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Abstract

Despite advances in dependency parsing, lan-
guages with small treebanks still present chal-
lenges.  We assess recent approaches to
multilingual contextual word representations
(CWRs), and compare them for crosslingual
transfer from a language with a large tree-
bank to a language with a small or nonexistent
treebank, by sharing parameters between lan-
guages in the parser itself. We experiment with
a diverse selection of languages in both sim-
ulated and truly low-resource scenarios, and
show that multilingual CWRs greatly facilitate
low-resource dependency parsing even with-
out crosslingual supervision such as dictionar-
ies or parallel text. Furthermore, we exam-
ine the non-contextual part of the learned lan-
guage models (which we call a “decontextual
probe”) to demonstrate that polyglot language
models better encode crosslingual lexical cor-
respondence compared to aligned monolingual
language models. This analysis provides fur-
ther evidence that polyglot training is an effec-
tive approach to crosslingual transfer.

1 Introduction

Dependency parsing has achieved new states of
the art using distributed word representations in
neural networks, trained with large amounts of an-
notated data (Dozat and Manning, 2017; Dozat
et al., 2017; Ma et al., 2018; Che et al., 2018).
However, many languages are low-resource, with
small or no treebanks, which presents a severe
challenge in developing accurate parsing systems
in those languages. One way to address this prob-
lem is with a crosslingual solution that makes
use of a language with a large treebank and raw
text in both languages. The hypothesis behind
this approach is that, although each language is
unique, different languages manifest similar char-

* Equal contribution. Random order.

acteristics (e.g., morphological, lexical, syntac-
tic) which can be exploited by training a single
polyglot model with data from multiple languages
(Ammar, 2016).

Recent work has extended contextual word rep-
resentations (CWRs) multilingually either by train-
ing a polyglot language model (LM) on a mix-
ture of data from multiple languages (joint train-
ing approach; Mulcaire et al., 2019; Lample and
Conneau, 2019) or by aligning multiple monolin-
gual language models crosslingually (retrofitting
approach; Schuster et al., 2019; Aldarmaki and
Diab, 2019). These multilingual representations
have been shown to facilitate crosslingual trans-
fer on several tasks, including Universal Depen-
dencies parsing and natural language inference.
In this work, we assess these two types of meth-
ods by using them for low-resource dependency
parsing, and discover that the joint training ap-
proach substantially outperforms the retrofitting
approach. We further apply multilingual CWRs
produced by the joint training approach to diverse
languages, and show that it is still effective in
transfer between distant languages, though we find
that phylogenetically related source languages are
generally more helpful.

We hypothesize that joint polyglot training is
more successful than retrofitting because it in-
duces a degree of lexical correspondence be-
tween languages that the linear transformation
used in retrofitting methods cannot capture. To test
this hypothesis, we design a decontextual probe.
We decontextualize CWRs into non-contextual
word vectors that retain much of CWRs’ task-
performance benefit, and evaluate the crosslingual
transferability of language models via word trans-
lation. In our decontextualization framework, we
use a single LSTM cell without recurrence to ob-
tain a context-independent vector, thereby allow-
ing for a direct probe into the LSTM networks in-
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dependent of a particular corpus. We show that de-
contextualized vectors from the joint training ap-
proach yield representations that score higher on a
word translation task than the retrofitting approach
or word type vectors such as fastText (Bojanowski
et al,, 2017). This finding provides evidence
that polyglot language models encode crosslingual
similarity, specifically crosslingual lexical corre-
spondence, that a linear alignment between mono-
lingual language models does not.

2 Models

We examine crosslingual solutions to low-
resource dependency parsing, which make crucial
use of multilingual CWRs. All models are imple-
mented in AllenNLP, version 0.7.2 (Gardner et al.,
2018) and the hyperparameters and training details
are given in the appendix.

2.1

Prior methods to produce multilingual contextual
word representations (CWRs) can be categorized
into two major classes, which we call joint train-
ing and retrofitting.! The joint training approach
trains a single polgylot language model (LM) on
a mixture of texts in multiple languages (Mulcaire
et al., 2019; Lample and Conneau, 2019; Devlin
etal., 2019),> while the retrofitting approach trains
separate LMs on each language and aligns the
learned representations later (Schuster et al., 2019;
Aldarmaki and Diab, 2019). We compare example
approaches from these two classes using the same
LM training data, and discover that the joint train-
ing approach generally yields better performance
in low-resource dependency parsing, even without
crosslingual supervision.

