.

2 Related Work

In this section we explore what is known about
word recognition in humans. We then review re-
cent works related to the representation of lan-
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guage in VGS models. A few words are also said
about modified inputs and adversarial attacks as
they are related to the analysis methodology used
in part of this work.

2.1 Word Recognition in Humans

Many psycholinguistic models try to account for
how words are activated and recognised from flu-
ent speech. The process of word recognition
“requires matching the spoken input with men-
tal representations associated with word candi-
dates” (Dahan and Magnuson, 2006). One of
the first model trying to account for how humans
recognise and extract words from fluent speech is
the COHORT model by Marslen-Wilson and Welsh
(1978). In this model, word recognition proceeds
in 3 steps: access, selection and integration. Ac-
cess denotes the process by which a set of words (a
cohort) becomes activated if their onsets are con-
sistent with the perceived spoken input. As soon as
a word form becomes inconsistent with the spoken
input, it is removed from the initial cohort (selec-
tion phase). A word is deemed recognised as soon
it is the last one standing in the cohort. Integration
consists in checking if the word’s syntactic and se-
mantic properties are consistent with the rest of
the utterance. However, COHORT supposes a full
match between the perceived input and the word
forms and does not account for word frequency
in the access phase. REVISED COHORT (Marslen-
Wilson, 1987) later relaxed the constraints on the
cohort formation to take into account these facts.
There is no active competition per se between
words in the COHORT model. That is, the strength
of activation of a word does not depend on the
value of the activation of the other words, but only
on how well the internalised word form matches
the perceived spoken input. TRACE (McClelland
and Elman, 1986) is a connectionist model of spo-
ken word recognition consisting of three layers of
nodes, where each layer represents a particular lin-
guistic unit (feature, phoneme and word). Lay-
ers are linked by exitatory connections (e.g. frica-
tive feature node would activate /f/ phoneme node
which would, in turn, activate words starting with
this sound), and nodes within a layer are linked by
inhibitory connections, thus inducing a real com-
petition between activated words. Contrary to the
COHORT model which does not allow words em-
bedded in longer words to be activated, TRACE al-
lows such activation. SHORTLIST (Norris, 1994)

is another model which builds upon COHORT and
TRACE by taking into consideration other features
such as word stress.1

To sum up, models of spoken word recognition
consider that a set of words matching to a certain
extent the spoken input is simultaneously activated
and these models involve at some point a form of
competition between the set of activated words be-
fore reaching the stage of recognition.

2.2 Computational Models of VGS
Roy and Pentland (2002) were among the first
to propose a computational model, known as
CELL, that integrates both speech and vision
to study child language acquisition. However,
CELL required both speech and images to be
pre-processed, where canonical shapes were first
extracted from images and further represented
as histograms; and speech was discretised into
phonemes. More recently, CNN-based VGS mod-
els (Harwath et al., 2016, 2018; Kamper et al.,
2019) and RNN-based VGS models (Chrupała
et al., 2017) which do not require speech to be dis-
cretised into sub-units were introduced. Chrupała
et al. (2017) investigated how RNN-based mod-
els encode language, and showed such models
tend to encode semantic information in higher lay-
ers, while form is better encoded in lower lay-
ers. Alishahi et al. (2017) studied if such mod-
els capture phonological information and showed
that some layers do capture such information more
accuratly than others. Kádár et al. (2017) intro-
duced omission scores to interpret the contribu-
tion of individual tokens in text-based VGS mod-
els. More recently, Havard et al. (2019) stud-
ied the behaviour of attention in RNN-based VGS
models and showed that these models tend to fo-
cus on nouns and could display language-specific
patterns, such as focusing on particules when
prompted with Japanese. Recently, Harwath et al.
(2018) showed that CNN-based models could reli-
ably map word-like units to their visual referents,
and Harwath and Glass (2019) showed such net-
works were sensitive to diphone transitions and
that these were useful for the purpose of word
recognition. However, none of the aforementioned
works studied the process by which words are
recognised and activated. This present work aims
at bridging what is known about word activation

1For a review of spoken word recognition model, reader
can consult Dahan and Magnuson (2006) and Weber and
Scharenborg (2012)
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and recognition in humans and the computations
at work in VGS models.

2.3 Modified Inputs and Adversarial Attacks

As will be shown later, the gating method used in
this article modifies the input stimulus to better un-
derstand the behaviour of the neural model.

