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Abstract

Recently, language models (LMs) or language

representation models are widely used in nat-

ural language understanding (NLU) tasks.

However, these LMs are usually trained on

large unlabeled text corpora, while the fine-

tuning process simply takes words or word-

pieces as model input. Because of the differ-

ences between language model and NLU task

objectives, the problem of lack of concern on

some key words exists. Thus in this paper,

we propose a method called reverse mapping

bytepair encoding, which maps named-entity

information and other word-level linguistic

features back to subwords during the encod-

ing procedure of bytepair encoding (BPE).

We employ this method to the Generative

Pre-trained Transformer (OpenAI GPT) (Rad-

ford et al., 2018) by adding a weighted linear

layer after the embedding layer. We also pro-

pose a new model architecture named as the

multi-channel separate transformer to evalu-

ate the effectiveness of the newly introduced

information by employing a training process

without parameter-sharing. Experiments on

Story Cloze, RTE, SciTail and SST-2 datasets

demonstrate the effectiveness of our approach.

Compared with the original results in GPT,

our approach gains 1.58% absolute increase on

Stories Cloze, 6.4% on RTE, 0.69% on SciTail

and 0.8% on SST-2.

1 Introduction

Recently, language models are widely used as the

feature extractor for many NLU tasks. Statistical

language models learn the joint probability func-

tion of sequences of words in a language (Bengio

et al., 2003). Trained on large corpora and differ-

ent domains give LMs generalization abilities, and

enable them to capture latent or deep senmantics.

Normally, statistical language models take the fol-

lowing objective to maximize:

L1(u) =
∑

i

logP (ui|ui−k, ..., ui−1; Θ) (1)

where k is the size of the context window, and the

conditional probability P is modeled using a neu-

ral network with parameters Θ.

However, this formal simplicity determines that

they can not deal well with the ambiguity of words

nor low-frequency words. In fact, low-frequency

words may appear once or little times in the whole

corpus, thus the embeddings of them may over-

fit or underfit the corpus. In practice, we usu-

ally truncate them from the vocabulary and re-

place them with an “UNK” label. In this situ-

ation, we partially lose their meanings. For ex-

ample, in “15 million tonnes of rubbish are pro-

duced daily in Cairo.”, the number “15” can hardly

be trained to gain its proper representation even

if it is replaced by a specific label representing

numbers. Besides, out of vocabulary (OOV) is

a big problem while predicting. Some kinds of

word segmentation technologies have been pro-

posed (Joulin et al., 2017; ray Su and yi Lee, 2017)

to solve these problems.

BPE (Sennrich et al., 2016) has been proposed

to handle these problems as well. It shows its pow-

erful effectiveness in many works (Sennrich and

Haddow, 2016; Radford et al., 2018; Devlin et al.,

2018). However, it is originally designed to handle

open-vocabulary problem in machine translation,

basing on the intuition that various word classes

are translatable via smaller units than words, for

instance names (via character copying or translit-

eration), compounds (via compositional transla-

tion), and cognates and loanwords (via phono-

logical and morphological transformations). Thus

compared with semantic characteristics, morpho-

logical and compounding characteristics are more

considered. The unique meanings of some proper
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nouns are missing while simply applying it to

some NLU tasks. Consider the following textual

entailment example:

Example 1. t. Traditionally, the Brahui of the

Raisani tribe are in charge of the law and order

situation through the Pass area. This tribe is still

living in present day Balochistan in Pakistan.

h. The Raisani tribe resides in Pakistan.

t→h: entailment

BPE:

Brahui: bra hu i

Raisani: rai san i

Balochistan: bal o chi stan

In this example, proper nouns play an important

role, but they are divided into wordpieces shared

with other words. Especially they have common

pieces such as “i” and “o”. Therefore, inferring

from the encoded sequence can be quite difficult.

