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Abstract

We propose algorithms to train production-
quality n-gram language models using feder-
ated learning. Federated learning is a dis-
tributed computation platform that can be used
to train global models for portable devices
such as smart phones. Federated learning is
especially relevant for applications handling
privacy-sensitive data, such as virtual key-
boards, because training is performed with-
out the users’ data ever leaving their devices.
While the principles of federated learning are
fairly generic, its methodology assumes that
the underlying models are neural networks.
However, virtual keyboards are typically pow-
ered by n-gram language models for latency
reasons.

We propose to train a recurrent neural net-
work language model using the decentral-
ized FederatedAveraging algorithm and
to approximate this federated model server-
side with an n-gram model that can be de-
ployed to devices for fast inference. Our
technical contributions include ways of han-
dling large vocabularies, algorithms to cor-
rect capitalization errors in user data, and effi-
cient finite state transducer algorithms to con-
vert word language models to word-piece lan-
guage models and vice versa. The n-gram lan-
guage models trained with federated learning
are compared to n-grams trained with tradi-
tional server-based algorithms using A/B tests
on tens of millions of users of a virtual key-
board. Results are presented for two lan-
guages, American English and Brazilian Por-
tuguese. This work demonstrates that high-
quality n-gram language models can be trained
directly on client mobile devices without sen-
sitive training data ever leaving the devices.

Figure 1: Glide trails are shown for two spatially-
similar words: “Vampire” (in red) and “Value” (in or-
ange). Viable decoding candidates are proposed based
on context and language model scores.

1 Introduction

1.1 Virtual keyboard applications

Virtual keyboards for mobile devices provide a
host of functionalities from decoding noisy spatial
signals from tap and glide typing inputs to provid-
ing auto-corrections, word completions, and next-
word predictions. These features must fit within
tight RAM and CPU budgets, and operate under
strict latency constraints. A key press should re-
sult in visible feedback within about 20 millisec-
onds (Ouyang et al., 2017; Alsharif et al., 2015).
Weighted finite-state transducers have been used
successfully to decode keyboard spatial signals us-
ing a combination of spatial and language mod-
els (Ouyang et al., 2017; Hellsten et al., 2017).
Figure 1 shows the glide trails of two spatially-
similar words. Because of the similarity of the
two trails, the decoder must rely on the language
model to discriminate between viable candidates.
For memory and latency reasons, especially on
low-end devices, the language models are typi-
cally based on n-grams and do not exceed ten
megabytes. A language model (LM) is a prob-
abilistic model on words. Given previous words
x1, x2, . . . , xm−1, an LM assigns a probability to
the new words, i.e. p(xm|xm−1, . . . , x1). An
n-gram LM is a Markovian distribution of order
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Figure 2: An illustration of the federated learning pro-
cess from McMahan and Ramage (2017): (A) client
devices compute SGD updates on locally-stored data,
(B) a server aggregates the client updates to build a new
global model, (C) the new model is sent back to clients,
and the process is repeated.

n− 1, defined by

p(xm|xm−1, . . . , x1) = p(xm|xm−1, . . . , xm−n+1),

where n is the order of the n-gram. For compu-
tation and memory efficiency, keyboard LMs typ-
ically have higher-order n-grams over a subset of
the vocabulary, e.g. the most frequent 64K words,
and the rest of the vocabulary only has unigrams.
We consider n-gram LMs that do not exceed 1.5M
n-grams and include fewer than 200K unigrams.

N-gram models are traditionally trained by ap-
plying a smoothing method to n-gram counts from
a training corpus (Chen and Goodman, 1999). The
highest quality n-gram models are trained over
data that are well-matched to the desired out-
put (Moore and Lewis, 2010). For virtual key-
boards, training over users’ typed text would lead
to the best results. Of course, such data are very
personal and need to be handled with care.