We can draw a parallel with approaches recently
introduced to show the vulnerability of deep net-
works to strategically modified samples (adversar-
ial examples) and to detect their over-sensitivity
and over-stability points. It was shown that im-
perceptible perturbations can fool the neural mod-
els to give false predictions. Inspired by the re-
searches for images (Su et al., 2019), efforts on
attacking neural networks for NLP applications
emerged recently (see Zhang et al. (2019) for a
survey). However, while a lot of references can be
found for textual adversarial examples, fewer pa-
pers addressed adversarial attacks for speech (we
can however mention the work of Wu et al. (2014)
addressing spoofing attacks in speaker verification
and of Carlini and Wagner (2018) attacking Deep-
Speech end-to-end ASR system).

3 Experimental Settings

3.1 Model Type

Even though the methodologies developed in this
work could also be applied to CNN-based VGS
models, the present work will solely focus on the
analysis of the representations learned by a RNN-
based VGS model. Indeed, from a cognitive per-
spective, RNN-based models are more realistic
than CNN-based models as the speech signal – or
in our case, a sequence of MFCC vectors – is se-
quentially processed from left-to-right, whereas in
CNN-based models the network processes multi-
ple frames at the same time. This will thus al-
low us to explore if RNN-based models display
human-like behaviour or not.

3.2 Model Architecture

The model we use for our experiment is based on
that of Chrupała et al. (2017) and later modified by
Havard et al. (2019). It is trained to solve an im-
age retrieval task: given a speech query, the model
should retrieve the closest matching image. The
model consists of two parts: an image encoder
and a speech encoder. The image encoder takes
VGG-16 pre-calculated vectors as input instead of

raw images. It consists of a dense layer which re-
duces the 4096 dimensional VGG-16 input vec-
tor into a 512 dimensional vector which is then
L2 normalised. The speech encoder takes 13 Mel
Frequency Cepstral Coefficients (MFCC) vectors
instead of raw speech.2 It consists of a convo-
lutional layer (64 filters of length 6 and stride 3)
followed by 5 stacked unidirectional GRU layers
(Cho et al., 2014), with 512 units each. Two atten-
tion mechanisms (Bahdanau et al., 2015) are used:
one after the 1st recurrent layer and one after the
5th recurrent layer. The final vector produced by
the speech encoder corresponds to the dot product
of the weighted vectors outputted by each atten-
tion mechanism. The model is trained to minimise
the following triplet loss function as implemented
by Chrupała et al. (2017):

L(u, i, α) =
∑
u,i

(∑
u′

max[0, α+ d(u, i)− d(u′, i)]

+
∑
i′

max[0, α+ d(u, i)− d(u, i′)]

)
(1)

The loss function encourages the network to
minimise the cosine distance d between an image
i and its corresponding spoken description u by a
given margin α while maximising the distance be-
tween mismatching image/utterance pairs. For our
experiments, we set α = 0.2.

3.3 Data

The data set used for our experiments is based on
MSCOCO (Lin et al., 2014). MSCOCO is a data
set used to train computer vision systems, and fea-
tures annotated images, each paired with 5 human
written descriptions in English. MSCOCO’s im-
ages where selected so that the images would con-
tain instances of 80 possible object categories. We
trained our model on the spoken extension intro-
duced by Chrupała et al. (2017). This extension
provides spoken version of the human written cap-
tions. It is worth mentioning that this extended
data set features synthetic speech (female voice
generated using Google’s Text-To-Speech (TTS)
system) and not real human speech.

212 mel frequency cepstral coefficients + log of total
frame energy, vectors extracted every 10ms on a 25ms win-
dow
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3.4 Model Training and Results

We trained our model for 15 epochs with Adam
optimiser and an initial learning rate of 0.0002.
The training set comprises 113,287 images with 5
spoken captions per image. Validation and test set
comprise 5000 images each.3 Model is evaluated
in term of Recall@k (R@k) and median rank r̃.
That is, given a spoken query, which corresponds
to a full utterance, we evaluate the model’s abil-
ity to rank the unique paired image in the top k
images. We obtain a r̃ of 28.

Full results are shown in Table 1. Even though
our results are lower than the original implementa-
tion by Chrupała et al. (2017), our model still per-
forms far above chance level, showing it did learn
how to map an image and its spoken description.