Multilingual CWRs

Retrofitting Approach Following Schuster
et al. (2019), we first train a bidirectional LM with
two-layer LSTMs on top of character CNNs for
each language (ELMo, Peters et al., 2018), and
then align the monolingual LMs across languages.

Denote the hidden state in the jth layer for word i
in context c by hgjc) . We use a trainable weighted
average of the three layers (character-CNN and

IThis term was originally used by Faruqui et al. (2015) to
describe updates to word vectors, after estimating them from
corpora, using semantic lexicons. We generalize it to capture
the notion of a separate update to fit something other than the
original data, applied after conventional training.

’Multilingual BERT is documented in https:
//github.com/google-research/bert/blob/
master/multilingual.md.
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two LSTM layers) to compute the contextual rep-
resentation e; . for the word: e; . = Z?ZO Aj hgjc)
(Peters et al., 2018).% In the first step, we compute
( 7)

i .

an “anchor” h"?) for each word by averaging h;"/
over all occurrences in an LM corpus. We then
apply a standard dictionary-based technique* to
create multilingual word embeddings (Mikolov
et al., 2013; Conneau et al., 2018). In particular,
suppose that we have a word-translation dictio-
nary from source language s to target language
t. Let ng ), ng ) be matrices whose columns are
the anchors in the jth layer for the source and
corresponding target words in the dictionary. For
each layer 7, find the linear transformation W*(/)
such that

W*) = argmin ||[WHY) — ng)HF
W

The linear transformations are then used to map
the LM hidden states for the source language
to the target LM space. Specifically, contex-
tual representations for the source and target lan-

guages are computed by Z?:o AWl )h,(jc) and

) 4
Z =0 >‘j hz(c)
able dictionaries from Conneau et al. (2018)° and
align all languages to the English LM space, again

following Schuster et al. (2019).

respectively. We use publicly avail-

Joint Training Approach Another approach to
multilingual CWRs is to train a single LM on mul-
tiple languages (Tsvetkov et al., 2016; Ragni et al.,
2016; Ostling and Tiedemann, 2017). We train a
single bidirectional LM with charater CNNs and
two-layer LSTMs on multiple languages (Rosita,
Mulcaire et al., 2019). We then use the polyglot
LM to provide contextual representations. Sim-
ilarly to the retrofitting approach, we represent
word 7 in context c as a trainable weighted aver-
age of the hidden states in the trained polyglot LM:
Z?:O /\jhgjc) . In contrast to retrofitting, crosslin-
guality is learned implicitly by sharing all network
parameters during LM training; no crosslingual
dictionaries are used.

3Schuster et al. (2019) only used the first LSTM layer,
but we found a performance benefit from using all layers in
preliminary results.

*Conneau et al. (2018) developed an unsupervised align-
ment technique that does not require a dictionary. We found
that their unsupervised alignment yielded substantially de-
graded performance in downstream parsing in line with the
findings of Schuster et al. (2019).

Shttps://github.com/facebookresearch/
MUSE#ground-truth-bilingual-dictionaries


https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/facebookresearch/MUSE#ground-truth-bilingual-dictionaries
https://github.com/facebookresearch/MUSE#ground-truth-bilingual-dictionaries

Refinement after Joint Training It is possible
to combine the two approaches above; the align-
ment procedure used in the retrofitting approach
can serve as a refinement step on top of an already-
polyglot language model. We will see only a lim-
ited gain in parsing performance from this refine-
ment in our experiments, suggesting that polyglot
LMs are already producing high-quality multilin-
gual CWRs even without crosslingual dictionary
supervision.

FastText Baseline We also compare the multi-
lingual CWRs to a subword-based, non-contextual
word embedding baseline. We train 300-
dimensional word vectors on the same LM data us-
ing the fastText method (Bojanowski et al., 2017),
and use the same bilingual dictionaries to align
them (Conneau et al., 2018).

2.2 Dependency Parsers

We train polyglot parsers for multiple languages
(Ammar et al., 2016) on top of multilingual
CWRs. All parser parameters are shared between
the source and target languages. Ammar et al.
(2016) suggest that sharing parameters between
languages can alleviate the low-resource problem
in syntactic parsing, but their experiments are lim-
ited to (relatively similar) European languages.
Mulcaire et al. (2019) also include experiments
with dependency parsing using polyglot contex-
tual representations between two language pairs
(English/Chinese and English/Arabic), but focus
on high-resource tasks. Here we explore a wider
range of languages, and analyze the particular ef-
ficacy of a crosslingual approach to dependency
parsing in a low-resource setting.

