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Abstract

We present a method for applying a neural net-
work trained on one (resource-rich) language
for a given task to other (resource-poor) lan-
guages. We accomplish this by inducing a
mapping from pre-trained cross-lingual word
embeddings to the embedding layer of the neu-
ral network trained on the resource-rich lan-
guage. To perform element-wise cross-task
embedding projection, we invent locally linear
mapping which assumes and preserves the lo-
cal topology across the semantic spaces before
and after the projection. Experimental results
on topic classification task and sentiment anal-
ysis task showed that the fully task-specific
multilingual model obtained using our method
outperformed the existing multilingual mod-
els with embedding layers fixed to pre-trained
cross-lingual word embeddings.!

1 Introduction

Deep neural networks have improved the accu-
racy of various natural language processing (NLP)
tasks by performing representation learning with
massive annotated datasets. However, the anno-
tations in NLP depend on the target language as
well as the task, and it is unrealistic to prepare such
extensive annotated datasets for every pair of lan-
guage and task. As a result, we can only obtain an
accurate model for a few resource-rich languages
such as English.

To overcome this problem, researchers have at-
tempted to make models trained with massive an-
notated datasets in a resource-rich language (here-
after, source language) applicable to a resource-
poor language (farget language) that have no an-
notated datasets (Ruder et al., 2019) (§ 2). These
methods utilize language-universal word represen-
tations, namely cross-lingual word embeddings, to

'All the code is available at: https://github.com/
jyorill2/task-spec
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Figure 1: Locally linear mapping for sentiment analy-
sis task. The relationship between “merveilleux (won-
derful)” and its neighboring English words, “wonder-
ful” and “good,” are preserved after projection.

absorb the differences among languages in the vo-
cabularies of neural network models; specifically,
these multilingual models are trained with embed-
ding layers fixed to pre-trained cross-lingual word
embeddings. However, because those embedding
layers are not optimized for the target task, the re-
sulting model cannot exploit the true potential of
representation learning, as demonstrated by Kim
(2014) and our experimental results (§ 5.1).

We propose methods of projecting pre-trained
cross-lingual word embeddings to word embed-
dings of a fully task-specific neural network all
of whose parameters are optimized to the train-
ing data in a source language, to realize fully
task-specific multilingual model (§ 3). In ad-
dition to naive linear projection, we present an
element-wise projection method inspired by lo-
cally linear embeddings used for dimension reduc-
tion (Roweis and Saul, 2000). This method is built
on the assumption that local topology is preserved
between the semantic spaces of word embeddings
in two NLP tasks; that is, adequately close words
in pre-trained cross-lingual word embeddings will
have similar representation even in task-specific
semantic space (Figure 1). We first represent the
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general cross-lingual word embedding of a word
in the target language by weighted linear combina-
tions of general cross-lingual word embeddings of
k neighboring words in the source language. We
then use the weights to compute a task-specific
word embedding of the target word as a linear
combination of task-specific word embeddings of
the k neighboring source words (§ 3.2).

We evaluate our method on topic classification
and sentiment analysis tasks (§ 4). We first obtain
a task-specific neural network using annotated cor-
pora in the source language (English) and then in-
duce task-specific cross-lingual word embeddings
for the target languages to apply the accurate task-
specific neural network to those languages. Exper-
imental results demonstrate that our method has
improved the classification accuracy of the multi-
lingual model (Duong et al., 2017) in most of the
task-language pairs (§ 5).

Our contributions are as follows:

e We established a method of obtaining fully
task-specific multilingual models by learn-
ing a cross-task embedding projection (§ 3).

Our cross-task projection is simple and has
an analytical solution with one hyperparam-
eter; the solution is a global optima (§ 3.2).

e We confirmed the limitation of the tradi-
tional multilingual model with embedding
layers fixed to pre-trained cross-lingual word
embeddings (§ 5.1).

o We showed the effectiveness of our method
over the existing models (§ 5.2).

2 Related work

Lack of resources in resource-poor languages has
been a deeply rooted problem in NLP, and there
have been many pieces of researches contributed
to mitigating this problem by transferring models
across languages.