1.2 Federated learning
We propose to leverage Federated Learning
(FL) (Konečnỳ et al., 2016; Konečný et al., 2016),
a technique where machine learning models are
trained in a decentralized manner on end-users’
devices, so that raw data never leaves these de-
vices. Only targeted and ephemeral parameter up-
dates are aggregated on a centralized server. Fig-
ure 2 provides an illustration of the process. Fed-
erated learning for keyboard input was previously
explored in Hard et al. (2018), in which a feder-
ated recurrent neural network (RNN) was trained
for next-word prediction. However, latency con-
straints prevent the direct use of an RNN for de-
coding. To overcome this problem, we propose

to derive an n-gram LM from a federated RNN
LM model and use that n-gram LM for decod-
ing. Specifically, the approximation algorithm is
based on SampleApprox , which was recently
proposed in Suresh et al. (2019a,b). The proposed
approach has several advantages:
Improved model quality: Since the RNN LM is
trained directly on domain-matched user data, its
predictions are more likely to match actual user
behavior. In addition, as shown in Suresh et al.
(2019a), an n-gram LM approximated from such
an RNN LM is of higher quality than an n-gram
LM trained on user data directly.
Minimum information transmission: In FL,
only the minimal information necessary for model
training (the model parameter deltas) is transmit-
ted to centralized servers. The model updates
contain much less information than the complete
training data.
Additional privacy-preserving techniques: FL
can be further combined with privacy-preserving
techniques such as secure multi-party computa-
tion (Bonawitz et al., 2017) and differential pri-
vacy (McMahan et al., 2018; Agarwal et al., 2018;
Abadi et al., 2016). By the post-processing theo-
rem, if we train a single differentially private re-
current model and use it to approximate n-gram
models, all the distilled models will also be differ-
entially private with the same parameters (Dwork
et al., 2014).

For the above reasons, we have not pro-
posed to learn n-gram models directly using
FederatedAveraging of n-gram counts for
all orders.

2 Outline

The paper is organized along the lines of chal-
lenges associated with converting RNN LMs to n-
gram LMs for virtual keyboards: the feasibility of
training neural models with a large vocabulary, in-
consistent capitalization in the training data, and
data sparsity in morphologically rich languages.
We elaborate on each of these challenges below.
Large vocabulary: Keyboard n-gram models are
typically based on a carefully hand-curated vocab-
ulary to eliminate misspellings, erroneous capital-
izations, and other artifacts. The vocabulary size
often numbers in the hundreds of thousands. How-
ever, training a neural model directly over the vo-
cabulary is memory intensive as the embedding
and softmax layers require space |V| ×Ne, where
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|V| is the vocabulary size andNe is the embedding
dimension. We propose a way to handle large vo-
cabularies for federated models in Section 3.
Incorrect capitalization: In virtual keyboards,
users often type with incorrect casing (e.g. “She
lives in new york” instead of “She lives in New
York”). It would be desirable to decode with
the correct capitalization even though the user-
typed data may be incorrect. Before the discussion
of capitalization, the SampleApprox algorithm
is reviewed in Section 4. We then modify
SampleApprox to infer capitalization in Sec-
tion 5.
Language morphology: Many words are com-
posed of root words and various morpheme com-
ponents, e.g. “crazy”, “crazily”, and “craziness”.
These linguistic features are prominent in mor-
phologically rich languages such as Russian. The
presence of a large number of morphological vari-
ants increases the vocabulary size and data sparsity
ultimately making it more difficult to train neural
models. Algorithms to convert between word and
word-piece models are discussed in Section 6.

Finally, we compare the performance of word
and word-piece models and present the results of
A/B experiments on real users of a virtual key-
board in Section 7.

3 Unigram distributions

Among the 200K words in the vocabulary, our vir-
tual keyboard models only use the top 64K words
in the higher-order n-grams. We train the neu-
ral models only on these most frequent words and
train a separate unigram model over the entire vo-
cabulary. We interpolate the two resulting models
to obtain the final model for decoding.

