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Abstract

We introduce a new embedding model to rep-
resent movie characters and their interactions
in a dialogue by encoding in the same repre-
sentation the language used by these charac-
ters as well as information about the other par-
ticipants in the dialogue. We evaluate the per-
formance of these new character embeddings
on two tasks: (1) character relatedness, using
a dataset we introduce consisting of a dense
character interaction matrix for 4,761 unique
character pairs over 22 hours of dialogue from
eighteen movies; and (2) character relation
classification, for fine- and coarse-grained re-
lations, as well as sentiment relations. Our ex-
periments show that our model significantly
outperforms the traditional Word2Vec con-
tinuous bag-of-words and skip-gram models,
demonstrating the effectiveness of the charac-
ter embeddings we introduce. We further show
how these embeddings can be used in conjunc-
tion with a visual question answering system
to improve over previous results.

1 Introduction

Understanding characters (or more broadly peo-
ple) plays a critical role in the human-level in-
terpretation of dialogues – be those in stories,
movies, or day-to-day conversations. The verbal
interaction between characters provides important
information (Iyyer et al., 2016; Elson et al., 2010).
In these contexts, the names of characters trigger
reasoning at a much deeper level than other reg-
ular words, due to the character background, be-
haviors, social network, and so forth. Currently,
the most commonly used word embedding models
such as Word2Vec (Mikolov et al., 2013a,b) and
Glove (Pennington et al., 2014) represent charac-
ters using the embeddings corresponding to the to-
kens used to name them. Using these models in a
dialogue setting to represent the characters poses

Henry: I did not know you could fly a plane.
Indiana: Fly yes. Land no. Dad, you have to

use the machine gun. Get it ready.
Eleven o’clock!

Henry: What happens at eleven o’clock?
Indiana: Twelve, eleven, ten. Eleven o’clock,

fire! Dad, are we hit?
Henry: More or less. Son, I am sorry. They

got us.
Indiana: Hang on, dad. We are going in.

Table 1: A snippet of conversation between two char-
acters from the “Indiana Jones and the Last Crusade”
movie with each dialogue turn annotated with its corre-
sponding speaker name. We aim to generate embed-
ding representations for “Indiana” and “Henry” in a
way that captures their relation.

three main issues. First, name mentions in dia-
logues are sparse (Azab et al., 2018), which makes
it difficult for these models to learn a good qual-
ity representation for these names (Barteld, 2017).
Second, in dialogues or narratives, names often do
not refer to the same person, and yet these embed-
dings have a single vector representation for each
word in the vocabulary. For example, “Danny” in
the dialogue of the “American History X” movie
is different from “Danny” in the “Ocean’s Eleven”
movie. Finally, the learned embeddings of these
names reflect the co-occurrences of these name
mentions and other words uttered by these char-
acters, but do not model how related these charac-
ters are. Thus, the resulting embeddings cannot be
effectively used to further reason about the char-
acters and their relations.

The representation of characters in dialogues
has been an important task for social network ex-
traction (Elson et al., 2010), character relation
modeling (Chaturvedi et al., 2016), and persona-
based conversation models (Li et al., 2016). How-
ever, most of the previous work relies upon the ex-
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traction of linguistic features like explicit forms of
address (Makazhanov et al., 2014), the length of
the utterance, or the frequency of exchanges be-
tween the characters (Elson et al., 2010).

In this work, we address the task of represent-
ing characters in dialogues, specifically focusing
on movies and plays. Given a set of dialogue turns,
annotated with the corresponding speaker names,
our goal is to generate a vector representation for
each of these characters that captures the relation
with other characters. We propose a new approach
to embed characters in dialogues based not only on
what a character is saying, but also to whom. This
model allows the information from the words in a
dialogue turn to propagate to the representation of
the previous and following speakers.

Despite its simplicity, our model yields strong
empirical performance. By evaluating our model
on two different tasks – namely character relat-
edness and character relation classification (fine-
grained, coarse-grained, and sentiment) – we find
that the model exceeds by a large margin several
strong baselines, which indicates that our model
effectively captures the various characteristics of
characters. Additionally, in the process of evaluat-
ing the model, we build a new dataset consisting of
4,761 character relation pairs obtained from eigh-
teen movies, manually annotated with relatedness
scores and relations of various granularities. We
are making the dataset publicly available.