Model R@1 R@5 R@10 r̃

Synth. COCO 0.056 0.182 0.284 28

Table 1: Recall at 1, 5, and 10 results and median
rank r̃ on a speech-image retrieval task (test part of our
datasets with 5k images). Chrupała et al. (2017) with
RHN reports median rank r̃ = 13. Chance median rank
r̃ is 2500.5.

4 Word Recognition

Harwath et al. (2018) observed that CNN-based
models can reliably map word-like units to their
corresponding visual reference. Chrupała et al.
(2017) and more recenlty Merkx et al. (2019)
showed that RNN-based utterance embeddings
contain information about individual words, but
did not show for what type of words this behaviour
holds true and if the model had learnt to map these
individual words to their visual referents. Havard
et al. (2019) showed that the attention mechanism
of RNN-based VGS models tends to focus on the
end of words that correspond to the main concept
of the target image. This suggests that such mod-
els are able to isolate the target word forms from
fluent speech and thus segment their inputs into
sub-units. In the following experiment we test if
a RNN-based VGS network can reliably map iso-
lated word-like units to their visual referents and
explore the factors that could influence such map-
ping.

3The train/dev/test correspond to those used in (Chrupała
et al., 2017)

4.1 Isolated Word Mapping

We selected a set of 80 words corresponding to the
name of 80 object categories in the MSCOCO data
set.4 We expect our model to be very efficient with
the selected 80 words, as these are the main ob-
jects featured in MSCOCO. We generated speech
signals for these 80 isolated words using Google’s
TTS system and then extracted MFCC features
for each of the generated words. We evaluate the
ability of the model to rank images containing an
object instance corresponding to the target word
among the first 10 images (P@10).5 Contrary to
(Chrupała et al., 2017) who uses Recall@k, we
use Precision@k as there are several images that
correspond to a single target word. It is to be
noted that at training time, the network was only
given full captions and not isolated words. Thus,
if the network is able to retrieve images featuring
instances of the target word, it shows that implicit
segmentation was carried out at training time.

Results are shown in Figure 1. 40 words out
of the 80 target words have a P@10≥ 0.8. This
shows that the network is able to map isolated
words to their visual referent despite never having
seen them in isolation and that the network implic-
itly segmented its input into sub-units.

Figure 1: Precision@10 for the 80 isolated words cor-
responding to MSCOCO categories.

4.2 Factors Influencing Word Mapping

We explore here the factors that could come at play
in the recognition of isolated words. We explore
2 types of factors: speech related factors and im-
age related factors. For the former we consider

4List available at https://github.com/
amikelive/coco-labels/blob/master/
coco-labels-2014_2017.txt

5Evaluation is performed on the test set containing 5000
images

https://github.com/amikelive/coco-labels/blob/master/coco-labels-2014_2017.txt
https://github.com/amikelive/coco-labels/blob/master/coco-labels-2014_2017.txt
https://github.com/amikelive/coco-labels/blob/master/coco-labels-2014_2017.txt
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Spearman’s ρ p-value Effect

Images
Avg. Neighbour -0.3906 0.0003 *** Weak

Avg. Size 0.3154 0.0043 ** Weak
Avg. Freq 0.1187 0.4675 None

Text Word Freq. 0.5514 1.148e-07 *** Moderate
# Syllables -0.1211 0.2844 None

Table 2: Factors influencing word recognition perfor-
mance in our model. Spearman’s ρ between Preci-
sion@10 and mentioned variables as well as p-value.

word frequency (Word Freq.) and word length (#
syllables). Concerning image related factors we
consider object instances frequency in the images
(Avg. Freq.), average number of neighbouring ob-
ject instances (Avg. Neighbour), average area of
each object (Avg. Size). Results are shown in Ta-
ble 2. We observe a weak negative correlation be-
tween precison and average number of neighbour-
ing objects, thus suggesting that objects that have
a low number of neighbouring objects are better
recognised by the network. It also seems that big-
ger objects yield better precison than smaller ob-
jects as we observe a weak positive correlation.
Word frequency seems to play an important role as
we observe a moderate positive correlation. How-
ever, we observe no correlation between precison
and the length of the target words nor with object
frequency in the images. Correlation values, how-
ever, remain relatively low, suggesting some other
factors could also influence word recognition.

5 Word Activation

In this section we describe how individual words
are activated by the network. To do so, we perform
an ablation experiment (similar to that of Grosjean
(1980) which was conducted on humans) where
the neural model is inputted only with a truncated
version of the 80 target words (see Section 5.1).
Such a method is also called gating in the litera-
ture.