Multilingual models using parallel corpora
An intuitive approach to realize the cross-lingual
transfer of a model is to utilize machine transla-
tion by either translating the training set or the
model input (Wan, 2009). Instead of translating,
Meng et al. (2012) leverage a parallel corpus of the
source and target languages to obtain cross-lingual
mixture model to bridge the language gap. Xu and
Wan (2017) also utilize parallel corpus with word
alignment to train a multilingual model for sen-
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timent analysis task. While some of these meth-
ods do not rely on an annotated corpus in the tar-
get language, they heavily rely on cross-lingual re-
sources such as parallel corpora, and thus, are not
applicable to the resource-poor languages.

Multilingual models with cross-lingual word
embeddings Another method to obtain multilin-
gual models is to fix the embedding layer of a neu-
ral network to pre-trained cross-lingual word em-
beddings. Many existing pieces of researches im-
plemented this for various tasks in unsupervised
senario (Duong et al., 2017; Can et al., 2018)
where no annotated corpus is available in the target
language as ours and supervised scenario (Pappas
and Popescu-Belis, 2017; Upadhyay et al., 2018)
where a small annotated corpus is available in
the target language. Another study enhanced this
method by employing language-adversarial net-
works (Chen et al., 2018). These methods do not
induce task-specific word embeddings, thereby
failing to exert true potential of neural networks,
as we confirm in § 5.

Multilingual models with character embed-
dings Several studies utilize character level em-
beddings shared across languages to obtain mul-
tilingual models (Kim et al., 2017; Yang et al.,
2017). An obvious weak point of these meth-
ods is that they do not apply to distant language
pairs with different alphabets. In contrast, our
method only relies on cross-lingual word embed-
dings which are obtainable regardless of the alpha-
bets of the languages (Artetxe et al., 2018).

Task-specific word embeddings Few efforts
have been previously made to obtain cross-lingual
task-specific word embeddings.  Gouws and
S@gaard (2015) obtain task-specific cross-lingual
word embeddings by constructing a task-specific
bilingual dictionary, which defines “equivalent
classes” designed for the given task instead of
equivalent semantics. Although they successfully
obtained task-specific cross-lingual word embed-
dings for POS tagging and supersense tagging
tasks, the open problems are how to define a task-
specific bilingual dictionary for many of other
tasks, and cost of developing such resources.

Feng and Wan (2019) exploit multi-task learn-
ing to induce cross-lingual task-specific word em-
beddings for sentiment analysis task. This method
is tailored for the sentiment analysis task and thus,
not applicable to other tasks.



3 Fully task-specific multilingual model

Our method first learns a neural network model by
optimizing to the annotated corpus in the source
language. It then induces a projection from the
semantic space of general cross-lingual word em-
beddings to the semantic space of the optimized
embedding layer, to make the model applicable to
languages other than the source language.

3.1 Framework

The entire framework of obtaining a fully task-
specific multilingual model is as follows:

Step 1 (train task-specific neural network)
First, we train a neural network f(-; X*P* ) on
an annotated corpus in the source language. The
embedding layer, X*P°°, of the resulting neural
network consists of task-specific word embed-
dings of the source language, and 6 is the collec-
tion of the other parameters. At this point, this
neural network is only applicable to the source lan-
guage since we do not have task-specific word em-
beddings Y*P*¢ of the target language in the same
semantic space as X °P°°,

Step 2 (induce cross-lingual word embeddings)
Next, we obtain general cross-lingual word em-
beddings { X&", Y'#"} in the same semantic space
from raw monolingual corpora where X&" and
Y& are cross-lingual word embeddings of the
source and target languages, respectively. Without
loss of generality, we assume that X" and X P
are aligned so that X den and X fpec represent the
same word. We utilize unsupervised cross-lingual
word embeddings such as (Artetxe et al., 2018)
that do not require any cross-lingual resources to
maximize the applicability of our approach.

Step 3 (learn cross-task embedding projection)
Then, we induce a cross-task projection ¢ that
computes task-specific word embeddings of the
target language Y*P*° from the general cross-
lingual word embeddings {X&" Y"} obtained
in Step 2 to the task-specific word embeddings of
the source language X*P°¢ obtained in Step 1. We
explain the details of this core part in § 3.2.