2 Related Work

Learning distributional representation of words
plays an increasingly important role in represent-
ing text in many tasks (Bengio et al., 2013; Chen
and Manning, 2014). The existence of huge
datasets allowed learning high quality word em-
beddings in an unsupervised way by training a
neural network on fake objectives (Mikolov et al.,
2013a,b; Turney and Pantel, 2010). A major
strength of these learned word embeddings is that
they are able to capture useful semantic informa-
tion that can be easily used in other tasks of in-
terest such as semantic similarity and relatedness
between pair of words (Mikolov et al., 2013a;
Pennington et al., 2014; Wilson and Mihalcea,
2017) and dependency parsing (Chen and Man-
ning, 2014; Dyer et al., 2015). However, these
models treat names and entities no more than the
tokens used to mention them. As a result, these
models are unable to well represent names in nar-

rative understanding task because the word “John”
in a given story can be very different from the
word “John” in another narrative. In this work, we
only focus on representing character names and
not the whole embedding space (Ji et al., 2017).

Recently, several approaches have been pro-
posed to build dynamic representations for enti-
ties (Henaff et al., 2016; Ji et al., 2017; Kobayashi
et al., 2016, 2017). One common approach is to
rely on neural language models to encode the lo-
cal context of an entity and use the resulting con-
text vectors as the embedding for subsequent oc-
currences of that entity (Kobayashi et al., 2016,
2017). Another approach is to learn a generative
model that generates the representation of an en-
tity mention (Ji et al., 2017). Henaff et al. (2016)
proposed an explicit entity tracking model by re-
lying on an external memory to store information
about entities as they appear in a given sentence.
While these rich representations improve the per-
formance on several tasks such as coreference and
reading comprehension, they rely on explicit men-
tions of entities in text as available in toy datasets
such as bAbi (Weston et al., 2015). Thus, it is dif-
ficult to apply these representations in a dialogue
setting due to the sparseness of name mentions in
dialogue, as well as the lack of explicit conversa-
tion connections between characters (as available
in movies) (Azab et al., 2018). Most of the ex-
isting story understanding work feeds the model
with the vector representations of names based on
a global model such as Word2Vec or Glove, which
hinders the ability of these models to understand
dialogue (Tapaswi et al., 2016; Na et al., 2017;
Lei et al., 2018). Recently, Li et al. (2016) re-
lied on TV series scripts in order to learn speaker
persona representations and used these represen-
tations to improve the performance of neural con-
versation models. Unlike (Ji et al., 2017; Li et al.,
2016), we focus on representing character names
in dialogue settings and learning different embed-
dings for characters from different story dialogues
in a way that reflects the relatedness of story char-
acters; more specifically, we propose the use of
speaker prediction as an auxiliary supervision to
improve the character representation.

Identifying and analyzing character relations in
literary texts is a well studied problem (Agarwal
et al., 2013; Makazhanov et al., 2014; Elson et al.,
2010; Iyyer et al., 2016). Most of these models de-
pend on analyzing the co-occurrence of the char-
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acters and stylistic features used while characters
address each other. These models are really im-
portant to summarize, understand, and generate
stories (Elson et al., 2010). In this work, we use
the task of character relation classification as an
extrinsic evaluation task to evaluate the impact of
character embeddings on this task.

3 Character Embeddings

Characters play an important role in any dialogue,
including movies or plays. Yet, work to date has
rarely considered specialized character represen-
tations. We hypothesize that a representation that
leverages both the language uttered by the charac-
ters as well as information on the other characters
in the dialogue could result in richer encodings.
The intuition behind our hypothesis is explained
by the example in table 1. Here, the word “Dad”
should be associated not only with “Indiana” but
also propagate its information to “Henry”, condi-
tioned by “Indiana”. Our proposed model is well
conveying this intuition to encode characters.

3.1 Setup

Our architecture builds on a pretrained embedding
model generated by standard Word2Vec models
(Mikolov et al., 2013a,b) or pre-trained contextu-
alized word representations from neural language
models (ELMo) (Peters et al., 2018). We start by
collecting sets of (current speaker, previous speak-
ers, next speakers, context words) as training ex-
amples. We split the four elements in the sets
into target and context depending on our objec-
tives. Figure 1 describes the input-output (target-
context) pairs of our system. Additionally, our
model works as an unsupervised post-training of
existing embeddings, rather than starting the train-
ing from scratch. This is due to the fact that get-
ting a good representation for characters is a sep-
arate task from getting a general representation of
tokens. A good pre-trained embedding space is an
essential component to map characters so that they
will be distributed in a semantically meaningful
embedding space. While a good pre-trained em-
bedding is important, our models focus on “mov-
ing” the character embeddings without affecting
any other word representations.