Apart from this, let us motivate the lack of

concern on some key words or phrases of such

method. Here is another example:

Example 2. t. Cairo is now home to some 15 mil-

lion people - a burgeoning population that pro-

duces approximately 10,000 tonnes of rubbish per

day, putting an enormous strain on public ser-

vices...

h. 15 million tonnes of rubbish are produced

daily in Cairo.

t→h: not entailment

In this case, “15 million tonnes” is the key

phrase while “15”, “million” and “tonnes” also ap-

pear in the context. Word-level or subword-level

information is obviously not enough.

To alleviate these issues, we propose a reverse

mapping bytepair encoding method to integrate

prior knowledge into subwords. The prior knowl-

edge mentioned here includes named-entity in-

formation, part-of-speech (POS) tags and depen-

dency parsing labels. Our method has two forms

and both of them modify the encoding procedure

of BPE. In the conventional form, firstly we tag

and parse the target sentence which needs to be

tagged with NER, POS taggers as well as a depen-

dency parser. After that, we handle the target sen-

tence with the original BPE algorithm. Note that

the taggers and the parser work on the word-level

while BPE works on the wordpiece-level. Finally,

we encode every wordpiece as a combination of

linguistic features of its parent word and itself. To

avoid over-reliance on the performance of external

tools and error propagation, we modify the former

as named-entity phrase based reverse mapping,

which adds named-entity phrases to the vocabu-

lary during the scanning process of the whole cor-

pus and encodes a wordpiece as the combination

of the named-entity phrase where the wordpiece

comes from and itself. We evaluate our method on

a set of NLU tasks by applying it to GPT. More

specifically, we add a weighted layer after the em-

bedding layer to get different weighted combina-

tions of the inputs. We also propose a new model

architecture named as the multi-channel separate

transformer to employ a training process without

parameter-sharing for wordpieces and additional

features. We evaluate our approach on two natural

language inference tasks (RTE, SciTail), a ques-

tion answering task (Story Cloze Test) and a clas-

sification task (SST-2), showing the benifits of our

approach.

2 Related Work

Improving natural language understanding re-

quires better techniques for modeling natural lan-

guage. There have been many researchers work-

ing on better capturing semantic and morpholog-

ical information of word vectors (Mikolov et al.,

2013a,b; Huang et al., 2012; Levy and Goldberg,

2014b; Pennington et al., 2014). Utilizing internal

information has been widely studied, and most of

these works employed structural information be-

tween words and smaller units (Chen et al., 2015;

Iacobacci et al., 2015; Bojanowski et al., 2017; Yu

et al., 2017; Xu et al., 2018). Another relative

research direction is to use external knowledge.

The researchers in Microsoft (Song et al., 2011)

employed a big and rich probabilistic knowledge-

base to machine learning algorithms, and got sig-

nificant improvement in terms of tweets cluster-

ing accuracy. However, such method needs huge

human and material resources to build up a high-

quality and extremely wide-coverage knowledge

base. Recently, a novel language representation

model called ERNIE (Zhang et al., 2019) has been

proposed. ERNIE introduces knowledge-related

tasks in the pre-training process. Besides, it uti-

lizes graph embedding methods to get the embed-

ded representation of entities. Compared with it,

our method does not rely upon external knowl-

edge bases and it can be a double-edged sword. In

addition, our method provides syntactic informa-

tion integration and allows principled integration

of named-entity information in an easier way.
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There is also a class of method, instead of re-

lying a lot on external knowledge, it takes advan-

tage of the linguistic features that exist in natural

language. Levy (Levy and Goldberg, 2014a) gen-

eralized the skip-gram model to include arbitrary

contexts by dependency parsing. The dependency-

based embeddings are less topical and exhibit

more functional similarity than the original skip-

gram embeddings. Multimodal representations of

chinese characters (ray Su and yi Lee, 2017) have

also been studied, and the research showed the ef-

fectiveness of glyph features in some cases. Sen-

nrich (Sennrich and Haddow, 2016) proposed an

approach to employ linguistic features for neu-

ral machine translation (NMT). These features in-

clude lemmas, subword tags, morphological fea-

tures, POS tags and dependency labels. Differ-

ent from us, they paid more attention on how to

improve NMT from the morphological level. Be-

sides, they did not consider named entities. An-

other work relevant to us is (Nallapati et al., 2016).

