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Abstract

Recently, pre-trained language models have
achieved remarkable success in a broad range
of natural language processing tasks. How-
ever, in multilingual setting, it is extremely
resource-consuming to pre-train a deep lan-
guage model over large-scale corpora for each
language. Instead of exhaustively pre-training
monolingual language models independently,
an alternative solution is to pre-train a pow-
erful multilingual deep language model over
large-scale corpora in hundreds of languages.
However, the vocabulary size for each lan-
guage in such a model is relatively small, es-
pecially for low-resource languages. This lim-
itation inevitably hinders the performance of
these multilingual models on tasks such as se-
quence labeling, wherein in-depth token-level
or sentence-level understanding is essential.

In this paper, inspired by previous methods
designed for monolingual settings, we in-
vestigate two approaches (i.e., joint mapping
and mixture mapping) based on a pre-trained
multilingual model BERT for addressing the
out-of-vocabulary (OOV) problem on a vari-
ety of tasks, including part-of-speech tagging,
named entity recognition, machine translation
quality estimation, and machine reading com-
prehension. Experimental results show that
using mixture mapping is more promising. To
the best of our knowledge, this is the first work
that attempts to address and discuss the OOV
issue in multilingual settings.

1 Introduction

It has been shown that performance on many
natural language processing tasks drops dramati-
cally on held-out data when a significant percent-
age of words do not appear in the training data,

* This work was done when H. W. and K. S. were at
Tencent AI Lab, Bellevue, WA.

i.e., out-of-vocabulary (OOV) words (Søgaard and
Johannsen, 2012; Madhyastha et al., 2016). A
higher OOV rate (i.e., the percentage of the unseen
words in the held-out data) may lead to a more
severe performance drop (Kaljahi et al., 2015).
OOV problems have been addressed in previous
works under monolingual settings, through replac-
ing OOV words with their semantically similar in-
vocabulary words (Madhyastha et al., 2016; Ko-
lachina et al., 2017) or using character/word infor-
mation (Kim et al., 2016, 2018; Chen et al., 2018)
or subword information like byte pair encoding
(BPE) (Sennrich et al., 2016; Stratos, 2017).

Recently, fine-tuning a pre-trained deep lan-
guage model, such as Generative Pre-Training
(GPT) (Radford et al., 2018) and Bidirec-
tional Encoder Representations from Transform-
ers (BERT) (Devlin et al., 2018), has achieved re-
markable success on various downstream natural
language processing tasks. Instead of pre-training
many monolingual models like the existing En-
glish GPT, English BERT, and Chinese BERT, a
more natural choice is to develop a powerful mul-
tilingual model such as the multilingual BERT.

However, all those pre-trained models rely on
language modeling, where a common trick is
to tie the weights of softmax and word embed-
dings (Press and Wolf, 2017). Due to the expen-
sive computation of softmax (Yang et al., 2017)
and data imbalance across different languages, the
vocabulary size for each language in a multilingual
model is relatively small compared to the mono-
lingual BERT/GPT models, especially for low-
resource languages. Even for a high-resource lan-
guage like Chinese, its vocabulary size 10k in the
multilingual BERT is only half the size of that in
the Chinese BERT. Just as in monolingual settings,
the OOV problem also hinders the performance of
a multilingual model on tasks that are sensitive to
token-level or sentence-level information. For ex-
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ample, in the POS tagging problem (Table 2), 11
out of 16 languages have significant OOV issues
(OOV rate ≥ 5%) when using multilingual BERT.

According to previous work (Radford et al.,
2018; Devlin et al., 2018), it is time-consuming
and resource-intensive to pre-train a deep lan-
guage model over large-scale corpora. To address
the OOV problems, instead of pre-training a deep
model with a large vocabulary, we aim at enlarg-
ing the vocabulary size when we fine-tune a pre-
trained multilingual model on downstream tasks.

We summarize our contributions as follows: (i)
We investigate and compare two methods to allevi-
ate the OOV issue. To the best of our knowledge,
this is the first attempt to address the OOV prob-
lem in multilingual settings. (ii) By using English
as an interlingua, we show that bilingual informa-
tion helps alleviate the OOV issue, especially for
low-resource languages. (iii) We conduct exten-
sive experiments on a variety of token-level and
sentence-level downstream tasks to examine the
strengths and weaknesses of these methods, which
may provide key insights into future directions1.