3.1 Collection

Unigrams are collected via a modified version
of the FederatedAveraging algorithm. No
models are sent to client devices. Instead of re-
turning gradients to the server, counting statistics
are compiled on each device and returned. In our
experiments, we aggregate over groups of approx-
imately 500 devices per training round. We count
a unigram distribution U from a whitelist vocabu-
lary by U =

∑
iwiCi, where i is the index over

devices, Ci are the raw unigram counts collected
from a single device i, and wi is a weight applied
to device i.

To prevent users with large amounts of data

(a) (b)

Figure 3: Unigram distribution convergence. Note that
by 3000 rounds, the unigram distribution is stable, but
the model is still learning new tail unigrams.

from dominating the unigram distribution, we ap-
ply a form of L1-clipping:

wi =
λ

max(λ,
∑
Ci)

, (1)

where λ is a threshold that caps each device’s con-
tribution. When λ = 1, L1-clipping is equivalent
to equal weighting. The limit λ → ∞ is equiva-
lent to collecting the true counts, since wi → 1.

3.2 Convergence

Convergence of the unigram distribution is mea-
sured using the unbiased chi-squared statistic (for
simplicity, referred to as the Z-statistic) defined
in Bhattacharya and Valiant (2015), the number of
unique unigrams seen, and a moving average of
the number of rounds needed to observe new uni-
grams.

Figure 3(a) shows the overall distributional con-
vergence based on the Z-statistic. At round k, uni-
gram counts after k/2 and k rounds are compared.
Figure 3(b) plots the number of whitelist vocabu-
lary words seen and a moving average of the num-
ber of rounds containing new unigrams. New un-
igrams are determined by comparing a round k
with all rounds through k−1 and noting if any new
words are seen. The shaded bands range from the
LM’s unigram capacity to the size of the whitelist
vocabulary.

3.3 Experiments

Since the whitelist vocabulary is uncased, capital-
ization normalization is applied based on an ap-
proach similar to Section 5. We then replace the
unigram part of an n-gram model with this distri-
bution to produce the final LM.

In A/B experiments, unigram models with
different L1-clipping thresholds are compared
against a baseline unigram model gathered from
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Model acc@1 [%] OOV rate [%]
baseline 8.14 18.08
λ = 1 +0.19± 0.21 −1.33± 0.75
λ = 1K +0.11± 0.24 −1.06± 0.66
λ = 5K −0.08± 0.26 −0.78± 0.93

Table 1: Relative change with L1-clipped unigrams
on live traffic of en US users on the virtual keyboard.
Quoted 95% confidence intervals are derived using the
jackknife method with user buckets.

centralized log data. Results are presented in Ta-
ble 1. Accuracy is unchanged and OOV rate is
improved at λ = 1 and λ = 1K.

Before we discuss methods to address in-
consistent capitalization and data sparsity in
morphologically rich languages, we review
SampleApprox .

4 Review of SampleApprox

SampleApprox , proposed in Suresh et al.
(2019a,b), can be used to approximate a RNN as
a weighted finite automaton such as an n-gram
model. A weighted finite automaton (WFA) A =
(Σ, Q,E, i, F ) over R+ (probabilities) is given by
a finite alphabet Σ (vocabulary words), a finite set
of statesQ (n-gram contexts), an initial state i ∈ Q
(sentence start state), a set of final states F ∈ Q
(sentence end states), and a set of labeled transi-
tions E and associated weights that represent the
conditional probability of labels (from Σ) given
the state (list of n-grams and their probabilities).
WFA models allow a special backoff label ϕ for
succinct representation as follows. Let L[q] be
the set of labels on transitions from state q. For
x ∈ L[q], let wq[x], be the weight of the transition
of x at state q and dq[x] be the destination state.
For a label x and a state q,

p(x|q) = wq[x] if x ∈ L[q],

= wq[ϕ] · p(x|dq[ϕ]) otherwise.

In other words, ϕ is followed if x /∈ L[q]. The
definition above is consistent with that of backoff
n-gram models (Chen and Goodman, 1999). Let
B(q) denote the set of states from which q can be
reached by a path of backoff labels and let q[x]
be the first state at which label x can be read by
following a backoff path from q.