They proposed a feature-rich encoder to capture

keywords in summarization. Their model employs

a word-level vocabulary, and the words are embed-

ded by concatenating all kinds of features includ-

ing POS, NER tags and discretized TF and IDF

values. Different from them, our approach works

on the subword level and leverages linguistic fea-

tures at the semantic level.

There are many kinds of neural networks that

can deal with NLU tasks. Recently, pre-trained

language models or language representation mod-

els have been widely used and these works got sig-

nificant improvements (Peters et al., 2018; Rad-

ford et al., 2018; Devlin et al., 2018). Trained

on large corpora will inevitably face the big-

vocabulary problem and the OOV problem. Thus

researchers have proposed several methods to han-

dle them. FastText (Joulin et al., 2017) employed

n-grams thus it could predict the zero-shot word

embeddings. However, n-gram is an arbitrary

method of word segmentation. Sennrich (Sennrich

et al., 2016) adapted the original byte pair en-

coding (BPE) compression algorithm to NMT and

got significant success. This method iteratively

merges most frequent adjacent characters or char-

acter sequences in a word until it can not be done,

based on the well learned token rank. Therefore

it can encode any word with a pre-learned token

vocalulary. We give an illustration as Figure 1,

showing the ranking process of BPE. GPT (Rad-

ford et al., 2018) applied BPE to its training pro-

cess and got impressive achievements in a series

of NLU tasks. Due to the greedy nature of BPE

algorithm, the results produced by BPE are deter-

ministic, resulting in insufficient robustness in ma-

chine translation. Kudo (Kudo, 2018) located this

problem and proposed a subword regularization

method to handle it. He trained the NMT model

with multiple subword segmentations generated in

a probability manner and got improvements espe-

cially on low resource and out-of-domain settings.

This study provides an interesting insight, but we

argue that it may not bring significant improve-

ment in NLU tasks. In fact, BPE is proposed to

model open-vocabulary translation in NMT, which

is inconsistent with the goal of some natural lan-

guage understanding tasks. That motivates us to

start our work.

aaabdaaabac

ZabdZabac
Z=aa

ZYdZYac
Y=ab
Z=aa

The byte pair “aa” occurs most often, so it can be replaced by “Z”, which doesn’t 
appear in the corpus.

Similarly, replace “Ab” with “Y”.

XdXac
X=ZY, Y=ab, Z=aa

Finally, we got the sequence that can not be compressed further because there are 
no pairs of bytes that occur more than once.

Figure 1: Ranking process of bytepair encoding.

3 Methods

In this section, we introduce our reverse mapping

bytepair encoding method and the procedure of

applying it to GPT. The reverse mapping bytepair

encoding has two forms: label based (LB-BPE)

and named-entity phrase based (NPB-BPE). Fig-

ure 2 provides a visual illustration. We employ

them to the fine-tuning process of GPT by adding a

weighted layer after the embedding layer. Besides,

we propose a multi-channel separate transformer

(MCST) to evaluate the utility of introduced fea-

tures and give some insights into the semantic cap-

ture capabilities of the transformer. The model ar-

chitecture is shown in Figure 3.
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15 million tonnes of rubbish are produced daily in Cairo.

LB-BPE
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ENTITY1
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UNE
UNE
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ENTITY2
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Named-

entity 

Phrase

ENTITY1 ENTITY2

DATE

Figure 2: “tonnes” is encoded to be two tokens: “ton”, “nes〈/w〉”. (Left) LB-BPE result. Each token consists

of four parts: token, NER label, synactic dependency label and POS tag. Words in the original text pass their

linguistic features to the tokens generated from them. (Right) NPB-BPE∗ result. Each token consists of two parts:

token and corresponding entity.