2 Approach

We use the multilingual BERT as the pre-trained
model. We first introduce the pre-training proce-
dure of this model (Section 2.1) and then introduce
two methods we investigate to alleviate the OOV
issue by expanding the vocabulary (Section 2.2).
Note that these approaches are not restricted to
BERT but also applicable to other similar models.

2.1 Pre-Trained BERT

Compared to GPT (Radford et al., 2018) and
ELMo (Peters et al., 2018), BERT (Devlin et al.,
2018) uses a bidirectional transformer, whereas
GPT pre-trains a left-to-right transformer (Liu
et al., 2018); ELMo (Peters et al., 2018) in-
dependently trains left-to-right and right-to-left
LSTMs (Peters et al., 2017) to generate represen-
tations as additional features for end tasks.

In the pre-training stage, Devlin et al. (2018) use
two objectives: masked language model (LM) and
next sentence prediction (NSP). In masked LM,
they randomly mask some input tokens and then
predict these masked tokens. Compared to unidi-
rectional LM, masked LM enables representations
to fuse the context from both directions. In the

1Improved models will be available at https://
github.com/sohuren/multilingul-bert.

NSP task, given a certain sentence, it aims to pre-
dict the next sentence. The purpose of adding the
NSP objective is that many downstream tasks such
as question answering and language inference re-
quire sentence-level understanding, which is not
directly captured by LM objectives.

After pre-training on large-scale corpora like
Wikipedia and BookCorpus (Zhu et al., 2015), we
follow recent work (Radford et al., 2018; Devlin
et al., 2018) to fine-tune the pre-trained model on
different downstream tasks with minimal architec-
ture adaptation. We show how to adapt BERT to
different downstream tasks in Figure 1 (left).

2.2 Vocabulary Expansion

Devlin et al. (2018) pre-train the multilingual
BERT on Wikipedia in 102 languages, with a
shared vocabulary that contains 110k subwords
calculated from the WordPiece model (Wu et al.,
2016). If we ignore the shared subwords be-
tween languages, on average, each language has
a 1.1k vocabulary, which is significantly smaller
than that of a monolingual pre-trained model such
as GPT (40k). The OOV problem tends to be less
serious for languages (e.g., French and Spanish)
that belong to the same language family of En-
glish. However, this is not always true, especially
for morphologically rich languages such as Ger-
man (Ataman and Federico, 2018; Lample et al.,
2018). OOV problem is much more severe in low-
resource scenarios, especially when a language
(e.g., Japanese and Urdu) uses an entirely differ-
ent character set from high-resource languages.

We focus on addressing the OOV issue at
subword level in multilingual settings. For-
mally, suppose we have an embedding Ebert

extracted from the (non-contextualized) embed-
ding layer in the multilingual BERT (i.e., the
first layer of BERT). And suppose we have an-
other set of (non-contextualized) sub-word em-
beddings {El1 , El2 , . . . , Eln} ∪ {Een}, which are
pre-trained on large corpora using any standard
word embedding toolkit. Specifically, Een repre-
sents the pre-trained embedding for English, and
Eli represents the pre-trained embedding for non-
English language li at the subword level. We de-
note the vocabulary of Ebert, Een, and Eli by
Vbert, Ven, and Vli , respectively. For each subword
w in Vbert, we use Ebert(w) to denote the pre-
trained embedding of word w in Ebert. Eli(·) and
Een(·) are defined in a similar way as Ebert(·). For

https://github.com/sohuren/multilingul-bert
https://github.com/sohuren/multilingul-bert
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Figure 1: Left: fine-tuning BERT on different kinds of end tasks. Right: illustration of joint and mixture mapping
(in this example, during mixture mapping, we represent e(cer) = 0.7 ∗ e(er) + 0.2 ∗ e(or) + 0.1 ∗ e(ch)).

each non-English language l ∈ {l1, l2, . . . , ln}, we
aim to enrich Ebert with more subwords from the
vocabulary in Eli since Eli contains a larger vo-
cabulary of language li compared to Ebert.