3.2 Architecture

We propose two post-training schemes, which we
refer to as Character Embedding (SG) and Charac-

ter Embedding (CBOW). The differences stand in
the objective of post-training, given sets of (cur-
rent speaker, previous speakers, next speakers,
context words) as training examples. Formally,
given the sequence of speakers at each turn S =
s1, s2, s3, , , sT−1, sT , we define context words C
for turn t as the set of words found by a sliding
context window in the utterance. We propose our
post-training objectives as following:

L =
1

N

∑
si∈S

∑
wi∈C(si)

∑
−sw≤j≤sw

log(p(wi|si+j)))
(1)

L =
1

N

∑
si∈S

∑
wi∈C(si)

(log(p(si|wi)+∑
−sw≤j≤sw,j 6=0

log(p(si|si+j)))
(2)

Our Character Embedding (SG) model maxi-
mizes the objective on Equation 1, while Char-
acter Embedding (CBOW) maximizes the objec-
tive on Equation 2, where N indicates the number
of training examples and sw indicates the size of
the speaker window (speaker window of size one
means we consider speakers of one preceding turn
and one succeeding turn). Our formulation defines
probabilities p(si|wi), p(si|si+j) and p(wi|si+j)
using the softmax equation. We also define two
transformations of our network – lookup table
(LUT) initialized by embedding of pre-trained em-
bedding model and Linear Projection Layer W.

To examine the generality of our post-training
schemes, we also apply them to another pre-
trained word embedding model. Given a dialogue
turn, we encode it using ELMo’s pre-trained Bi-
LSTM model (Peters et al., 2018) to generate a
sequence of contextualized vectors for words. We
add a linear projection layer on top that takes the
generated embedding, in addition to the previous
and following speakers, and train it to predict the
speaker of the current turn. We refer to this model
as Character Embedding (ELMo).

3.3 Training
We represent our contexts and targets as a one hot
vector of length equal to the vocabulary size. The
purpose of our model is to update the embedding
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S(t-1):
Henry 

C(S(t)):
Dad 

S(t+1): 
Henry

S(t):
Indiana 

S(t):
Indiana 

S(t-1):
Henry 

C(S(t)):
Dad 

S(t+1): 
Henry

Input Projection Output Input Projection Output

Figure 1: The conceptual figure describing input /output pairs of our character embedding model. The diagram de-
scribes when both the speaker window and the context window are size one. Left: Character Embedding(CBOW),
Right: Character Embedding(SG).

of characters in LUT by propagating the gradient
from our objectives. We use cross-entropy to cal-
culate the loss, and we use gradient descent to up-
date the parameters. The description of our Char-
acter Embedding (SG) model with a speaker win-
dow size of one is showed in Algorithm 1.

4 Evaluation Tasks and Datasets

We evaluate the quality of our speaker embedding
model across two different tasks. Our goal is to
evaluate how well each embedding model captures
simple and complex character representations and
interactions.

4.1 Character Relatedness
Measures of semantic relatedness between words
indicate the degree to which words are associated
with any kind of semantic relationship such as syn-
onymy, antonymy, and so on. Semantic related-
ness is commonly used as an absolute intrinsic
evaluation task to assess and compare the qual-
ity of different word embeddings (Schnabel et al.,
2015; Yih and Qazvinian, 2012; Upadhyay et al.,
2016) and phrase embeddings (Wilson and Mihal-
cea, 2017).

Similarly, we define character relatedness as the
degree to which a pair of characters in a given
story are related to each other based on the story
plot and their level of interaction throughout the
dialogue. Given a pair of characters, we would
like the relatedness score between their embed-
ding representations to have a high correlation
with their corresponding human-based relatedness
score. Thus, the distance of the embeddings be-
tween closely related characters should be smaller
than the distance between less related ones.