Token  Embedding Positon Embedding
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Embedding
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Dropout

Task Head
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LM Head
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Dropout & Weighted Sum

Positon Embedding
Language features  

Embedding

12X

Masked Multihead 
Self Attention

LayerNorm

MLP

LayerNorm

Linear
Linear

Dropout

LM Head Task Head

Dropout & Weighted Sum

12X

Masked Multihead 
Self Attention

LayerNorm
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LayerNorm

Dropout & Weighted Sum

6X
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Self Attention

LayerNorm

MLP

LayerNorm

Figure 3: (Left) Parameter-sharing training procedure. (Right) Multi-channel separate transformer. Language

model loss is only generated by the left transformer. The input of the task specific head is the sum or concatenation

of both transformers outputs.

3.1 Label Based Reverse Mapping Bytepair

Encoding

We extend a token t generated by BPE to four

parts {t, tpos, tner, tdep}, where t is the same as

the original encoded token in BPE, tpos is the POS

tag of the word which generates this token, sim-

ilar with tner and tdep. Not all words are tagged

with named-entity labels, therefore we tag these

tokens without NER labels as “NaN”. We regard

tpos, tner, tdep as additional features that could

not be captured fully by language models. Table

1 shows the amount of features of various types.
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Feature type Amount

NER 20

POS 19

DEP 51

Table 1: Amount of different types of features.

Schemes come from Spacy Annotation Specifi-

cations1. We use spaCy2 to tokenize, tag and parse

the datasets during our experiments. We simply

use the dependency labels instead of the whole de-

pendency parsing tree because of two reasons: one

is it brings complex changes to the input architec-

ture, the other is that we assume the transformer

architecture has the ability to establish some kinds

of patterns to capure the dependencies between to-

kens generated by BPE.

3.2 Named-entity Phrase Based Bytepair

Encoding

Algorithm 1: Encoding process for NPB-

BPE
Input :

Given sentence S;
Pretrained lookup table T for tokens;
Lookup table Tne for named-entity phrases;
NER Scheme Θ := {B,I,O};

Output:
Encoded sequence S

′;

1 Current named-entity token array e;
2 for each word w ∈ S do
3 Step1. if NER(wi) ∈ {B,I} then
4 Append wi to e;
5 i++;
6 Back to Step1;

7 end
8 else
9 e str := ARR2STR(e)

10 if e str 6∈ Tne then
11 Append e str to Tne;
12 end

13 for t
′ ∈ BPE(e str) do

14 Append (t′, e str) to S
′;

15 end
16 Empty e;
17 for t ∈ BPE(w) do

18 Append (t, “ UNE ”) to S
′;

19 end

20 end

21 end

As we mentioned in Introduction 1, some

key words are low-frequency. Such as a per-

son name “Kevin Federline”, it can be encoded

1https://spacy.io/api/annotation# title
2https://spacy.io/

as “kevin〈/w〉”, “feder” and “line〈/w〉”, and the

meaning will be changed. Passing the keyword

information to tokens is a simple and feasible ap-

proach to solve this problem. There are many

ways of defining which words are key words and

thus the problem can be defined as following:

Definition 1. Find an algorithm A, ∀k∈S, A(k) =
1 if k is a key word, else A(k) = 0.

where S represents a sentence.

This is a two-category classification problem.

In fact, these key words usually perform as peo-

ple’s names, organizations or other types of named

entities. Therefore, we choose a NER algorithm3

as algorithm A and we modify the encoding pro-

cess of BPE algorithm as algorithm 1 to pass the

entity attribute to tokens. By reverse mapping

named-entity words or phrases appeared in the

corpus back to BPE tokens, key information has a

way to be preserved. Some kinds of named entities

(ep. DATE, TIME, PERCENT, MONEY, QUAN-

TITY, ORDINAL, etc) contain numbers and they

usually express general attributes, such as “22-

year-old”. We add a switch in practice to control

whether processing these words with NPB-BPE or

not.

The main difference between LB-BPE and

NPB-BPE is that LB-BPE makes ordinary use of

additional semantic information that can not be

easily captured by statistical language models in a

specific language, while NPB-BPE provides a way

to share important concepts within a corpus.