As there is no previous work to address multi-
lingual OOV issues, inspired by previous solutions
designed for monolingual settings, we investigate
the following two methods, and all of them can
be applied at both word/subword level, though we
find subword-level works better (Section 3).
Joint Mapping For each non-English language
l, we first construct a joint embedding space E′

l

through mapping El to Een by an orthogonal map-
ping matrix Bl (i.e., E′

l = ElBl). When a bilin-
gual dictionary fl : Vl → Ven is available or can
be constructed based on the shared common sub-
words (Section 3.1), we obtain Bl by minimizing:

∑
w′∈Vl∩{w:fl(w)∈Ven}

∥∥El(w
′)Bl − Een(fl(w

′))
∥∥2
F

where ‖·‖F denotes the Frobenius norm. Other-
wise, for language pair (e.g., English-Urdu) that
meets neither of the above two conditions, we
obtain Bl by an unsupervised word alignment
method from MUSE (Conneau et al., 2018).

We then map E′
l to Ebert by an orthogonal map-

ping matrix A′
l, which is obtained by minimizing∑

w∈fl(Vl)∩Vbert

∥∥E′
l(w)A

′
l − Ebert(w)

∥∥2
F

We denote this method by MJ in our discussion
below, where the subscript J stands for “joint”.
Mixture Mapping Following the work of Gu et al.
(2018) where they use English as “universal to-
kens” and map all other languages to English

to obtain the subword embeddings, we represent
each subword in E′

l (described in joint mapping)
as a mixture of English subwords where those En-
glish subwords are already in the BERT vocab
Vbert. This method, denoted by MM , is also a
joint mapping without the need for learning the
mapping from E′

l to Ebert. Specifically, for each
w ∈ Vl, we obtain its embedding e(w) in the
BERT embedding space Ebert as follows.

e(w) =
∑

u∈T (w)

p(u |w)Ebert(u)

where T (w) is a set to be defined later, and the
mixture coefficient p(u|w) is defined by

p(u |w) = exp(CSLS(El(u), Een(w)))∑
v∈T (w) exp(CSLS(El(v), Een(w)))

where CSLS refers to the distance metric Cross-
domain Similarity Local Scaling (Conneau et al.,
2018). We select five v ∈ Ven ∪ Vbert with the
highest CSLS(El(v), Een(w)) to form set T (w).
In all our experiments, we set the number of near-
est neighbors in CSLS to 10. We refer readers
to Conneau et al. (2018) for details. Figure 1
(right) illustrates the joint and mixture mapping.

3 Experiment

3.1 Experiment Settings
We obtain the pre-trained embeddings of a specific
language by training fastText (Bojanowski et al.,
2017) on Wikipedia articles in that language, with
context window 5 and negative sampling 5. Be-
fore training, we first apply BPE (Sennrich et al.,
2016) to tokenize the corpus with subword vocab-
ulary size 50k. For joint mapping method MJ ,
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we use bilingual dictionaries provided by Conneau
et al. (2018). For a language pair where a bilingual
dictionary is not easily available, if two languages
share a significant number of common subwords
(this often happens when two languages belong to
the same language family), we construct a bilin-
gual dictionary based on the assumption that iden-
tical subwords have the same meaning (Søgaard
et al., 2018). We add all unseen subwords from
50k vocabulary to BERT. We define a word as an
OOV word once it cannot be represented as a sin-
gle word. For example, in BERT, the sentence “Je
sens qu’ entre ça et les films de médecins et sci-
entifiques” is represented as “je sens qu ##’ en-
tre [UNK] et les films de [UNK] et scientifiques”,
where qu’ is an OOV word since it can only be
represented by two subword units: qu and ##’, but
it is not OOV at subword level; ça and médecins
cannot be represented by any single word or com-
bination of subword units, and thus they are OOV
at both word and subword level.

We use the multilingual BERT with default pa-
rameters in all our experiments, except that we
tune the batch size and training epochs. To have
a thorough examination about the pros and cons
of the explored methods, we conduct experiments
on a variety of token-level and sentence-level clas-
sification tasks: part of speech (POS) tagging,
named entity recognition (NER), machine transla-
tion quality estimation, and machine reading com-
prehension. See more details in each subsection.