Given an unweighted finite automaton A and a
neural model, SampleApproxfinds the proba-

bility model on A that minimizes the Kullback-
Leibler (KL) divergence between the neural model
and the WFA. The algorithm has two steps: a
counting step and a KL minimization step. For
the counting step, let x̄(1), x̄(2), . . . , x̄(k) be k in-
dependent samples from the neural model. For a
sequence x̄, let xi denote the ith label and x̄i =
x1, x2, . . . , xi denote the first i labels. For every
q ∈ Q and x ∈ Σ, the algorithm computes C(x, q)
given by

∑
q′∈B(q)

m∑
j=1

∑
i≥0

1q(x̄i(j))=q′,q=q′[x] · pnn(x|x̄i(j)).

We illustrate this counting with an example.
Suppose we are interested in the count of
the bi-gram New York. Given a bi-gram
LM, SampleApprox generates m sentences and
computes

C(York,New) =
∑

j,i:xi(j)=New

pnn(York|x̄i(j)).

In other words, it finds all sentences that have the
word New, observes how frequently York appears
subsequently, and computes the conditional prob-
ability. After counting, it uses a difference of con-
vex (DC) programming based algorithm to find the
KL minimum solution. If ` is the average num-
ber of words per sentence, the computational com-
plexity of counting is Õ(k · ` · |Σ|) 1 and the com-
putational complexity of the KL minimization is
Õ(|E|+ |Q|) per iteration of DC programming.

5 Capitalization

As mentioned in Section 2, users often type with
incorrect capitalization. One way of handling in-
correct capitalization is to store an on-device capi-
talization normalizer (Beaufays and Strope, 2013)
to correctly capitalize sentences before using them
to train the neural model. However, capitalization
normalizers have large memory footprints and are
not suitable for on-device applications. To over-
come this, the neural model is first trained on un-
cased user data. SampleApprox is then modi-
fied to approximate cased n-gram models from un-
cased neural models.

As before, let x̄(1), x̄(2), . . . , x̄(k) be k in-
dependent (uncased) samples from the neural
model. We capitalize them correctly at the
server using Beaufays and Strope (2013). Let

1an = Õ(bn), means an ≤ bn · poly log(n), ∀n ≥ n0.
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ȳ(1), ȳ(2), . . . ȳ(k) represent the corresponding k
correctly capitalized samples. Let pcap be another
probability model on non-user data that approxi-
mates the ratio of uncased to cased probabilities
given a context. Given a label y, let u(y) be the un-
cased symbol. For example, if y is York, then u(y)
is york. With the above definitions, we modify the
counting step of SampleApprox as follows:

∑
q′∈B(q)

m∑
j=1

∑
i≥0

1q(ȳi(j))=q′,q=q′[y] · p̃(y|ȳi(j)),

where p̃(y|ȳi(j)) is given by

pnn(u(y)|u(ȳi(j))) ·
pcap(y|ȳi(j))∑

y′:u(y′)=u(y) pcap(y′|ȳi(j))
.

We refer to this modified algorithm as
CapSampleApprox . We note that word-
piece to word approximation incurs an additional
computation cost of Õ((|E|+ |Q|+ |∆|)`), where
∆ is the number of words, E and Q are the set of
arcs and set of states in the word n-gram model,
and ` is the maximum number of word-pieces per
word.

6 Morphologically rich languages

To train neural models on morphologically rich
languages, subword segments such as byte-pair
encodings or word-pieces (Shibata et al., 1999;
Schuster and Nakajima, 2012; Kudo, 2018) are
typically used. This approach assigns conditional
probabilities to subword segments, conditioned on
prior subword segments. It has proved successful
in the context of speech recognition (Chiu et al.,
2018) and machine translation (Wu et al., 2016).
Following these successes, we propose to train
RNN LMs with word-pieces for morphologically
rich languages.

We apply the word-piece approach of Kudo
(2018), which computes a word-piece unigram
LM using a word-piece inventory VP . Each word-
piece xi ∈ VP is associated with a unigram prob-
ability p(xi). For a given word y and its possible
segmentation candidates, the word is encoded with
the segmentation that assigns the highest probabil-
ity.