3.3 Training Process

GPT is followed by many studies for its excel-

lent generalization performance and we will give

a brief introduction to it in the first subsubsec-

tion. Due to the expensive cost of pre-training, we

reuse the OpenAI pre-trained language model4 pa-

rameters, and we train new embeddings and fine-

tune all parameters during the fine-tuning process.

Figure 4 shows the modified preprocess proce-

dure. Considering the input is enhanced by dif-

ferent kinds of new features, we propose two dif-

ferent processes for training.

Generative Pre-trained Transformer

The Generative Pre-trained Transformer (Radford

et al., 2018), also known as OpenAI GPT or called

as GPT, is a language representation model which

3https://spacy.io/api/entityrecognizer
4https://github.com/openai/finetune-transformer-lm
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Start Premise Delim ExtractHypothesis

Start Premise Delim ExtractHypothesis

Start Premise Delim ExtractHypothesis

Start Premise Delim ExtractHypothesis

Wordpiece Channel

NER Channel

POS Channel

[START] Oil prices fall back as Yukos oil threat lifted. [SEP] Oil prices rise. [CLS]

Figure 4: The preprocess procedure of RTE dataset by LB-BPE (NER+POS). Others are similar with this example.

is pre-trained on large corpora and fine-tunes all

pre-trained parameters on the downsteam tasks.

Its main architechture was originally described in

(Vaswani et al., 2017). Unless otherwise stated,

the GPT mentioned in this paper refers to a 12-

layer decoder-only transformer with masked self-

attention heads (768 dimensional states and 12 at-

tention heads). For the position-wise feed-forward

networks, we use 3072 dimensional inner states.

Other hyperparameters are set as well as the GPT

paper (Radford et al., 2018) for comparison.

Sharing Parameters

With this method, we treat additional features like

positional encoding. We add these tags to the vo-

cabulary and random initialize their embeddings

in the embedding layer, thus the input can be de-

scribed as following:

h0 = wwtEt + wwpEp +
∑

i∈Clf

wwliEli (2)

where Et, Ep, Eli represent the token embed-

ding matrix, position embedding matrix and lin-

guistic feature embedding matrix, Cl is the col-

lection of all types of linguistic features and wwt,

wwp, wwli are the corresponding weight scalars.

The following data flow is the same as GPT (Liu

et al., 2018). We use the following objective to

minimize:

L3(C) = L2(C) + λL1(C) (3)

where C represents the labeled dataset, L2(C)
is the cross entropy loss of classification got on

C, L1(C) is the cross entropy loss of the language

model got on C and λ is a weight parameter be-

tween 0 and 1.

Multi-channel Separate Transformer

GPT uses a multi-layer transformer decoder as

the language model, and it learns patterns in the

language by simply observing the token-level se-

quences. In this part, we use LB-BPE to encode

sequences and with this method we have multi-

ple input channels. We employ two stand-alone

multi-layer transformer decoder to separate the pa-

rameters learned on different perspectives. One

is the 12-layer pre-trained transformer released by

OpenAI GPT, and the other is an entirely new one

which has different amount of layers with the for-

mer and takes responsibility for linguistic features.

4 Experiments and Analysis

4.1 Setup

We follow the model hyperparameters mentioned

in the GPT (Liu et al., 2018) paper. We use learned

position embeddings with variable length depend-

ing on downstream tasks. We perform a pilot ex-

periment and the result shows that it is almost the

best to set the weighted layer as 1.0 for each chan-

nel. We use a 16G ASPEED Graphics Family (rev

30) card for training.

4.2 Supervised Fine-tuning

Datasets

Story Cloze Test Story Cloze Test

(Mostafazadeh et al., 2017) is a new com-

monsense reasoning framework for evaluating

story understanding, story generation, and script

learning. This test requires a system to choose

the correct ending to a four-sentence story. We

choose it as a part of our evaluation corpora

because it requires the model to capture rich

linguistic phenomena.