3.2 Discussions about Mapping Methods

Previous work typically assumes a linear map-
ping exists between embedding spaces of differ-
ent languages if their embeddings are trained using
similar techniques (Xing et al., 2015; Madhyastha
et al., 2016). However, it is difficult to map em-
beddings learned with different methods (Søgaard
et al., 2018). Considering the differences between
BERT and fastText: e.g., the objectives, the way to
differentiate between different subwords, and the
much deeper architecture of BERT, it is very un-
likely that the (non-contextualized) BERT embed-
ding and fastText embedding reside in the same
geometric space. Besides, due to that BERT has
a relatively smaller vocabulary for each language,
when we map a pre-trained vector to its por-
tion in BERT indirectly as previous methods, the
supervision signal is relatively weak, especially
for low-resource languages. In our experiment,

we find that the accuracy of the mapping from
our pre-trained English embedding to multilingual
BERT embedding (English portion) is lower than
30%. In contrast, the accuracy of the mapping
between two regular English embeddings that are
pre-trained using similar methods (e.g., CBOW or
SkipGram (Mikolov et al., 2013)) could be above
95% (Conneau et al., 2018).

Besides the joint mapping method MJ (Sec-
tion 2.2), another possible method that could
be used for OOV problem in multilingual set-
ting is that, for each language l, we map
its pre-trained embedding space El to em-
bedding Ebert by an orthogonal mapping ma-
trix Al, which is obtained by minimizing∑

w∈Vl∩Vbert
‖El(w)Al − Ebert(w)‖2F . This ap-

proach is similar to (Madhyastha et al., 2016), and
is referred as independent mapping method be-
low. However, we use examples to demonstrate
why these kind of methods are less promising. In
Table 1, the first two rows are results obtained by
mapping our pre-trained English embedding (us-
ing fastText) to the (non-contextualized) BERT
embedding. In this new unified space, we align
words with CSLS metric, and for each subword
that appears in English Wikipedia, we seek its
closest neighbor in the BERT vocabulary. Ideally,
each word should find itself if it exists in the BERT
vocabulary. However, this is not always true. For
example, although “however” exists in the BERT
vocabulary, independent mapping fails to find it
as its own closest neighbor. Instead, it incorrectly
maps it to irrelevant Chinese words “盘” (“plate”)
and “龙” (“dragon”). A similar phenomenon is
observed for Chinese. For example, “册” is incor-
rectly aligned to Chinese words “书” and “卷”.

Source Lang Source Target probability

English however 盘(plate) 0.91
however 龙(dragon) 0.05

Chinese 册(booklet) 书(book) 0.49
册(booklet) 卷(volume) 0.46

Table 1: Alignment from Independent Mapping.

Furthermore, our POS tagging experiments
(Section 3.3) further show that joint mapping MJ

does not improve (or even hurt) the performance
of the multilingual BERT. Therefore, we use mix-
ture mapping MM to address and discuss OOV
issues in the remaining sections.
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BTS♣ BiLSTM♦ FREQ♦ BERT BERToov BERToovR BERToovMJ OOVw OOVsw

ar - 98.23 90.06 53.34 56.70 56.57 56.23 89.8 70.6
bg 97.84 98.23 90.06 98.70 98.22 94.41 97.21 45.7 1.2
da 95.52 96.16 96.35 97.16 96.53 94.15 94.85 38.9 2.8
de 92.87 93.51 93.38 93.58 93.81 91.77 93.12 43.2 5.6
es 95.80 95.67 95.74 96.04 96.92 95.10 95.77 29.4 6.0
fa 96.82 97.60 97.49 95.62 94.90 94.35 95.82 35.6 6.5
fi 95.48 95.74 95.85 87.72 93.35 84.75 89.39 64.9 10.4
fr 95.75 96.20 96.11 95.17 96.59 94.84 95.24 33.9 10.3
hr - 96.27 96.82 95.03 96.49 89.87 93.48 49.5 8.3
it 97.56 97.90 97.95 98.22 98.00 97.63 97.85 30.3 2.3
nl - 92.82 93.30 93.89 92.89 91.30 91.71 35.5 0.3
no - 98.06 98.03 97.25 95.98 94.21 95.83 38.7 4.4
pl - 97.63 97.62 91.62 95.95 87.50 92.56 56.5 13.6
pt - 97.94 97.90 96.66 97.63 95.93 96.90 34.0 8.3
sl - 96.97 96.84 95.02 96.91 89.55 93.97 49.2 7.8
sv 95.57 96.60 96.69 91.23 96.66 90.45 91.92 48.2 17.7