We use a strong graph-based dependency parser
with BiLSTM and biaffine attention (Dozat and
Manning, 2017), which is also used in related
work (Schuster et al., 2019; Mulcaire et al., 2019).
Crucially, our parser only takes as input word
representations. Universal parts of speech have
been shown useful for low-resource dependency
parsing (Duong et al., 2015; Ammar et al., 2016;
Ahmad et al., 2019), but many realistic low-
resource scenarios lack reliable part-of-speech
taggers; here, we do not use parts of speech as in-
put, and thus avoid the error-prone part-of-speech
tagging pipeline. For the fastText baseline, word
embeddings are not updated during training, to
preserve crosslingual alignment (Ammar et al.,
2016).
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Lang [ Code Genus WALS 8IA [ Size
English ENG Germanic SVO -
Arabic ARA  Semitic VSO/SVO 5241
Hebrew HEB  Semitic SVO

Croatian HRV  Slavic SVO 6983
Russian RUS  Slavic SVO

Dutch NLD  Germanic SOV/SVO 12269
German DEU  Germanic SOV/SVO

Spanish SPA  Romance SVO 12543
Italian ITA Romance SVO

Chinese CMN  Chinese SVO 3997
Japanese JPN  Japanese SOV

Hungarian | HUN  Ugric SOV/SVO 910
Finnish FIN Finnic SVO 12217
Vietnamese | VIE  Viet-Muong SVO 1400
Uyghur UIG  Turkic SOV 1656
Kazakh KAz  Turkic SOV 31
Turkish TUR  Turkic SOV 3685

Table 1: List of the languages used in our UD v2.2 ex-
periments. Each shaded/unshaded section corresponds
to a pair of “related” languages. WALS 81A denotes
Feature 81A in WALS, Order of Subject, Object, and
Verb (Dryer and Haspelmath, 2013). “Size” represents
the downsampled size in # of sentences used for source
treebanks. The four languages in bold face are truly
low resource languages (< 2000 trees).

3 Experiments

We first conduct a set of experiments to assess the
efficacy of multilingual CWRs for low-resource de-
pendency parsing.

3.1 Zero-Target Dependency Parsing

Following prior work on low-resource depen-
dency parsing and crosslingual transfer (Zhang
and Barzilay, 2015; Guo et al., 2015; Ammar
et al., 2016; Schuster et al., 2019), we conduct
multi-source experiments on six languages (Ger-
man, Spanish, French, Italian, Portuguese, and
Swedish) from Google universal dependency tree-
bank version 2.0 (McDonald et al., 2013).5 We
train language models on the six languages and
English to produce multilingual CWRs. For each
tested language, we train a polyglot parser with
the multilingual CWRs on the five other languages
and English, and apply the parser to the test data
for the target language. Importantly, the parsing
annotation scheme is shared among the seven lan-
guages. Our results will show that the joint train-
ing approach for CWRs substantially outperforms
the retrofitting approach.

*http://github.com/ryanmcd/uni-dep-tb


http://github.com/ryanmcd/uni-dep-tb

3.2 Diverse Low-Resource Parsing

The previous experiment compares the joint train-
ing and retrofitting approaches in low-resource
dependency parsing only for relatively similar
languages. In order to study the effectiveness
more extensively, we apply it to a more typo-
logically diverse set of languages. We use five
pairs of languages for “low-resource simulations,”
in which we reduce the size of a large treebank,
and four languages for “true low-resource experi-
ments,” where only small UD treebanks are avail-
able, allowing us to compare to other work in
the low-resource condition (Table 1). Following
de Lhoneux et al. (2018), we selected these lan-
guage pairs to represent linguistic diversity. For
each target language, we produce multilingual
CWRs by training a polyglot language model with
its related language (e.g., Arabic and Hebrew) as
well as English (e.g., Arabic and English). We
then train a polyglot dependency parser on each
language pair and assess the crosslingual transfer
in terms of target parsing accuracy.