RTE and SciTail RTE (Bentivogli et al., 2009)

and SciTail (Khot et al., 2018) are language in-
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Model Story Cloze(Acc%) RTE(Acc%) SciTail(Acc%) SST-2(Acc%)

jose.fonollosa’s model 87.60 - - -

BiLSTM+ELMo+Attn - 58.9 - 90.4

BigBird - - 93.84 -

GPT 86.5 56.0 88.3 91.3

NER 87.39 61.6 88.90 91.2

NER+POS 88.08 62.1 88.33 91.1

NER+DEP 87.55 62.0 88.99 90.2

NER+POS+DEP 87.07 60.4 87.54 92.1

POS 84.07 62.4 88.15 92.1

POS+DEP 86.05 61.5 87.63 91.7

DEP 86.48 62.0 87.82 91.3

NPB-BPE 87.76 58.8 88.43 91.1

NPB-BPE∗ 87.39 62.3 87.16 91.9

The details of the models for comparison in this table can be found in the leaderboards of the cor-

responding dataset official websites. Each row in the second block represents a LB-BPE result with

different combination of features. NER represents using named-entity labels, POS represents part of

speech tags and DEP represents synactic dependency parsing tags. NPB-BPE∗ represents filtering

out named entities within these types (DATE, TIME, PERCENT, MONEY, QUANTITY, ORDINAL).

Table 2: Reverse mapping bytepair encoding results on Story Cloze Test, RTE, SciTail and SST-2.

ference also called textual entailment tasks which

given a text t and a hypothesis h, t entails h, if,

typically, a human reading t would infer that h is

most likely true. The relation is directional. These

two datasets differ from each other in size and do-

main.

SST-2 SST-2 (Socher et al., 2013) is related to

sentiment analysis, containing 56.4k movie re-

views and each of them has a binary label.

Evaluation of Label Based Reverse Mapping

Bytepair Encoding

We evaluate LB-BPE on these datatsets and con-

duct multiple controlled trials based on different

combinations of linguistic features by employing

the parameter-sharing training procedure. De-

tails is described in Table 2. The result shows

that incorporating named-entity features usually

works well, while utilizing POS tags sometimes

can bring significant performance improvement.

Besides, it is not a good way to use external fea-

tures as many as possible, most likely because of

the error propagation. However, combinations of

named-entity information and others may bring a

small boost. Compared with GPT, we achieved an

absolute increase of 1.58% on Story Cloze Test,

6.4% on RTE, 0.69% on SciTail and 0.8% on SST-

2 at our best.

Evaluation of Named-entity Phrase Based

Bytepair Encoding

We evaluate NPB-BPE with the parameter-sharing

training procedure. Details are shown in Table 2.

Overall, NPB-BPE improves the performances for

all datasets while not overly relying on external

features. On Story Cloze Test, both kinds of NPB-

BPE are not worse than LB-BPE (NER). On RTE,

NPB-BPE∗ nearly achieves the best performance

of LB-BPE. Little performance boost is shown on

SciTail, probably because sentences in SciTail are

more focused on the expressions of concepts and

knowledge, and thus key words are more about

verbs and nouns rather than named entities. How-

ever, as we unexpected, applying NPB-BPE∗ to

SST-2 gains a 0.6% absolute increase. We also

collect the statistics of named entities on these

datasets. Details is shown in Table 3. We ob-

serve that there is a positive correlation between

named entities percentage and performance im-

provement.

Evaluation of Different Training Processes

The parameters in GPT are all the same for all

wordpiece embeddings in the vocabulary. How-

ever, linguistic features contain different levels

of information compared with words and word-

pieces. Thus we evaluate two different training

processes mentioned in Section 3.3. As for MCST,
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Dataset Amount Percentage(%) Top10(non-numeric)

Story Cloze 2354 7.3 (“One day”, 241), (“John”, 196), (“Amy”, 195),

(“Bob”, 189), (“Joe”, 156), (“Tom”, 152), (“Tim”, 148),

(“Sam”, 114), (“Gina”, 101), (“Jim”, 95)

RTE 15548 21.9 (“U.S.”, 294), (“Iraq”, 262), (“US”, 243), (“the

United States”, 180), (“China”, 166), (“today”, 150),

(“France”, 148), (“Monday”, 144), (“American”, 144),

(“Bush”, 142)