Throughout this paper we apply 4K, 16K, and
30K as the word-piece inventory sizes. These val-
ues lie within a range that provides good trade-off
between the LSTM embedding size and the rich-
ness of the language morphology. We apply 100%

0

2φ

1
ab

ab

3ac

0 1

a:ε
b:ab
c:ac

(a) (b)

0,0

0,2φ:ε

1,0

a:ε

1,2
a:ε

φ:ε

0,1
b:ab

b:ab

0,3c:ac

(c)

Figure 4: The (a) WFA A and WFSTs (b) T and (c) B
for the word vocabulary {ab, ac} and word-piece vo-
cabulary {a, b, c}. Initial states are represented by bold
circles and final states by double circles.

character coverage to include all the symbols that
appeared in the unigram distribution (Section 3),
including the common English letters, accented
letters e.g. é, ô, and digits. Accented letters are
important for languages like Portuguese. For fast
decoding, the n-gram models still need to be at
the word-level, since word-piece n-gram models
increase the depth of the beam-search during de-
coding. We convert the word n-gram topology to
an equivalent word-piece WFA topology and use
SampleApprox to approximate the neural word-
piece model on the word-piece WFA topology. We
then convert the resulting word-piece WFA LM to
the equivalent n-gram LM. The remainder of this
section outlines efficient algorithms for converting
between word and word-piece WFA models.

A natural way to represent the transduction
from word-piece sequences to word sequences is
with a finite-state transducer. Given the properties
of our word-piece representation, that transducer
can be made sequential (i.e., input deterministic).

A sequential weighted finite-state transducer
(WFST) is a deterministic WFA where each tran-
sition has an output label in addition to its (input)
label and weight. We will denote by oq[x] the
output label of the transition at state q with input
label x, oq[x] ∈ ∆ ∪ {ε}, where ∆ denotes the
output alphabet of the transducer and ε the empty
string/sequence.

Let M be the minimal sequential (unweighted)
finite-state transducer (FST) lexicon from word-
piece sequences in Σ∗ to word sequences in ∆∗,
where Σ denotes our word-piece inventory, ∆ de-
notes our vocabulary, and ∗ is Kleene closure.
A word-piece topology B equivalent to the word
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Algorithm 1 Approximating a Neural Model as an N-Gram with a Supplemental Topology.

Train Ru
W , Ru

P with FederatedAveraginga

Train AW from supplemental corpus C
AWe ,AWi ,AWm ,AWr ← Gen(Ru

W , AW , ø,NN2WFA W)
APe ,APi ,APm ,APr ← Gen(Ru

P , AW , AWi ,NN2WFA P)

function Gen(Ru, AW , AWi , function NN2WFA )
Ae← NN2WFA (Ru, AW )
if NN2WFA ==NN2WFA W then

Ai← NN2WFA (Ru, AW , self infer=true)
else

Ai← NN2WFA (Ru, AWi )
end if
Am← Interpolate(Ae, Ai)

aT denotes an unweighted topology and A denotes the
weighted n-gram model. Superscript u represents uncased
models.

Ar ← NN2WFA (Ru, Am)
return Ae, Ai, Am, Ar

end function
function NN2WFA W(Ru

W , AW , self infer=false)
if self infer then

return CapSampleApprox (Ru
W , ø, AW )

else
return CapSampleApprox (Ru

W , AW , AW )
end if

end function
function NN2WFA P(Ru

P , AW )
Tu
W ← ConvertToLowercaseTopology(AW )

Tu
P ← ConvertToWordPieceTopology(Tu

W )
Au

P ← SampleApprox (Ru
P , Tu

P )
Au

W ← ConvertToWordTopology(Au
P )

return CapSampleApprox (Au
W , AW , AW )

end function

topology A can be obtained by composing the
word-piece-to-word transducer M with A:

B = M ◦A.