To measure the relatedness between characters
in movies, we construct a new annotated dataset
based on a publicly available dataset (Azab et al.,
2018). That dataset includes 28K turns spoken
by 396 different speakers in eighteen movies cov-
ering different genres, with the subtitles of each
movie labeled with the character name of their cor-
responding speakers. On average, each character
uttered 452 words.

For each movie in that dataset, two human
annotators watched the movies and annotated a
dense relatedness matrix of characters on a 1-5
scale. Table 2 shows the meaning of each score.
These scores reflect the level of interaction or how
closely related the characters are over the course
of the movie. For example, given two characters
X and Y, a high score for X and Y is assigned if
e.g., X is the father of Y, regardless of the amount
of interaction between the two characters. We also
give a high score for the cases where X and Y
are closely interacted, even if they are unrelated
in terms of kinship. Due to the sparseness of the
number of closely related characters, we asked the
annotators to select the higher score when hesitat-
ing between two scores.

For three movies, the Pearson correlation be-
tween the two annotators is 0.8394, which re-
flects a very good agreement. We then average the
scores assigned by the annotators and use the re-
sult as the human relatedness ground-truth score
for each pair of characters.

In this dataset, we have 4,761 unique character
pairs annotated with a relatedness score. Figure 2
shows the statistics over the relatedness scores. As
shown in the table, only a small number of char-
acter pairs are closely related, while the majority
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Algorithm 1: Character Embedding(SG)
E: The embedding from pre-trained model
W: Linear Projection Layer
α: Learning Rate
maxepoch: maximum epoch to run
LUT← E, epoch← 1;
while epoch ≤ maxepoch do

for t from 2 to T − 1 do
x1 ← LUT [st−1];
x2 ← LUT [st];
x3 ← LUT [st+1];
for w0 in C(st) do

target← LUT [w0];
logits = tanh(W T (x1+x2+x3));
prediction = softmax(logits);
loss = −target + log(prediction);
W :=W − α ∗ δlossδW ;
LUT [st−1] := x1 − α ∗ δlossδx1

;
LUT [st] := x2 − α ∗ δlossδx2

;
LUT [st+1] := x3 − α ∗ δlossδx3

;
end

end
epoch := epoch + 1

end

5 interacted frequently/closely related
4 interacted/related
3 moderately interacted/somewhat related
2 interacted few times/not related
1 did not interact/not related

Table 2: Relatedness annotation scores.

of the characters have either interacted very few
times or did not interact at all. However, it is im-
portant to include these unrelated pairs while eval-
uating the quality of the character embeddings, as
unrelated pairs might be closer than related ones
especially for minor characters that do not speak
much during the dialogue.

4.2 Character Relationships

Understanding the relationships between charac-
ters is a primary task in extracting and analyzing
social relation networks from literary novels (El-
son et al., 2010; Agarwal et al., 2013). It is also
important for improving computational story sum-
marization and generation methods (Elsner, 2012;
Gorinski and Lapata, 2015).

Character relationship is a more complex
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Figure 2: Statistics of the character relatedness dataset
on movies of speaker naming dataset.

task than character relatedness. In this task,
given a pair of character embeddings, we would
like to classify the type of their relation-
ship on multiple dimensions. Specifically, we
consider: fine-grained relations, such as sis-
ter/father/friend/enemy; coarse-grained relations,
such as familial/social/professional; and relation
sentiment, i.e., positive, negative or neural. The
goal of this task is to evaluate the quality of
our character embeddings and how well it cap-
tures such complex information in an unsuper-
vised fashion. It also serves as an extrinsic evalua-
tion for the impact of our character representations
on downstream tasks.

We use a subset of character relationships in a
literary dataset (Massey et al., 2015). This dataset
includes annotations for eighteen fine-grained re-
lationship classes, four coarse-grained relation-
ship classes, and three relation sentiment classes.1

We use the 31 Shakespeare plays in this dataset,
and obtain their corresponding text from project
Gutenberg. We use the Shakespeare plays because
they have the dialogue turns annotated with speak-
ers names, which is necessary for training our
character embedding models. The plays include
a total of 605 character pair relationship annota-
tions.

5 Experiments

5.1 Baselines
For each task, we compare our character embed-
ding models against five baselines:

1Annotations on temporal change in the sentiment be-
tween each pair of characters is also included, but since our
models do not have the ability to track such temporal infor-
mation, we do not use these annotations.
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Interaction Frequency. We count the number
of exchanged dialogue turns between every pair of
characters and normalize it by the total number of
turns spoken by a given pair of characters.