average - 96.60 95.64 92.27 93.60 90.15 92.20 45.2 11.0

Table 2: POS tagging accuracy (%) on the Universal Dependencies v1.2 dataset. BERToov: BERT with method
MM . BERToovR: BERT with randomly picked embedding from BERT. BERToovMJ: BERT with method MJ .
OOVw: word-level OOV rate. OOVsw: subword-level OOV rate. ♣: Gillick et al. (2016), ♦: Plank et al. (2016).

Approach Precision Recall F1 score

DomainMask (Peng and Dredze, 2017a) 60.8 44.9 51.7
Linear Projection (Peng and Dredze, 2017a) 67.2 41.2 51.1
Updates (Peng and Dredze, 2017b) - - 56.1
Updates (Peng and Dredze, 2017b) - - 59.0

BERT 56.6 61.7 59.0
BERToov 60.2 62.8 61.4
BERTzh 63.4 70.8 66.9

Table 3: Performance of various models on the test set of Weibo NER. BERTzh: Chinese BERT pre-trained over
Chinese Wikipedia. We use scripts conlleval for evaluation on NER.

3.3 Monolingual Sequence Labeling Tasks

POS Tagging: We use the Universal Dependen-
cies v1.2 data (McDonald et al., 2013). For lan-
guages with token segmentation ambiguity, we
use the gold segmentation following Plank et al.
(2016). We consider languages that have suffi-
cient training data and filter out languages that
have unsatisfying embedding alignments with En-
glish (accuracy is lower than 20.0% measured by
word alignment accuracy or 0.25 by unsupervised
metric in MUSE (Conneau et al., 2018)). Fi-
nally, we keep 16 languages. We use the original
multilingual BERT (without using CRF (Lafferty
et al., 2001) on top of it for sequence labeling) to
tune hyperparameters on the dev set and use the
fixed hyperparameters for the expanded multilin-
gual model. We do not tune the parameters for
each model separately. As shown in Table 2, at
both the word and subword level, the OOV rate in
this dataset is quite high. Mixture mapping im-
proves the accuracy on 10 out of 16 languages,

leading to a 1.97% absolute gain in average. We
discuss the influence of alignments in Section 3.6.

Chinese NER: We are also interested in investi-
gating the performance gap between the expanded
multilingual model and a monolingual BERT that
is pre-trained on a large-scale monolingual corpus.
Currently, pre-trained monolingual BERT mod-
els are available in English and Chinese. As En-
glish has been used as the interlingua, we compare
the expanded multilingual BERT and the Chinese
BERT on a Chinese NER task, evaluated on the
Weibo NER dataset constructed from social media
by Peng and Dredze (2015). In the training set, the
token-level OOV rate is 2.17%, and the subword-
level OOV rate is 0.54%. We tune the hyperpa-
rameters of each model based on the development
set separately and then use the best hyperparame-
ters of each model for evaluation on the test set.

As shown in Table 3, the expanded model out-
performs the multilingual BERT on the Weibo
NER dataset. We boost the F1 score from 59.0%
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to 61.4%. Compared to the Chinese BERT
(66.9%), there still exists a noticeable perfor-
mance gap. One possible reason could be the
grammatical differences between Chinese and En-
glish. As BERT uses the language model loss
function for pre-training, the pre-trained Chinese
BERT could better capture the language-specific
information comapred to the multilingual BERT.