Since A has backoff transitions, the generic com-
position algorithm of (Allauzen et al., 2011) is
used with a custom composition filter that ensures
the result, B, is deterministic with a well-formed
backoff structure, and hence is suitable for the
counting step of SampleApprox . We give an
explicit description of the construction of B, from
which readers familiar with Allauzen et al. (2011)
can infer the form of the custom composition filter.

The states inB are pairs (q1, q2), with q1 ∈ QM

and q2 in QA, initial state iB = (iM , iA), and final
state fB = (fM , fA). Given a state (q1, q2) ∈ QB ,
the outgoing transitions and their destination states
are defined as follows. If x ∈ L[q1], then an x-
labeled transition is created if one of two condi-
tions holds:

1. if oq1 [x] ∈ L[q2], then

d(q1,q2)[x] = (dq1 [x], dq2 [oq1 [x]]) and

o(q1,q2)[x] = oq1 [x];

2. if oq1 [x] = ε and R[dq1 [x]] ∩ L[q2] 6= ∅, then

d(q1,q2)[x] = (dq1 [x], dq2 [oq1 [x]]) and

o(q1,q2)[x] = ε

where R[q] denotes the set of output non-ε labels
that can be emitted after following an output-ε
path from q. Finally if ϕ ∈ L[q1], a backoff tran-
sition is created:

d(q1,q2)[ϕ] = (q1, dq2 [ϕ]) and oq1,q2 [ϕ] = ε.

The counting step of SampleApprox is applied
toB, and transfers the computed counts fromB to
A by relying on the following key property of M .
For every word y in ∆, there exists a unique state
qy ∈ QM and unique word-piece xy in Σ such that
oqy [xy] = y. This allows us to transfer the counts
from B to A as follows:

wq[y] = w(qy ,q)[xy]

The KL minimization step of SampleApprox to
A is applied subsequently.

As an alternative, the unweighted word automa-
ton A could be used to perform the counting step
directly. Each sample x̄(j) could be mapped to
a corresponding word sequence ȳ(j), mapping
out-of-vocabulary word-piece sequences to an un-
known token. However, the counting steps would
have become much more computationally expen-
sive, since pnn(y|ȳi(j)) would have to be evalu-
ated for all i, j and for all words y in the vocabu-
lary, where pnn is now a word-piece RNN.

7 Experiments

7.1 Neural language model

LSTM models (Hochreiter and Schmidhuber,
1997) have been successfully used in a variety of
sequence processing tasks. LSTM models usually
have a large number of parameters and are not suit-
able for on-device learning. In this work, we use
various techniques to reduce the memory footprint
and to improve model performance.

We use a variant of LSTM with a Coupled Input
and Forget Gate (CIFG) (Greff et al., 2017) for the
federated neural language model. CIFG couples
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Model Nl Nh Ne Se Stotal

W30K 1 670 96 2.91M 3.40M
P4K-S 1 670 96 0.38M 0.85M
P4K-L 2 1080 140 0.56M 2.70M
P4K-G 2 1080 280 1.12M 2.71M
P16K-S 1 670 96 1.54M 2.00M
P16K-L 1 670 160 2.56M 3.33M
P30K 1 670 96 2.91M 3.40M

Table 2: Parameters for neural language models. W
and P refer to word and word-piece models, respec-
tively. Nl, Nh, Ne, Se and Stotal refer to the number
of LSTM layers, the number of hidden states in LSTM,
the embedding dimension size, the number of param-
eters in the embedding layer and in total, respectively.
The suffixes “S” and “L” indicate small and large mod-
els. “G” represents GLSTM. The suffixes 4K, 16K and
30K represent the vocabulary sizes.