Each pair of related languages shares features
like word order, morphology, or script. For exam-
ple, Arabic and Hebrew are similar in their rich
transfixing morphology (de Lhoneux et al., 2018),
and Dutch and German share most of their word
order features. We chose Chinese and Japanese
as an example of a language pair which does not
share a language family but does share characters.

We chose Hungarian, Vietnamese, Uyghur, and
Kazakh as true low-resource target languages be-
cause they had comparatively small amounts of
annotated text in the UD corpus (Vietnamese:
1,400 sentences, 20,285 tokens; Hungarian: 910
sentences, 20,166 tokens; Uyghur: 1,656 sen-
tences, 19,262 tokens; Kazakh: 31 sentences,
529 tokens;), yet had convenient sources of text
for LM pretraining (Zeman et al., 2018).” Other
small treebanks exist, but in most cases another
larger treebank exists for the same language, mak-
ing domain adaptation a more likely option than
crosslingual transfer. Also, recent work (Che
et al., 2018) using contextual embeddings was top-
ranked for most of these languages in the CoNLL
2018 shared task on UD parsing (Zeman et al.,
2018).8

"The one exception is Uyghur where we only have 3M
words in the raw LM data from Zeman et al. (2018).

81n Kazakh, Che et al. (2018) did not use CWRs due to the
extremely small treebank size.
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We use the same Universal Dependen-
cies (UD) treebanks (Nivre et al., 2018) and
train/development/test splits as the CoNLL 2018
shared task (Zeman et al., 2018).” The annota-
tion scheme is again shared across languages,
which facilitates crosslingual transfer. For each
triple of two related languages and English, we
downsample training and development data to
match the language with the smallest treebank
size. This allows for fairer comparisons because
within each triple, the source language for any
parser will have the same amount of training data.
We further downsample sentences from the target
train/development data to simulate low-resource
scenarios. The ratio of training and development
data is kept 5:1 throughout the simulations, and
we denote the number of sentences in training
data by |D,|. For testing, we use the CoNLL
2018 script on the gold word segmentations.
For the truly low-resource languages, we also
present results with word segmentations from the
system outputs of Che et al. (2018) (HUN, VIE,
UIG) and Smith et al. (2018) (KAz) for a direct
comparison to those languages’ best previously
reported parsers.'?

4 Results and Discussion

In this section we describe the results of the vari-
ous parsing experiments.

4.1 Zero-Target Parsing

Table 2 shows results on zero-target dependency
parsing. First, we see that all CWRs greatly im-
prove upon the fastText baseline. The joint train-
ing approach (Rosita), which uses no dictionaries,
consistently outperforms the dictionary-dependent
retrofitting approach (ELMos+Alignment). As
discussed in the previous section, we can ap-
ply the alignment method to refine the already-
polyglot Rosita using dictionaries. However, we
observe a relatively limited gain in overall per-
formance (74.5 vs. 73.9 LAS points), suggest-
ing that Rosita (polyglot language model) is al-
ready developing useful multilingual CWRs for
parsing without crosslingual supervision. Note
that the degraded overall performance of our
ELMo+Alignment compared to Schuster et al.
(2019)’s reported results (71.2 vs. 73.1) is likely

°See Appendix for a list of UD treebanks used.

19System outputs for all shared task systems are available
at https://lindat.mff.cuni.cz/repository/
xmlui/handle/11234/1-2885


https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-2885
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-2885

Model DEU SPA FRA ITA POR SWE AVG
Schuster et al. (2019) (retrofitting) 614 775 770 776 739 71.0 731
Schuster et al. (2019) (retrofitting, no dictionaries) | 61.7 766 763 77.1 69.1 542 69.2
fastText + Alignment 452 685 628 589 61.1 504 578
ELMos + Alignment (retrofitting) 573 754 737 716 751 742 712
Rosita (joint training, no dictionaries) 58.0 818 756 748 771 762 739
Rosita + Refinement (joint training + retrofitting) 61.7 79.7 758 760 76.8 7677 745

Table 2: Zero-target results in LAS. Results reported in prior work (above the line) use an unknown amount of LM
training data; all models below the line are limited to approximately 5S0M words per language.