Step 4 (obtain task-specific multilingual model)
Finally, we replace embedding layer X*P*¢ of the
neural network f(-; X P, @) trained in Step 1 with
YPe¢ induced in Step 3 to obtain a task-specific
neural network f(-; YP*° 0) applicable to the tar-
get language.
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3.2 Cross-task embedding projection

Here, we explain the detailed construction of our
cross-task projection ¢ for cross-lingual word em-
beddings used in Step 3 in § 3.1. Given general
cross-lingual word embeddings, X" and Y &°", of
the source and target languages and task-specific
word embeddings X°P® of the source language,
we compute task-specific word embeddings Y 5P
of the target language in the same semantic space
with X*P°°. In what follows, we propose two sim-
ple methods to obtain such projection: a linear
projection and a locally linear mapping.

Linear projection

One naive approach is to regard general and
task-specific word embeddings as embeddings of
two distinct languages and to exploit a mapping
method developed for cross-lingual word embed-
dings (Mikolov et al., 2013).> Concretely, we
train a transformation matrix W that maps gen-
eral word embeddings Y& to task-specific word
embeddings Y *P*° by minimizing

Vx|
W =argmin _ [ WX — x3P|?
L

)

where |Vx| is the vocabulary size of the source
langauge. Then, we compute the task-specific
word embeddings of the target language, Y5P¢¢;

Yispec _ WYigen' 2)

Locally linear mapping

A possible limitation of the above linear projection
method is the lack of representation power. Due
to the difference of topologies between the gen-
eral and task-specific semantic spaces, our experi-
mental results indicate that it fails to obtain precise
cross-task embedding projection (§ 5).

Therefore, we introduce an element-wise map-
ping method inspired by locally linear embed-
dings (Roweis and Saul, 2000), a dimension re-
duction technique. Our method assumes that the
local topology among nearest neighbors will be
consistent between two NLP tasks (here, language
modeling and the target task). In other words, syn-
onyms will have a similar role across NLP tasks.

We build the cross-task projection as follows.
First, for each word ¢ in the target language, we

2 Although orthogonal mapping (Xing et al., 2015) is re-
ported to perform better for inducing cross-lingual word em-

beddings, it performed worse for our purpose in preliminary
experiments probably due to the strong constraint.



take k nearest neighbors (words) in the source lan-
guage, Mgen, in the semantic space of the general
cross-lingual word embeddings where k is a hy-
perparameter, and the cosine similarity is the met-
ric. We next obtain the reconstruction weights,
&i; € R, that restore Yigen as a linear combination
of X5 € NF" by optimizing

~ . en en
&; = arg min Yig — g ainf
-
! JENFT

3)

with constraint of | j Qi = 1. The solution to this
optimization problem can be analytically given by
using the method of Lagrange multipliers as:

. (G D

Qij = - 4)
’ Zj >u(C; 1)jl

where
Cipt = (l/—igen _ ngen) ) (Yigen _ Xlgen> (5)

(see Appendix A for the detailed derivation). We
can thereby find the global optima by this analyti-
cal solution with simple computation.

We then compute YiSpeC using &; by

spec A yrSpec
Y;‘ = g (877} Xj )
jeML,gen

(6)

assuming that the local topology among /\/den is
preserved before and after the projection. The re-
sulting Y*P°¢ is in the same semantic space with
Xspee . Setting a large k = |[NF™"| in the projec-
tion, we can handle words in the target language
that have no direct translations in the source lan-
guage (e.g., amiga, female friend in Spanish).

Hyperparameter search In general, we choose
a hyperparameter that performs best on develop-
ment data in the target task and language. How-
ever, since we assume that no annotated data is
available in the target language, we cannot exploit
development data in the target language.