the forget and input decisions together, which re-
duces the number of LSTM parameters by 25%.
We also use group-LSTM (GLSTM) (Kuchaiev
and Ginsburg, 2017) to reduce the number of train-
able variables of an LSTM matrix by the number
of feature groups, k. We set k = 5 in experi-
ments. Table 2 lists the parameter settings of the
word (W) and word-piece (P) models used in this
study. Due to the memory limitations of on-device
training, all models use fewer than 3.5M parame-
ters. For each vocabulary size, we first start with a
base architecture consisting of one LSTM layer, a
96-dimensional embedding, and 670 hidden state
units. We then attempt to increase the represen-
tational power of the LSTM cell by increasing
the number of hidden units and using multi-layer
LSTM cells (Sutskever et al., 2014). Residual
LSTM (Kim et al., 2017) and layer normaliza-
tion (Lei Ba et al., 2016) are used throughout ex-
periments, as these techniques were observed to
improve convergence. To avoid the restriction that
Nh = Ne in the output, we apply a projection
step at the output gate of the LSTM (Sak et al.,
2014). This step reduces the dimension of the
LSTM hidden state from Nh to Ne. We also share
the embedding matrix between the input embed-
ding and output softmax layer, which reduces the
memory requirement by |V| × Ne. We note that
other recurrent neural models such as gated recur-
rent units (Chung et al., 2014) can also be used
instead of CIFG LSTMs.

The federated RNN LMs are trained on two
language settings of the virtual keyboard: Amer-

ican English (en US) and Brazilian Portuguese
(pt BR). Following McMahan et al. (2017), 500
reporting clients are used to compute the gradi-
ent updates for each round. A server-side learn-
ing rate of 1.0, a client-side learning rate of 0.5,
and Nesterov momentum of 0.9 are used. Both
the word and word-piece models are trained over
the same time range and with the same hyperpa-
rameters. Prior to federated training of the RNN
LM, the word-piece inventory is constructed from
the unigram distribution collected via the feder-
ated approach introduced in Section 3.

A common evaluation metric for both word and
word-piece models is desirable during federated
training. Such a metric can be used to monitor the
training status and select models to be used for the
CapSampleApprox algorithm. Neither cross-
entropy nor accuracy serves this need due to the
mismatch in vocabularies used. Word-level accu-
racy is hard to compute for the word-piece model,
since it requires hundreds of inference calls to tra-
verse all combinations of a word from the word-
piece vocabulary. In this study, we apply sentence
log likelihood (SLL) in the evaluation. Given a
sentence x̄m = {x1, x2, . . . , xm} composed of m
units (either words or word-pieces), SLL is eval-
uated as

∑m
i=1 log(pnn(xi|x̄i−1)). One issue that

arises is the handling of out-of-vocabulary (OOV)
words. The OOV probability of the word model is
about 8%. The comparable probability of an OOV
word (according to V) for word-piece models is
the product of the corresponding word-piece con-
ditional probabilities, which is much smaller than
8%. To mitigate this issue, we define SLL exclud-
ing OOV as:

SLLe =
m∑

i:xi 6=OOV

log(pnn(xi|x̄i−1)),

where the OOV in the equation includes word-
pieces that are components of OOV words. In the
following, SLLe is used as model selection metric.

7.2 Approximated n-gram model
Algorithm 1 illustrates the workflow we use to
generate different n-gram models for evaluation.
Recall that CapSampleApprox takes a RNN
LM, an n-gram topology, and a reweighting FST
for capitalization normalization. The n-gram
topology is empty under self-inference mode.
Suresh et al. (2019a) showed that inferring topol-
ogy from the RNN LM does not perform as well as
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Figure 5: Sentence log likelihood excluding OOV token for en US (left) and pt BR (right).

Model en US pt BR
Baseline 10.03% 8.55%

AWe 10.52± 0.03% 9.66± 0.02%
AWi 10.47± 0.02% 9.67± 0.02%
AWm 10.27± 0.03% 9.40± 0.02%
AWr 10.49± 0.03% 9.65± 0.02%

Table 3: Result of top-1 prediction accuracy on the
live traffic of the virtual keyboard for en US and pt BR
populations. Quoted 95% confidence intervals for fed-
erated models are derived using the jackknife method.

using the true n-gram topology obtained from the
training corpus. Hence, we supplement the neural-
inferred topology with the topology obtained by a
large external large corpus denoted by AW . We
use CapSampleApprox on four topologies and
compare the resulting models: an n-gram model
obtained from an external corpus’s topology Ae,
an n-gram model obtained from a neural inferred
topology Ai, an n-gram model obtained by in-
terpolating (merging) the two models above Am,
and an n-gram model obtained by approximating
on the interpolated topology Ar. We repeat this
experiment for both word and word-piece RNN
LMs and use subscripts W and P , respectively.
We evaluate all eight produced n-gram models di-
rectly on the traffic of a production virtual key-
board, where prediction accuracy is evaluated over
user-typed words.