Model DEU SPA FRA ITA POR SWE AVG
Zhang and Barzilay (2015) 541 683 688 694 725 625 659
Guo et al. (2016) 559 731 71.0 712 78.6 695 699
Ammar et al. (2016) 571 746 739 725 770 681 705
Schuster et al. (2019) (retrofitting) 65.2 800 808 79.8 827 754 713
Schuster et al. (2019) (retrofitting, no dictionaries) | 64.1 77.8 79.8 79.7 79.1 69.6 75.0
Rosita (joint training, no dictionaries) 63.6 834 789 778 830 79.6 777
Rosita + Refinement (joint training + retrofitting) 648 82.1 787 788 841 79.1 779
Table 3: Zero-target results in LAS with gold UPOS.
due to the significantly reduced amount of LM T T I
. . mono. +ENG BN 4rel.

data we used in all of our experiments (50M

words per language, an order of magnitude re- 80

duction from the full Wikipedia dumps used in -

Schuster et al. (2019)). Schuster et al. (2019) (no

60

dictionaries) is the same retrofitting approach as
ELMos+Alignment except that the transformation
matrices are learned in an unsupervised fashion
without dictionaries (Conneau et al., 2018). The
absence of a dictionary yields much worse perfor-
mance (69.2 vs. 73.1) in contrast with the joint
training approach of Rosita, which also does not
use a dictionary (73.9).

We also present results using gold universal part
of speech to compare to previous work in Ta-
ble 3. We again see Rosita’s effectiveness and a
marginal benefit from refinement with dictionar-
ies. It should also be noted that the reported results
for French, Italian and German in Schuster et al.
(2019) outperform all results from our controlled
comparison; this may be due to the use of abun-
dant LM training data. Nevertheless, joint train-
ing, with or without refinement, performs best on
average in both gold and predicted POS settings.

4.2 Diverse Low-Resource Parsing

Low-Resource Simulations Figure 1 shows
simulated low-resource results.!! Of greatest in-
terest are the significant improvements over mono-
lingual parsers when adding English or related-
language data. This improvement is consistent
across languages and suggests that crosslingual

A table with full details including different size simula-
tions is provided in the appendix.

0
ARAHEBHRV RUS NLDDEU SPA ITA CMN JPN

Figure 1: LAS for UD parsing results in a simulated
low-resource setting where the size of the target lan-
guage treebank (| D) is set to 100 sentences.

transfer is a viable solution for a wide range of
languages, even when (as in our case) language-
specific tuning or annotated resources like parallel
corpora or bilingual dictionaries are not available.
See Figure 2 for a visualization of the differences
in performance with varying training size. The
polyglot advantage is minor when the target lan-
guage treebank is large, but dramatic in the condi-
tion where the target language has only 100 sen-
tences. The fastText approaches consistently un-
derperform the language model approaches, but
show the same pattern.

In addition, related-language polyglot (“+rel.”)
outperforms English polyglot in most cases in the
low-resource condition. The exceptions to this
pattern are Italian (whose treebank is of a differ-
ent genre from the Spanish one), and Japanese and
Chinese, which differ significantly in morphology
and word order. The CMN/JPN result suggests
that such typological features influence the degree
of crosslingual transfer more than orthographic
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—-—mono. (ELMo) —=— +ENG (Rosita) —6— +rel. (Rosita) - 4 - fastText mono. - ®- fastText+ENG - ®- fastText+rel.
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Figure 2: Plots of parsing performance vs. target language treebank size for several example languages. The

size 0 target treebank point indicates a parser trained only on the source language treebank but with polyglot
representations, allowing transfer to the target test treebank using no target language training trees. See Appendix
for results with zero-target-treebank and intermediate size data (| D, | € {0, 100,500, 1000}) for all languages.

properties like shared characters. This result in
crosslingual transfer also mirrors the observation
from prior work (Gerz et al., 2018) that typological
features of the language are predictive of monolin-
gual LM performance. The related-language im-
provement also vanishes in the full-data condition
(Figure 2), implying that the importance of shared
linguistic features can be overcome with sufficient
annotated data. It is also noteworthy that varia-
tions in word order, such as the order of adjec-
tive and noun, do not affect performance: Ital-
ian, Arabic, and others use a noun-adjective order
while English uses an adjective-noun order, but
their +ENG and +rel. results are comparable.

The Croatian and Russian results are notable
because of shared heritage but different scripts.
Though Croatian uses the Latin alphabet and Rus-
sian uses Cyrillic, transfer between HRV-+RUS is
clearly more effective than HRV+ENG (82.00 vs.
79.21 LAS points when |D,| = 100). This
suggests that character-based LMs can implicitly
learn to transliterate between related languages
with different scripts, even without parallel super-
vision.