3.4 Code-Mixed Sequence Labeling Tasks

As the multilingual BERT is pre-trained over 102
languages, it should be able to handle code-mixed
texts. Here we examine its performance and the
effectiveness of the expanded model in mixed lan-
guage scenarios, using two tasks as case studies.
Code-Switch Challenge: We first evaluate on the
CALCS-2018 code-switched task (Aguilar et al.,
2018), which contains two NER tracks on Twit-
ter social data: mixed English&Spanish (en-es)
and mixed Modern Standard Arabic&Egyptian
(ar-eg). Compared to traditional NER datasets
constructed from news, the dataset contains a sig-
nificant portion of uncommon tokens like hash-
tags and abbreviations, making it quite challeng-
ing. For example, in the en-es track, the token-
level OOV rate is 44.6%, and the subword-level
OOV rate is 3.1%; in the ar-eg track, the token-
level OOV rate is 64.0%, and the subword-level
OOV rate is 6.0%. As shown in Table 4, on ar-
eg, we boost the F1 score from 74.7% to 77.3%.
However, we do not see similar gains on the en-es
dataset, probably because that English and Span-
ish share a large number of subwords, and adding
too many new subwords might prevent the model
from utilizing the well pre-trained subwords em-
bedding. See Section 3.6 for more discussions.

en-es ar-eg
Model Prec Rec F1 Prec Rec F1

FAIR♣ - - 62.4 - - 71.6
IIT♣ - - 63.8 - - -

FAIR♦ - - 67.7 - - 81.4
BERT 72.7 63.6 67.8 73.8 75.6 74.7
BERToov 74.2 60.9 66.9 76.9 77.8 77.3

Table 4: Accuracy (%) on the code-switch challenge.
The top two rows are based on the test set, and the
bottom three rows are based on the development set.
♣: results from Aguilar et al. (2018). ♦: results
from Wang et al. (2018).

Machine Translation Quality Estimation: All
previous experiments are based on well-curated

data. Here we evaluate the expanded model on
a language generation task, where sometimes the
generated sentences are out-of-control.

We choose the automatic Machine Translation
Quality Estimation task and use Task 2 – word-
level quality estimation – in WMT18 (Bojar et al.,
2018). Given a source sentence and its translation
(i.e., target), this task aims to estimate the trans-
lation quality (“BAD” or “OK”) at each position:
e.g., each token in the source and target sentence,
each gap in the target sentence. We use English to
German (en-de) SMT translation. On all three cat-
egories, the expanded model consistently outper-
forms the original multilingual BERT (Table 5)2.

3.5 Sequence Classification Tasks

Finally, we evaluate the expanded model on se-
quence classification in a mixed-code setting,
where results are less sensitive to unseen words.
Code-Mixed Machine Reading Comprehen-
sion: We consider the mixed-language machine
reading comprehension task. Since there is no
such public available dataset, we construct a
new Chinese-English code-mixed machine read-
ing comprehension dataset based on 37,436 undu-
plicated utterances obtained from the transcrip-
tions of a Chinese and English mixed speech
recognition corpus King-ASR-065-13. We gen-
erate a multiple-choice machine reading compre-
hension problem (i.e., a question and four an-
swer options) for each utterance. A question is
an utterance with an English text span removed
(we randomly pick one if there are multiple En-
glish spans) and the correct answer option is the
removed English span. Distractors (i.e., wrong
answer options) come from the top three closest
English text spans, which appear in the corpus,
based on the cosine similarity of word embed-
dings trained on the same corpus. For example,
given a question “突然听到 21 ，那强劲的鼓
点，那一张张脸。” (“Suddenly I heard 21 ,
and the powerful drum beats reminded me of the
players.”) and four answer options { “forever”,
“guns”, “jay”, “twins” }, the task is to select
the correct answer option “guns” (“21 Guns” is a
song by the American rock band Green Day). We
split the dataset into training, development, and
testing of size 36,636, 400, 400, respectively. An-

2Our evaluation is based on the development set since the
test set is only available to participants, and we could not find
the submission teams’ performance on the developmenet set.