7.3 Results

Figure 5 shows the SLLe metric for all the exper-
iments listed in Table 2. In general, larger models
generate better results than smaller baseline mod-
els. For the baseline architectures with same RNN
size, having a larger vocabulary leads to some
gains. For the larger architectures that have similar

Model top-1
Baseline 10.03%

APe 10.49± 0.03%
APi 10.46± 0.03%
APm 10.48± 0.04%
APr 10.53± 0.03%

Table 4: Result of top-1 prediction accuracy on the live
traffic of the virtual keyboard for en US derived using
word-piece models.

total numbers of parameters, 4K word-piece mod-
els are shown to be superior to 16K and 30K. For
4K word-piece models, GLSTM is in general on-
par with its P4K-L counterpart. The word model is
better than all the word-piece models in both lan-
guages in SLLe. We were surprised by this result,
and hypothesize that it is due to the SLLe metric
discounting word-piece models’ ability to model
the semantics of OOV words. The solid lines are
the best models we pick for A/B experiment eval-
uation for the virtual keyboard (P4K-L and W30K).

Table 3 shows the A/B evaluation result on both
en US and pt BR populations. The baseline model
is an n-gram model trained directly from central-
ized logs. All of the federated trained models
perform better than the baseline model. We re-
peated the A/B evaluation with word-piece mod-
els on en US and the results are in Table 4. The
performance of word-piece models is similar to
that of word models. Among the federated mod-
els for en US, APr has the best result. This meets
our expectation that the supplemental corpus helps
improve the performance of the topology inferred
from the RNN LM.
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8 Conclusion

We have proposed methods to train production-
quality n-gram language models using federated
learning, which allows training models without
user-typed text ever leaving devices. The proposed
methods are shown to perform better than tradi-
tional server-based algorithms in A/B experiments
on real users of a virtual keyboard.
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Jakub Konečný, H. Brendan McMahan, Felix X. Yu,
Peter Richtarik, Ananda Theertha Suresh, and Dave
Bacon. 2016. Federated learning: Strategies for im-
proving communication efficiency. In NIPS Work-
shop on Private Multi-Party Machine Learning.

http://papers.nips.cc/paper/7984-cpsgd-communication-efficient-and-differentially-private-distributed-sgd.pdf
http://papers.nips.cc/paper/7984-cpsgd-communication-efficient-and-differentially-private-distributed-sgd.pdf
https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1145/3133956.3133982
http://arxiv.org/abs/1811.03604
http://aclweb.org/anthology/W17-4002
http://aclweb.org/anthology/W17-4002
http://aclweb.org/anthology/W17-4002
http://www.isca-speech.org/archive/Interspeech_2017/abstracts/0477.html
http://www.isca-speech.org/archive/Interspeech_2017/abstracts/0477.html
https://arxiv.org/abs/1610.05492
https://arxiv.org/abs/1610.05492


130

Oleksii Kuchaiev and Boris Ginsburg. 2017. Factor-
ization tricks for LSTM networks. In 5th Inter-
national Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017,
Workshop Track Proceedings.

Taku Kudo. 2018. Subword regularization: Improv-
ing neural network translation models with multiple
subword candidates. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics, ACL 2018, Melbourne, Australia, July
15-20, 2018, Volume 1: Long Papers, pages 66–75.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Brendan McMahan, Eider Moore, Daniel Ramage,
Seth Hampson, and Blaise Agüera y Arcas. 2017.
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