Truly Low Resource Languages Finally we
present “true low-resource” experiments for four
languages in which little UD data is available
(see Section 3.2). Table 4 shows these results.
Consistent with our simulations, our parsers on
top of Rosita (multilingual CWRs from the joint
training approach) substantially outperform the
parsers with ELMos (monolingual CWRs) in all
languages, and establish a new state of the art
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Model [ gold  pred.
Hungarian (HUN)

Che et al. (2018) (HUN, ensemble) - 82.66
Che et al. (2018) (HUN) - 80.96
ELMo (HUN) 81.89 81.54
Rosita (HUN +ENG) 85.34 84.89
Rosita (HUN +FIN) 8540 84.96
Vietnamese (VIE)

Che et al. (2018) (VIE, ensemble) - 55.22
ELMo (VIE) 62.67 55.72
Rosita (VIE +ENG) 63.07 56.42
Uyghur (UIG)

Che et al. (2018) (UIG, ensemble) - 67.05
Che et al. (2018) (UIG) - 66.20
ELMo (UIG) 66.64  63.98
Rosita (UIG +ENG) 67.85 65.55
Rosita (UIG +TUR) 68.08 65.73
Kazakh (KAZ)

Rosa and Marecek (2018) (KAZ +TUR) - 26.31
Smith et al. (2018) (KAZ +TUR) - 31.93
Schuster et al. (2019) (KAZ +TUR) - 36.98
Rosita (KAZ +ENG) 48.02 46.03
Rosita (KAZ +TUR) 53.98 51.96

Table 4: LAS (F) comparison for truly low-resource
languages. The gold and pred. columns show re-
sults under gold segmentation and predicted segmen-
tation. The languages in the parentheses indicate the
languages used in parser training.



in Hungarian, Vietnamese, and Kazakh. Con-
sistent with our simulations, we see that train-
ing parsers with the target’s related language is
more effective than with the more distant lan-
guage, English. It is particularly noteworthy that
the Rosita models, which do not use a parallel
corpus or dictionary, dramatically improve over
the best previously reported result from Schuster
et al. (2019) when either the related language of
Turkish (51.96 vs. 36.98) or even the more dis-
tant language of English (46.03 v.s. 36.98) is used.
Schuster et al. (2019) aligned the monolingual EL-
Mos for Kazakh and Turkish using the KAZ-TUR
dictionary that Rosa and Marecek (2018) derived
from parallel text. This result further corroborates
our finding that the joint training approach to mul-
tilingual CWRs is more effective than retrofitting
monolingual LMs.

4.3 Comparison to Multilingual BERT
Embeddings

We also evaluate the diverse low-resource lan-
guage pairs using pretrained multilingual BERT
(Devlin et al., 2019) as text embeddings (Figure
3). Here, the same language model (multilingual
cased BERT,!? covering 104 languages) is used
for all parsers, with the only variation being in the
training treebanks provided to each parser. Parsers
are trained using the same hyperparameters and
data as in Section 3.2.13

There are two critical differences from our pre-
vious experiments: multilingual BERT is trained
on much larger amounts of Wikipedia data com-
pared to other LMs used in this work, and the
WordPiece vocabulary (Wu et al., 2016) used
in the cased multilingual BERT model has been
shown to have a distribution skewed toward Latin
alphabets (Acs, 2019). These results are thus not
directly comparable to those in Figure 1; never-
theless, it is interesting to see that the results ob-
tained with ELMo-like LMs are comparable to and
in some cases better than results using a BERT
model trained on over a hundred languages. Our
results broadly fit with those of Pires et al. (2019),
who found that multilingual BERT was useful for
zero-shot crosslingual syntactic transfer. In partic-
ular, we find nearly no performance benefit from
cross-script transfer using BERT in a language
pair (English-Japanese) for which they reported

12 Available ~ at
research/bert/
13 AllenNLP version 0.9.0 was used for these experiments.

https://github.com/google-

L NI | QoS

I mono.

ARAHEBHRV RUS NLDDEU SPA ITA CMN JPN

Figure 3: LAS for UD parsing results in a simulated
low-resource setting ((|D-| = 100) using multilingual
BERT embeddings in place of Rosita. Cf. Figure 1.

poor performance in zero-shot transfer, contrary
to our results using Rosita (Section 4.2).