5.1 Gating

The gating paradigm “involves the repeated pre-
sentation of a spoken stimulus (in this case, a
word) such that its duration from onset is in-
creased with each successive presentation” (Cot-
ton and Grosjean, 1984). In our case, it means
the neural model is fed with truncated version of
a target word, each truncated version comprising a
larger part of the target word. Truncation is either
done left-to-right (model only has access to the
end of the word) or right-to-left (model only has

access to the beginning of the word). Truncation is
operated on the MFCC vectors computed for each
individual word, meaning that MFCC vectors are
iteratively removed either from the beginning of
the word or the end of the word, but not from both
sides at the same time. Each truncated version of
the word is then fed to the speech encoder which
outputs an embedding vector. As in our previous
experiment, model is evaluated in terms of P@10.

COHORT model, in its initial version (Marslen-
Wilson, 1987), stipulates that word onset plays
a crucial role in word recognition whereas other
models of spoken word recognition give less im-
portance to word onset. This importance of exact
word onset matching was later revised in later CO-
HORT models. The aim of this experiment is to test
whether word onset plays a role in word recogni-
tion for the network or not. If it is the case, we ex-
pect the network to fail recovering images of the
target word if the word is truncated left-to-right.

Figure 2a shows evolution of P@10 averaged
over the 80 test words. As can be seen from the
graph, precision evolves differently according to
which part of the word was truncated. When the
target words are truncated left-to-right, precision
drops quickly. However, when truncated right-to-
left, precision remains high before gradually drop-
ping. These results show that the model is robust
to truncation when it is carried out right-to-left
but not when it is carried out left-to-right. Fig-
ure 2b shows the evolution of P@10 for one of
the target words (“giraffe”). When MFCC vectors
corresponding to the first phoneme are removed
(/Ã/), precision plummets from 1 to 0. How-
ever, when MFCC vectors belonging to the end
of the word are removed, precision plateaus at 1
until /Ç/ is reached and then plunges to 0. This
shows the model successfully retrieved giraffe im-
ages when only prompted with /ÃÇ/ but not when
prompted with /Çæf/ even though the latter com-
prises a longer part of the target word.

These results suggest that the model does not
rely on a vague acoustic pattern to activate the
semantic representation of a given concept, but
needs to have access to the first phoneme in order
to yield an appropriate representation.

5.2 Activated Pseudo-Words

Such ablation experiments also enables us to infer
on what units the network relies to make its pre-
dictions. Indeed, Figure 3 allows us to see what
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(a)
(b)

Figure 2: 2a Evolution of Precision@10 averaged over 80 test words as a function of the percentage of MFCC
vector removed for each word. 2b Evolution of Precision@10 for each ablation step of the word “giraffe”, with
time-aligned phonemic transcription /ÃÇæf/ at the bottom. “SIL” signals silences. For both 2a and 2b, blue line
displays scores when ablation was carried out left-to-right, meaning that at any given part on the blue curve, model
has only had access to the rightmost part of the word. (e.g. /Çæf/ without initial /Ã/). Red line displays scores
when ablation was carried out right-to-left, meaning that at any given part on the red curve, model has only had
access to the leftmost part of the word. (e.g. /ÃÇ/ without final /æf/ ).

Figure 3: Evolution of P@10 for each ablation step of
the word “baseball bat” with time aligned phonemic
transcription /beizbO:l#bæt/ at the bottom.

are the pseudo-words that were internalised by the
network for the word “baseball bat”. When trun-
cation is done left-to-right (blue curve), we no-
tice that at the beginning precision is quite high
(≈ 0.6), then reaches 0 when only /O:lbæt/ is left,
but suddenly increases up to 0.9 when the only
part left is /bæt/. This suggests that the network
mapped both “baseball bat” as a whole and “bat”
as referring to the same object. We observed the

same pattern for the word “fire hydrant” where
both “fire hydrant” and “hydrant” are mapped to
the same object.

However, Figure 2b shows that when only
prompted with /ÃÇ/ the network manages to find
pictures of giraffes. This suggests that the pseudo-
words internalised by the network could be /ÃÇæf/
as a whole but might also be /ÃÇ/. We thus need
to take caution when stating that the network has
isolated words, as the words internalised by the
network might not always match the human gold
reference.