TF-IDF. We treat all the utterances of a charac-
ter as a document and calculate a tf-idf weight for
each word. We then represent a character by its
tf-idf vector of the words that they uttered.

Word2Vec (CBOW) model. We use the tradi-
tional Word2Vec architecture to train a word em-
bedding space based on the continuous bag-of-
words approach (Mikolov et al., 2013a). Given a
sequence of words D, the context words that exist
in a defined window size are considered as input
to the network and the objective is to predict the
target word by maximizing the average long prob-
ability:

L =
1

|D|
∑
wi∈D

logP (wi|C(wi)) (3)

Word2Vec (SG) model. We use the skip-gram
architecture of Word2Vec with negative sampling
(Mikolov et al., 2013b). In this architecture, the
objective is to learn a representation of the target
word that would be good at predicting the words
within a defined window by maximizing the aver-
age log probability:

L =
1

|D|
∑
wi∈D

∑
w0∈C(wi)

logP (w0|wi) (4)

Character BOW. We represent each charac-
ter as the mean-pooling of a 300-dimension pre-
trained Word2Vec representation of all the words
that this character has uttered through the entire
dialogue.

Doc2Vec. We train a Doc2Vec model (Le and
Mikolov, 2014) as tagged documents using the
character names as the document tags. We then
represent each character as the Doc2Vec represen-
tation of all the words that this character has ut-
tered through the entire dialogue.

ELMo (Mean-Pooling). We use pre-trained
contextualized word representations from neural
language models (ELMo) (Peters et al., 2018) to
generate character names representations based
on the sentences that include their names.2 To
generate these representations, we feed the pre-
trained ELMo model with a Glove representation

2We also tried training ELMo from scratch on our data but
the pre-trained model produces better results.

for the words and ELMo augments their repre-
sentation with the hidden states of its two lay-
ers bi-directional LSTM to represent the words
with respect to their context. For each character
name, we average their contextualized representa-
tions through the entire dialogue.

5.2 Experimental Setting
To have these models trained on in-domain data,
we use GenSim (Řehůřek and Sojka, 2010) to
train the different architectures of Word2Vec on
the almost 600K sentences / 4M words of subti-
tles and Shakespeare plays. For the target movies
and plays, the speaker names are included in the
training data so that we can have a vector repre-
sentation for each character name. The names in
our corpus have been manually normalized so that
’Joe’ and ’Joseph’ in a movie get the same rep-
resentation, while ’Joseph’ in a different movie
gets a different representation. To achieve the
first part of the name normalization, we utilize the
name-clustering algorithm provided by Bamman
(2014) to extract and cluster name tokens from
the text and annotate the true representation of
names for each cluster. We achieve the second
part of the name normalization by adding the text
title to the name tokens (e.g., ’Michael’ becomes
’MichaelOthello’).

For GenSim (Řehůřek and Sojka, 2010), we set
the learning rate to 0.1, the window size to 4 and
the samples to 50 for negative sampling. We run
30 epochs to train our baselines. For post-training
by our models, we use a gradient decent to update
our parameters. For general experiments, we set
the learning rate to 0.1 and the learning rate decays
by the factor of 0.9 per 10 epochs. We run maxi-
mum 40 epochs for our post-training. For Charac-
ter Embedding (CBOW), we use a context window
of size two. We use a speaker window of size one
for both the Character Embedding (CBOW) and
the Character Embedding (SG).

5.3 Results
Character Relatedness. For each model, given
a pair of characters we compute the cosine simi-
larity score between the embeddings of these two
characters, defined as:

similarity(CCC1,CCC2) =
CCC1 ·CCC2

||CCC1|| · ||CCC2||
(5)

and compute the similarity score between two
characters in the embedding space similar to (Col-
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Movie Character Methods Closest Second closest Third Closest