5 Decontextual Probe

We saw the success of the joint polyglot train-
ing for multilingual CWRs over the retrofitting ap-
proach in the previous section. We hypothesize
that CWRs from joint training provide useful repre-
sentations for parsers by inducing nonlinear sim-
ilarity in the vector spaces of different languages
that we cannot retrieve with a simple alignment of
monolingual pretrained language models. In order
to test this hypothesis, we conduct a decontextual
probe comprised of two steps. The decontextu-
alization step effectively distills CWRs into word
type vectors, where each unique word is mapped
to exactly one embedding regardless of the con-
text. We then conduct linear transformation-based
word translation (Mikolov et al., 2013) on the de-
contextualized vectors to quantify the degree of
crosslingual similarity in the multilingual CWRs.

5.1 Decontextualization

Recall from Section 2 that we produce CWRs from
bidirectional LMs with character CNNs and two-
layer LSTMs. We propose a method to remove the
dependence on context c for the two LSTM layers
(the CNN layer is already context-independent by
design). During LM training, the hidden states of
each layer h; are computed by the standard LSTM
equations:

it = 0 (Wizy + +Uihi—1 + b;)
fi=o0 (WffL't +Uphi—1 + bf)
¢ = tanh (Wexy + Uchy—1 + be)
or = 0 (Wexy + Uphy—1 + by)
a=fOc 1+t OC

hy = oy ® tanh (¢;)
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Representations UD SRL  NER
GloVe 83.78 80.01 83.90
fastText 83.93 80.27 83.40
Decontextualization | 86.88 81.41 87.72
ELMo 88.71 82.12 88.65
Table 5: Context independent vs. dependent per-

formance in English. All embeddings are 512-
dimensional and trained on the same English corpus
of approximately 50M tokens for fair comparisons.
We also concatenate 128-dimensional character LSTM
representations with the word vectors in every config-
uration to ensure all models have character input. UD
scores are LAS, and SRL and NER are F}.

We produce contextless vectors from pretrained
LMs by removing recursion in the computation
(i.e. setting h;—1 and ¢;—1 to 0):

it =0 (Wil't + bl)

fr =0 (Wywt + by)

¢t = tanh (Wexy + be)
o =0 (Wexy + by)

ct =1 O ¢

hi = o; © tanh (¢;)

This method is fast to compute, as it does not re-
quire recurrent computation and only needs to see
each word once. This way, each word is associ-
ated with a set of exactly three vectors from the
three layers.

Performance of decontextualized vectors We
perform a brief experiment to find what informa-
tion is successfully retained by the decontextu-
alized vectors, by using them as inputs to three
tasks (in a monolingual English setting, for sim-
plicity). For Universal Dependencies (UD) pars-
ing, semantic role labeling (SRL), and named
entity recognition (NER), we used the standard
train/development/test splits from UD English
EWT (Zeman et al., 2018) and Ontonotes (Prad-
han et al., 2013). Following Mulcaire et al. (2019),
we use strong existing neural models for each task:
Dozat and Manning (2017) for UD parsing, He
et al. (2017) for SRL, and Peters et al. (2017) for
NER.

Table 5 compares the decontextualized vectors
with the original CWRs (ELMo) and the conven-
tional word type vectors, GloVe (Pennington et al.,
2014) and fastText (Bojanowski et al., 2017). In
all three tasks, the decontextualized vectors sub-
stantially improve over fastText and GloVe vec-
tors, and perform nearly on par with contextual
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Vector DEU SPA FRA ITA POR SWE
fastText | 31.6 54.8 567 50.2 555 439
ELMos
LayerO | 19.7 415 41.1 369 446 275
Layer1 | 244 464 47.6 442 483 363
Layer2 | 19.9 40.5 419 381 425 309
Rosita
LayerO0 | 379 56.6 582 575 56.6 50.6
Layer1 | 403 563 572 581 565 53.7
Layer2 | 388 51.1 527 53.6 50.7 508

Table 6: Crosslingual alignment results (precision at 1)
from decontextual probe. Layers 0, 1, and 2 denote the
character CNN, first LSTM, and second LSTM layers
in the language models respectively.

ELMo. This suggests that while part of the advan-
tage of CWRs is in the incorporation of context,
they also benefit from rich context-independent
representations present in deeper networks.