5.3 Gradual or Abrupt Activation?

Figure 2b shows that removing or adding one
MFCC vector may yield large differences in the
network performance. Precision decreases steeply
and not steadily. This suggests that little acoustic
differences yield wide differences in the final rep-
resentation. Thus, in this section we analyse how
representation is being constructed over time and
explore if some MFCC vectors play a more impor-
tant role than others in the activation of the final
representation.

We progressively let the network see more and
more of the MFCC vectors composing the word,
iteratively feeding it with MFCC vectors starting
from the beginning of the word until the network
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(a) (b) (c)

Figure 4: Figure 4a shows evolution of the cosine similarity between the embeddings produced for each truncated
version of the target word and the embedding for the full word using a model with randomly initialised weights.
Figure 4c shows the same measure with the embeddings produced by a trained model. Figure 4b shows peaks
indicating the inflection points of curve 4a (green) and 4c (red). For our experiments, we only considered inflection
point to be significant if the resulting peak was higher than 0.025 (blue).

has had access to the full word. We then com-
pute the cosine similarity between the embedding
computed for each of the truncated version of the
word and the embedding corresponding to the full
word. The closer the cosine similarity is to 1, the
more similar the two representations are. Thus, if
each MFCC vector equally contributes to the final
representation of the word, we expect cosine simi-
larity to evolve linearly. However, if some MFCC
vectors have a determining factor in the final rep-
resentation we expect cosine similarity to evolve
in steps rather than linearly. To detect steps that
could occur in the evolution of cosine similarity,
we approximate its derivative by computing first
order difference. High steps should thus translate
into peaks (e.g. Figure 4b). We compute the evolu-
tion of cosine similarity for the 80 target words en-
coded with the best trained model (e.g. Figure 4c)
and also consider a baseline evolution by encod-
ing the 80 target words with an untrained model
(e.g. Figure 4a).6 To avoid micro-steps of yield-
ing peaks and thus creating noise, we smooth co-
sine evolution curves with a gaussian filter. We
consider peaks higher than 0.025 as translating a
high step in the evolution of cosine similarity.

On average, they are 1.35 peaks per word for
the trained model against 0.1 peak per word for
our baseline condition (untrained model), showing
that cosine evolution is linear in the latter but not
in the former. Thus, in our baseline condition (un-
trained model), each MFCC vector equally con-
tributes to the final representation, whereas in our
trained model some MFCC vectors are more de-

6Thus consisting only of randomly initialised weights

cisive for the final representation than others. In-
deed, some MFCC vectors trigger a high step in
the cosine evolution suggesting that the embed-
ding suddenly gets closer to its final value. Figure
4c shows the evolution of the cosine similarity for
the word “giraffe”. As it can be seen, cosine sim-
ilarity does not tend linearly towards 1, but rather
evolves in steps. Adding the MFCC vectors cor-
responding to the transition from /Ç/ to /æ/ trig-
gers a large difference in the embedding as the co-
sine similarity suddenly jumps to a higher value,
showing it is getting closer to its final represen-
tation. However, cosine similarity plateaus once
/æ/ is reached up until final silence, suggesting the
final /æf/ plays little to no role in the final repre-
sentation of the word.

6 Word Competition

As presented in Section 2.1, some linguistic
models assume that the first phoneme of target
word activates all the words starting by the same
phoneme. The words that are activated but which
do not correspond to the target words are called
“competitors”. As the listener perceives more
and more of the target word some competitors are
deactivated as they do not match what is being
perceived. For example, considering the follow-
ing lexicon: /beIbi/ (baby), /beIzIk/ (basic), and
/beIzbO:l/ (baseball), the first sound /b/ would acti-
vate all three words, once /beIz/ is reached, “baby”
would not be considered a competitor anymore,
and once /beIzb/ is reached the only word activated
would be “baseball” as it is the only word whose
beginning corresponds the perceived sounds.



346

(a) (b)

Figure 5: Illustration of lexical competition between 5a “meat” and “meter” (target) and 5b “plate” and “player”
(target). Numbers in 1st x-axis corresponds to the number of MFCC frames; 2nd x-axis corresponds to time-
aligned phonemic transcription of the target word; y-axis shows number of images for which at least one caption
(out of 5) contains the target or competitor word. Vertical colour bars are projection of phoneme boundaries of the
target word. Horizontal colour bars show chance score for each word (<2).