3http://kingline.speechocean.com.
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Words in MT Gaps in MT Words in SRC
Model F1-BAD F1-OK F1-multi F1-BAD F1-OK F1-multi F1-BAD F1-OK F1-multi

Fan et al. (2018) 0.68 0.92 0.62 - - - - - -
Fan et al. (2018) 0.66 0.92 0.61 0.51 0.98 0.50 - - -
SHEF-PT♣ 0.51 0.85 0.43 0.29 0.96 0.28 0.42 0.80 0.34

BERT 0.58 0.91 0.53 0.47 0.98 0.46 0.48 0.90 0.43
BERToov 0.60 0.91 0.55 0.50 0.98 0.49 0.49 0.90 0.44

Table 5: WMT18 Quality Estimation Task 2 for the en→de SMT dataset. ♣: result from Specia et al. (2018). MT:
machine translation, e.g., target sentence, SRC: source sentence. F1-OK: F1 score for “OK” class; F1-BAD: F1
score for “BAD” class; F1-multi: multiplication of F1-OK and F1-BAD.

notators manually clean and improve the quality
problems by generating more confusing distrac-
tors in the dev and testing sets to guarantee that
these problems are error-free and challenging.

In this experiment, for each BERT model, we
follow its default hyperparameters. As shown in
Table 6, the expanded model improves the multi-
lingual BERT (38.1%) by 1.2% in accuracy. Hu-
man performance (81.4%) indicates that this is not
an easy task even for human readers.

Accuracy
Model Development Test

BERTen 38.2 37.3
BERT 38.7 38.1

BERToov 39.4 39.3
BERTzh 40.0 45.0

Table 6: Accuracy (%) of models on the code-mixed
reading comprehension dataset. BERTen: pre-trained
English BERT. BERTzh: pre-trained Chinese BERT.

3.6 Discussions
In this section, we first briefly investigate whether
the performance boost indeed comes from the re-
duction of OOV and then discuss the strengths and
weaknesses of the methods we investigate.

First, we argue that it is essential to alleviate
the OOV issue in multilingual settings. Taking the
POS tagging task as an example, we find that most
errors occur at the OOV positions (Table 7 in Sec-
tion 3.3). In the original BERT, the accuracy of
OOV words is much lower than that of non-OOV
words, and we significantly boost the accuracy of
OOV words with the expanded BERT. All these re-
sults indicate that the overall improvement mostly
comes from the reduction of OOV.

We also observe that the following factors may
influence the performance of the expanded model.
Subwords: When expanding the vocabulary, it is
critical to add only frequent subwords. Currently,

BERT BERToov
Lang non-OOV OOV non-OOV OOV

fi 98.1 81.3 98.5 90.2
fr 97.0 90.2 97.2 95.6
hr 97.8 91.9 97.7 94.5
pl 98.8 84.6 99.0 93.2
pt 98.8 91.5 98.6 94.8
sl 98.6 91.6 98.7 95.1
sv 97.4 82.9 98.2 94.8

average 98.1 87.7 98.3 94.0

Table 7: POS tagging accuracy (%) for OOV tokens
and non-OOV tokens on the Universal Dependencies
v1.2 dataset, where the OOV/non-OOV are defined at
word level with the original BERT vocabulary.

we add all unseen subwords from the 50k vocab-
ulary (Section 3.1), which may be not an optimal
choice. Adding too many subwords may prevent
the model from utilizing the information from pre-
trained subword embedding in BERT, especially
when there is a low word-level overlap between
the training and test set.
Language: We also find that languages can influ-
ence the performance of the vocabulary expansion
through the following two aspects: the alignment
accuracy and the closeness between a language
and English. For languages that are closely re-
lated to English such as French and Dutch, it is
relatively easy to align their embeddings to En-
glish as most subword units are shared (Søgaard
et al., 2018; Conneau et al., 2018). In such
case, the BERT embedding already contains suf-
ficient information, and therefore adding addi-
tional subwords may hurt the performance. On
the other hand, for a distant language such as Pol-
ish (Slavic family), which shares some subwords
with English (Germanic family), adding subwords
to BERT brings performance improvements. In
the meantime, as Slavic and Germanic are two
subdivisions of the Indo-European languages, we
find that the embedding alignment methods per-
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form reasonably well. For these languages, vo-
cabulary expansion is usually more effective, indi-
cated by POS tagging accuracies for Polish, Por-
tuguese, and Slovenian (Table 2). For more dis-
tant languages like Arabic (Semitic family) that
use different character sets, it is necessary to add
additional subwords. However, as the grammar of
such a language is very different from that of En-
glish, how to accurately align their embeddings is
the main bottleneck.
Task: We see more significant performance gains
on NER, POS and MT Quality Estimation, pos-
sibly because token-level understanding is more
critical for these tasks, therefore alleviating OOV
helps more. In comparison, for sequence level
classification tasks such as machine reading com-
prehension (Section 3.5), OOV issue is less severe
since the result is based on the entire sentence.