The Devil’s
Advocate

Alice Lomax

Ground Truth Kevin Lomax John Milton Mary Lomax
Interaction Frequency Kevin Lomax Pam Garrety John Milton
TF-IDF Mary Lomax John Milton Don King
Character Average BOW John Milton Kevin Lomax Barbara
Word2Vec (CBOW) Lloyd Gettys Judge Poe Alexander Cullen
Word2Vec (SG) Alfonse D’amato Lloyd Gettys Judge Poe
ELMo (Mean-Pooling) Kevin Lomax Mary Lomax Alexander Cullen
Character Embedding(CBOW) Kevin Lomax Judge Poe Mary Lomax
Character Embedding(SG) Kevin Lomax John Milton Mary Lomax
Character Embedding(ELMo) Kevin Lomax Pam Garrety Mary Lomax

Table 3: Example of character relatedness task. Given a character, we list the top three characters sorted in
descending order from left to right according to their similarity scores.

lobert et al., 2011; Mikolov et al., 2013b). The list
of the nearest characters of a given character C are
all the other characters from the same movie sorted
in descending order by their similarity score with
respect to C.

Pearson Coeff
Interaction Frequency 0.3632
TF-IDF 0.3129
Doc2Vec 0.1771
Word2Vec (CBOW) 0.2081
Word2Vec (SG) 0.1989
Character BOW 0.2256
ELMo (Mean-Pooling) 0.3212
Character Embedding(CBOW) 0.4644
Character Embedding(SG) 0.4933
Character Embedding(ELMo) 0.3475

Table 4: Comparison between the average Pearson
correlation coefficient scores of the different models
against average human relatedness scores.

Table 4 shows the Pearson correlation co-
efficients of the resulting similarity scores of
each model against the average human annotation
scores. These results suggest that having the con-
text window over the utterance and adding the pre-
vious and next speakers to the input layer greatly
improves the ability of the character embeddings
to capture the relatedness between the different
characters in a given story dialogue.

Table 3 shows an example of characters that are
most related to “Alice Lomax” from the movie
“The Devil’s Advocate” as calculated based on
each model sorted in descending order according
to their cosine similarity scores. It is worth not-
ing that Kevin Lomax is Alice’s son, John Milton
is Kevin’s father and Mary Ann Lomax is Kevin’s
wife. On the other hand the characters suggested
by both Word2Vec CBOW and SG models did not

interact with Alice through the whole movie.
To further analyze the quality of the produced

character embeddings, we evaluate the embed-
dings across different characters according to the
their frequency of appearance in the movies. Fig-
ure 3 shows a comparison between the perfor-
mance of the different models over minor and ma-
jor characters based on the number of dialogue
turns that each character uttered. These results
show that our character embedding model consis-
tently outperforms the traditional Word2Vec base-
line models and reflect the robustness of our model
in generating better character embeddings.
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Figure 3: Comparison of the average Pearson correla-
tion coefficient over characters who had different num-
ber of turns.

Character Relationship. We have three clas-
sification tasks for character relationships: 1)
fine-grained relationship classification; 2) coarse-
grained relationship classification; 3) relation sen-
timent classification. For each of these tasks,
we train a logistic regression classifier using the
Scikit-learn library (Pedregosa et al., 2011). These
classifiers take a pair of character embeddings as
a concatenation of their vectors and predict their
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Fine-grained Relation Coarse-grained Relation Sentiment
P R F P R F P R F

Interaction Frequency 0.04 0.16 0.06 0.30 0.44 0.33 0.33 0.58 0.42
TF-IDF 0.11 0.12 0.10 0.39 0.42 0.40 0.43 0.53 0.40
Character Average BOW 0.08 0.16 0.05 0.33 0.43 0.28 0.28 0.53 0.37
Word2Vec (CBOW) 0.11 0.13 0.12 0.37 0.38 0.38 0.39 0.40 0.39
Word2Vec (SG) 0.09 0.12 0.10 0.37 0.37 0.37 0.41 0.43 0.42
Doc2Vec 0.12 0.12 0.12 0.40 0.40 0.40 0.42 0.42 0.42
ELMo (Mean-Pooling) 0.14 0.18 0.14 0.39 0.41 0.40 0.44 0.50 0.46
Character Embedding(CBOW) 0.11 0.14 0.12 0.43 0.44 0.43 0.44 0.47 0.44
Character Embedding(SG) 0.11 0.17 0.12 0.43 0.46 0.42 0.40 0.51 0.42
Character Embedding (ELMo) 0.18 0.19 0.19 0.48 0.48 0.48 0.48 0.48 0.48

Table 5: Comparison between the average of the precision, recall and macro-weighted f-score of the baselines and
our character embedding model on both fine-grained, coarse-grained character relation and sentiment classification.