SciTail 7631 4.8 (“Earth”, 670), (“earth”, 632), (“Sun”, 358), (“Mer-

cury”, 262), (“Oxygen”, 139), (“Hydrogen”, 134),

(“Venus”, 103), (“Jupiter”, 101), (“Weight”, 101),

(“Mars”, 92)

SST-2 728 1.6 (“american”, 141), (“years”, 128), (“summer”, 122),

(“the year”, 119), (“year”, 90), (“today”, 87), (“2002”,

60), (“this year”, 54), (“two hours”, 53), (“saturday”,

51)

Table 3: Statistics of named entities on Story Cloze Test, RTE, SciTail, SST-2.
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Figure 5: Accuracy of LB-BPE+MCST on all datasets. The red dotted line in each subgraph represents the best

result of LB-BPE+GPT got on that dataset.

we perform a series of experiments based on dif-

ferent amount of blocks in the new transformer.

As shown in Figure 5, employing non-parameter-

sharing training process will generally reduce the

performance. We infer that it is probably due to

the lack of pre-training procedure for newly intro-

duced features. However, MCST predicts labels

based on both transformers while the accuracy

rates do not drop too much, which suggests that

the newly introduced linguistic features work at

least to some extent and the transformer architec-

ture can capture some potential semantic informa-

tion from them independently. Besides, MCSTs

trained with 2, 4, 6 layers in the new transformer

perform best in our experiments, and they gain

similar or even better results compared with the

parameter-sharing training process, which means

training newly introduced features doesn’t need

as many parameters as the original transformer.

The main reason is that linguistic features act at a

higher level compared with words and wordpieces.
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[START] traditionally</w> ,</w>

tribe</w> are</w> in</w> charge</w> of</w>

through</w> the</w> pass</w> living</w> in</w>

present</w> day</w>

the</w> bra i</w>hu rai san i</w>

the</w> law</w> and</w> order</w> situation</w>

area</w> .</w> this</w> tribe</w> is</w> still</w>

bal o chi stan</w> in</w> pakistan</w> .</w> [SEP] the</w> rai san i</w>

tribe</w> resides</w> in</w> pakistan</w> .</w> [CLS]

of</w> the</w>

Figure 6: Attention weights of a textual entailment case in RTE. Yellow parts represent the attention weights of

our approach. Green arrows and boxes represent the weight changes compared with GPT.

4.3 Case Study

We compare the attention weights of GPT and our

LB-BPE (NER+POS) approach in a textual intail-

ment example as shown in Figure 6. GPT labels

it as not entailment while our approach labels it as

entailment which is the right answer. The atten-

tion weights come from the same attention head in

the last transformer block. Changes in some parts

lead to the correct answer.

5 Conclusion and Future Work

In this paper, we introduce a simple approach

called reverse mapping bytepair encoding to im-

prove natural language understanding based on

pre-trained language models. The reverse map-

ping bytepair encoding has two forms: One is

label based and the other is named-entity phrase

based. Both forms introduce extra information

to the tokens generated by BPE while the for-

mer ordinarily employs linguistic features, and the

latter provides a way to share concepts through

named-entity phrases. In addition, in the second

form, we summarize the problem we are trying

to solve into a two-category problem that judges

whether a word is a key word. By applying them

to the fine-tuning process of GPT, we gain about 1-

6% improvement on downsteam NLU tasks. We

also propose a new model architecture named as

MCST and experiments based on it shows its ef-

fectiveness in some cases. Besides, the experi-

mental results show that linguistic features usually

perform at a higher level compared with words and

wordpieces. It is quite easy to apply our method to

the existing language models.

There could be several directions to be explored

for future works. Language models have many

forms, we only test our approach on GPT, a fol-

low up direction is finding if it is generic enough.

In this paper, we don’t employ pre-training for lin-

guistic features, it might be better by doing this.

There are several researches focusing on incor-

porating knowledge into systems to improve their

performances, thus we are looking forward to find-

ing a smooth way to utilize named entities with

prior knowledge or knowledge graphs.
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