4 Related Work

OOV poses challenges for many tasks (Pinter
et al., 2017) such as machine translation (Razmara
et al., 2013; Sennrich et al., 2016) and sentiment
analysis (Kaewpitakkun et al., 2014). Even for
tasks such as machine reading comprehension that
are less sensitive to the meanings of each word,
OOV still hurts the performance (Chu et al., 2017;
Zhang et al., 2018). We now discuss previous
methods in two settings.

4.1 Monolingual Setting

Most previous work address the OOV problems in
monolingual settings. Before more fine-grained
encoding schema such as BPE (Sennrich et al.,
2016) is proposed, prior work mainly focused
on OOV for token-level representations (Taylor
et al., 2011; Kolachina et al., 2017). Besides
simply assigning random embeddings to unseen
words (Dhingra et al., 2017) or using an unique
symbol to replace all these words with a shared
embedding (Hermann et al., 2015), a thread of
research focuses on refining the OOV represen-
tations based on word-level information, such as
using similar in-vocabulary words (Luong et al.,
2015; Cho et al., 2015; Tafforeau et al., 2015;
Li et al., 2016), mapping initial embedding to
task-specific embedding (Rothe et al., 2016; Mad-
hyastha et al., 2016), using definitions of OOV
words from auxiliary data (Long et al., 2016;
Bahdanau et al., 2017), and tracking contexts to
build/update representations (Henaff et al., 2016;

Kobayashi et al., 2017; Ji et al., 2017; Zhao et al.,
2018).

Meanwhile, there have been efforts in repre-
senting words by utilizing character-level (Zhang
et al., 2015; Ling et al., 2015a,b; Kim et al.,
2016; Gimpel and Livescu, 2016) or subword-
level representations (Sennrich et al., 2016; Bo-
janowski et al., 2017). To leverage the advan-
tages in character and (sub)word level represen-
tation, some previous work combine (sub)word-
and character-level representations (Santos and
Zadrozny, 2014; dos Santos et al., 2015; Yu et al.,
2017) or develop hybrid word/subword-character
architectures (Chung et al., 2016; Luong and Man-
ning, 2016; Pinter et al., 2017; Bahdanau et al.,
2017; Matthews et al., 2018; Li et al., 2018). How-
ever, all those approaches assume monolingual
setting, which is different from ours.

4.2 Multilingual Setting

Addressing OOV problems in a multilingual set-
ting is relatively under-explored, probably because
most multilingual models use separate vocabular-
ies (Jaffe, 2017; Platanios et al., 2018). While
there is no direct precedent, previous work show
that incorporating multilingual contexts can im-
prove monolingual word embeddings (Zou et al.,
2013; Andrew et al., 2013; Faruqui and Dyer,
2014; Lu et al., 2015; Ruder et al., 2017).

Madhyastha and España-Bonet (2017) increase
the vocabulary size for statistical machine trans-
lation (SMT). Given an OOV source word, they
generate a translation list in target language, and
integrate this list into SMT system. Although
they also generate translation list (similar with us),
their approach is still in monolingual setting with
SMT. Cotterell and Heigold (2017) train char-
level taggers to predict morphological taggings
for high/low resource languages jointly, alleviat-
ing OOV problems to some extent. In contrast, we
focus on dealing with the OOV issue at subword
level in the context of pre-trained BERT model.

5 Conclusion

We investigated two methods (i.e., joint mapping
and mixture mapping) inspired by monolingual
solutions to alleviate the OOV issue in multilin-
gual settings. Experimental results on several
benchmarks demonstrate the effectiveness of mix-
ture mapping and the usefulness of bilingual in-
formation. To the best of our knowledge, this is
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the first work to address and discuss OOV issues
at the subword level in multilingual settings. Fu-
ture work includes: investigating other embedding
alignment methods such as Gromov-Wasserstein
alignment (Alvarez-Melis and Jaakkola, 2018)
upon more languages; investigating approaches to
choose the subwords to be added dynamically.
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