. Fine- Coarse- Senti-
Play Char 1 Char 2 Methods grained grained ment

The Two
Gentlemen
of Verona

Julia Proteus

Ground Truth lovers social positive
Interaction Frequency lovers social positive
TF-IDF servant social negative
Character Average BOW friend social positive
Word2Vec (CBOW) servant familial negative
Word2Vec (SG) servant familial positive
ELMo (Mean-Pooling) friend social positive
Character Embedding(CBOW) lovers social negative
Character Embedding(SG) lovers social positive
Character Embedding(ELMo) lovers social positive

Table 6: Example of classification task on Shakespeare’s play, using different baselines and our character repre-
sentation methods. The classification output consists of the relations of character 2 from character 1’s perspective.
A bold face indicates a correct relation classification.

relationship. We use a leave-one-play-out cross-
validation in which character pairs from each play
are used as a test set and character pairs from
the other plays are used to train the models. Ta-
ble 5 shows the classification average precision,
recall and weighted F-score obtained by training
the logistic regression classifiers using the char-
acter embeddings produced by the different mod-
els. Training classifiers using our character em-
bedding models consistently outperforms the clas-
sifiers trained using the other models, which re-
flects the quality of the semantic information cap-
tured by our character embeddings when com-
pared to other models. Table 6 shows examples
of the three character relation classification tasks
as classified by our character embedding models
and the baselines.

Question Answering. As a final evaluation, we
test the impact of our character embedding on dia-
logue understanding. TVQA (Lei et al., 2018) is a
challenging dataset that includes 152.5K multiple

Accuracy
Q+S Q+S+V

MS (Glove) (Lei et al., 2018) 0.6515 0.6770
MS (Glove w/o names) 0.6177 0.6467
MS (CharEmbedding(CBOW)) 0.6590 0.6852
MS (CharEmbedding(SG)) 0.6554 0.6884

Table 7: Comparison on the TVQA validation dataset
using the MS method with Glove and Glove fine-tuned
using our proposed character embedding method.

choice question answers about 21.8K video clips
from 6 TV shows such as the Big Bang Theory,
House, and so on. These questions were created in
a way that requires understanding of both the dia-
logue and the visual content of a given video. Each
video clip includes the video frames and subtitles
with speaker names aligned automatically with
their corresponding show scripts (around 69% of
the subtitle segments include speakers names). We
follow the same dataset splits for training, valida-
tion, and test.
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To evaluate our embedding, we use the base-
line implementation proposed with the TVQA
dataset, namely Multi-Stream (MS). This model
relies on bidirectional attention between context
(represented by subtitles and/or visual content)
and question answer pairs as queries to predict the
correct answer (Lei et al., 2018). Visual features
are included as textual labels of detected visual
concepts in the frames of the video clip. To mea-
sure the effect of the person names on the model,
we apply a named entity recognizer and replace
the names with a fixed randomly generated em-
bedding. Table 7 shows the results from the MS
method using Glove, Glove with removing names
from subtitles, and using a fine-tuned Glove using
our character embedding model. The use of our
character embeddings bring improvements over
the pre-trained Glove embeddings, which demon-
strates the usefulness of these character represen-
tations.

6 Conclusion

In this paper, we presented a novel unsupervised
embedding model to represent characters and their
interaction in a dialogue. Our embedding model
produces character representations that reflect the
language used by the characters as well as in-
formation about their relations with other charac-
ters. To evaluate the performance of our charac-
ter embeddings, we experimented with two tasks
on two datasets: (1) character relatedness, us-
ing a dataset we introduced consisting of a dense
character interaction matrix for 4,761 unique char-
acter pairs over 22 hours of dialogue extracted
from 18 movies; and (2) character relation classi-
fication, for fine- and coarse-grained relations, as
well as relation sentiment. Our experiments show
that our model significantly outperforms the tra-
ditional Word2Vec continuous bag-of-words and
skip-gram models, thus demonstrating the effec-
tiveness of the character embeddings we intro-
duced. We further showed how the character em-
beddings can be used in conjunction with a visual
question answering system to improve over previ-
ous results.

The dataset annotated with character related-
ness scores introduced in the paper is publicly
available from http://lit.eecs.umich.
edu/downloads.html.
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