We test if the network displays such lexical
competition patterns. To do so, we select a set
of 29 word pairs according to the following cri-
teria: i) words should at least appear 400 times
or more in the captions of the training set, so that
the network would have been able to learn a map-
ping between this word and its referent; ii) words
forming a pair should at least start with the same
phoneme;7 iii) words should not be synonyms and
clearly refer to a different visual object (thus ex-
cluding pairs such as “motorcycle” and “motor-
bike”).

For each word pair, we select the longest word
as target and progressively let the network see
more and more of the MFCC vectors composing
this word (as in Section 5.3). At each time step the
network produces an embedding, which we use to
rank the images from the closest matching image
to the least matching image.8 Then, for the 50
closest matching images, we check if at least one
of the caption contains either the target word or the
competitor. As the competitor is embedded in the
longer word, we expect the network to produce an
embedding close to that of the competitor at the
beginning and then when the acoustic signal does

7Phonemic transcription found in CMU Pronouncing Dic-
tionnary was used

8That is, we compute the cosine distance between the em-
bedding produced at time step t and all the images (5000) of
our collection.

not match the competitor anymore, we expect the
network to be able to find only the target word.

Figure 5 shows example of competition be-
tween two word pairs. Figure 5a shows that
when prompted with the beginning of the word
“meter” /mi:t/ the representation activated by the
network is close to that of “meat” as the clos-
est maching images’s captions contain the word
“meat”. Representation of the word “meter”
seems to be activated only when /Ç/ is reached,
and consequently triggers the total deactivation of
the word “meat”. Figure 5b displays a different
pattern. As in the previous example, the begin-
ning of the word “player” /pleI/ triggers the acti-
vation of the word “plate”. When /Ç/ is reached,
the target word becomes activated and competitor
“plate” starts to deactivate. However, the deacti-
vation is not full, so that when the whole word
“player” is entirely processed by the network,
the word “plate” still remains highly activated.
(REVISED) COHORT (Marslen-Wilson and Welsh,
1978; Marslen-Wilson, 1987) and TRACE (Mc-
Clelland and Elman, 1986) both state that compet-
ing words are all activated at the same time, that
is when the first phoneme is perceived. However
here, the two competing words are activated se-
quentially but not at the same time. Also, in some
cases, competing words that do not match the in-
put anymore still remain highly activated.
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7 Conclusion

In this paper, we analysed the behaviour of a
model of VGS and showed that a RNN-based
model of VGS is able to map isolated words
to their visual referents. This result is in line
with previous results, such as that of Harwath
and Glass (2019) which uses a CNN-based net-
work. This shows that such models perform an
implicit segmentation of the spoken input in order
to extract the target words. However, the mech-
anism by which implicit segmentation is carried
out and what cues are being used is still to be ex-
plained. We also demonstrated that not all words
are equally well recognised and showed that word
frequency and number of neighbouring object in
an image partly explain this phenomenon.

Also, we introduced a methodology originat-
ing from linguistics to analyse the representation
learned by neural networks: the gating paradigm.
This enabled us to show that the beginning of a
word can activate the representation of a given
concept (e.g. /ÃÇ/ for “giraffe”). We explain this
by the fact that the network has to handle a very
small lexicon, where word forms rarely overlap
and thus the network needs not see the full word to
make its decision. More importantly, we showed
that the network needs to have access to the first
phoneme in order to activate the representation of
the target word, thus showing that it does not re-
spond to a vague acoustic pattern. Word onsets
thus play a crucial role in the process of word ac-
tivation and recognition for our network. Though
word onsets are also important for humans, they
are not as crucial as for our network. Indeed, hu-
mans are able to recover the missing information.
In future work, we would like to test if sentential
context has an effect in word recognition. We also
demonstrated that our model is able to map multi-
ple pseudo-words to the same referent such as hu-
mans do (Section 5.2). However, it is not clear
how and when acoustics interface with meaning
and this still remains an open question.

Finally, we showed that there is a form of lexical
competition in the network. Indeed, small words
embedded in longer words are activated. However,
we showed that, contrary to humans where words
sharing the same beginning are all activated at the
same time, words are activated sequentially by the
network. Also, some stay partially activated even-
though the input does not match that of the acti-
vated word.

Ultimately, we would like to highlight the fact
that the gating paradigm could also by applied to
understand the temporal dynamics of the represen-
tations learned by other speech architectures such
as those used in speech recognition for instance.
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