5.2 Word Translation Test

Given the decontextualized vectors from each
layer of the bidirectional language models, we
can measure the crosslingual lexical correspon-
dence in the multilingual CWRs by performing
word translation. Concretely, suppose that we
have training and evaluation word translation pairs
from the source to the target language. Using
the same word alignment objective discussed as in
Section 2.1, we find a linear transform by align-
ing the decontextualized vectors for the training
source-target word pairs. Then, we apply this lin-
ear transform to the decontextualized vector for
each source word in the evaluation pairs. The clos-
est target vector is found using the cross-domain
similarity local scaling (CSLS) measure (Conneau
etal., 2018), which is designed to remedy the hub-
ness problem (where a few “hub” points are near-
est neighbors to many other points each) in word
translation by normalizing the cosine similarity
according to the degree of hubness.

We again take the dictionaries from Conneau
et al. (2018) with the given train/test split, and al-
ways use English as the target language. For each
language, we take all words that appear three times
or more in our LM training data and compute de-
contextualized vectors for them. Word translation
is evaluated by choosing the closest vector among
the English decontextualized vectors.

5.3 Results

We present word translation results from our de-
contextual probe in Table 6. We see that the first



LSTM layer generally achieves the best crosslin-
gual alignment both in ELMos and Rosita. This
finding mirrors recent studies on layerwise trans-
ferability; representations from the first LSTM
layer in a language model are most transferable
across a range of tasks (Liu et al., 2019). Our de-
contextual probe demonstrates that the first LSTM
layer learns the most generalizable representations
not only across tasks but also across languages.
In all six languages, Rosita (joint LM training
approach) outperforms ELMos (retrofitting ap-
proach) and the fastText vectors. This shows that
for the polyglot (jointly trained) LMs, there is
a preexisting similarity between languages’ vec-
tor spaces beyond what a linear transform pro-
vides. The resulting language-agnostic represen-
tations lead to polyglot training’s success in low-
resource dependency parsing.

6 Further Related Work

In addition to the work mentioned above, much
previous work has proposed techniques to trans-
fer knowledge from a high-resource to a low-
resource language for dependency parsing. Many
of these methods use an essentially (either lex-
icalized or delexicalized) joint polyglot training
setup (e.g., McDonald et al., 2011; Cohen et al.,
2011; Duong et al., 2015; Guo et al., 2016; Vi-
lares et al., 2016; Falenska and Cetinoglu, 2017
as well as many of the CoNLL 2017/2018 shared
task participants: Lim and Poibeau (2017); Vania
et al. (2017); de Lhoneux et al. (2017); Che et al.
(2018); Wan et al. (2018); Smith et al. (2018); Lim
etal. (2018)). Some use typological information to
facilitate crosslingual transfer (e.g., Naseem et al.,
2012; Tackstrom et al., 2013; Zhang and Barzi-
lay, 2015; Wang and Eisner, 2016; Rasooli and
Collins, 2017; Ammar et al., 2016). Others use bi-
text (Zeman et al., 2018), manually-specified rules
(Naseem et al., 2012), or surface statistics from
gold universal part of speech (Wang and Eisner,
2018a,b) to map the source to target. The meth-
ods examined in this work to produce multilin-
gual CWRs do not rely on such external informa-
tion about the languages, and instead use relatively
abundant LM data to learn crosslinguality that ab-
stracts away from typological divergence.

Recent work has developed several probing
methods for (monolingual) contextual represen-
tations (Liu et al., 2019; Hewitt and Manning,
2019; Tenney et al., 2019). Wada and Iwata
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(2018) showed that the (contextless) input and out-
put word vectors in a polyglot word-based lan-
guage model manifest a certain level of lexical cor-
respondence between languages. Our decontex-
tual probe demonstrated that the internal layers of
polyglot language models capture crosslinguality
and produce useful multilingual CWRs for down-
stream low-resource dependency parsing.

7 Conclusion

We assessed recent approaches to multilingual
contextual word representations, and compared
them in the context of low-resource dependency
parsing. Our parsing results illustrate that a joint
training approach for polyglot language models
outperforms a retrofitting approach of aligning
monolingual language models. Our decontextual
probe showed that jointly trained LMs learn a bet-
ter crosslingual lexical correspondence than the
one produced by aligning monolingual language
models or word type vectors. Our results provide a
strong basis for multilingual representation learn-
ing and for further study of crosslingual transfer
in a low-resource setting beyond dependency pars-
ing.
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