To address this issue, we apply our cross-task
projection to the source language with various hy-
perparameter k; namely, represent X igen consider-
ing k nearest neighbors X5'(j # i). We then
choose k with the best model performance with
the resulting embeddings on the development data
of the target task in the source language. In § 5.2,
we report results with this language-universal, yet
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Language train dev. test
English (en) 653,762 10,000 10,000
Danish (da) 6,633 1000 1000
German (de) 84,550 1000 1000
Spanish (es) 12,997 1000 1000
French (fr) 69,292 1000 1000
Italian (it) 19,594 1000 1000
Dutch (nl) 590 100 1000
Portuguese (pt) 4,263 1000 1000
Swedish (sv) 8,383 1000 1000

Table 1: Number of examples for topic classification.

the task-specific method of tuning. We also re-
port results of a language- and task-specific tuning
method assuming a minimal development data in
the target language in addition to a naive method
of fixing k£ = 1, which is equivalent to the word-
by-word translation. Furthermore, we investigate
the effect of value & in details in § 5.3.

4 Experimental setup

We conduct a series of experiments to evaluate
our fully task-specific multilingual models (§ 3)
obtained by our cross-task projections of cross-
lingual word embeddings (§ 3.2). Our method is
language- and task-independent and is applicable
to various tasks where existing multilingual mod-
els are applicable. We adopted a topic classifica-
tion task and a sentiment analysis task as the target
tasks for evaluation in various languages.

Topic classification is the task of predicting the
topic of a given document. For this task, we use
English (en) as the source language, and Spanish
(es), German (de), Danish (da), French (fr), Italian
(it), Dutch (nl), Portuguese (pt), and Swedish (sv)
as the target languages. We use the RCV1/RCV2
dataset (Lewis et al., 2004) for this task, follow-
ing Duong et al. (2017). This dataset contains
news articles in various languages with labels of
four categories: Corporate/Industrial, Economics,
Government/Social, and Markets.

For English dataset, we randomly chose 10,000
examples as test data, another 10,000 examples as
development data, and the rest as training data.
For the other languages, we randomly selected
1000 examples as test data, and another 1000 ex-
amples (for Danish, 100 examples) as develop-
ment data, and the rest as training data. Among the
development data, we randomly chose 100 sam-
ples as the development data for an alternative,
language-specific tuning of £ (§ 3.2). The sum-
mary of the resulting dataset is shown in Table 1.



Sentiment analysis is a task of predicting a po-
larity label of the writer’s attitude for a given text.
We design this task to be a three-class classifica-
tion of positive, negative, and neutral labels. We
use datasets from two domains of restaurant re-
view and product review to conduct this exper-
iment. In both domains, we consider the most
resource-rich language, English (en), as the source
language and other languages (Spanish (es), Dutch
(nl), and Turkish (tr) for restaurant review domain,
and German (de), French (fr), and Japanese (ja) for
product review domain) as the target languages.

To train models in restaurant review domain, we
use Yelp Review dataset’ which consists of a set
of restaurant reviews with numerical ratings in the
range of 1-5 given by the reviewers. We label the
reviews with ratings of 1 or 2 as negative, those
with ratings of 4 or 5 as positive, and the rest with
ratings of 3 as neutral. Then, we randomly chose
100,000 examples as test data, another 100,000 ex-
amples as development data, and the rest as train-
ing data. For evaluation in the target languages,
we use a subset of ABSA dataset (Pontiki et al.,
2016), which consists of restaurant reviews in En-
glish, Spanish, Dutch, and Turkish with annotation
of a polarity label of positive, negative, or neutral
to each sentence. For each language, we randomly
chose 100 sentences as development data for the
alternative, language-specific tuning of &k (§ 3.2)
and the rest as test data.

For experiments in the product review domain,
we use Amazon Multilingual Review dataset*
which consists of a set of product reviews in En-
glish, German, French, Japanese with numerical
ratings given in the same manner as the Yelp Re-
view dataset. We label the reviews in the same
manner as the Yelp Review dataset. For English
dataset, we randomly sample 100,000 examples
as development data, other 100,000 examples as
test data, and the remaining 6,731,166 examples
as training data. For the other languages, we
randomly chose 10,000 examples as development
data, another 10,000 examples as test data, and
the rest as training data. Among the development
data, we randomly chose 100 examples as devel-
opment data for the alternative, language-specific
tuning of k. The summary of the resulting datasets
is shown in Table 2.

Shttps://www.yelp.com/dataset
*nttps://s3.amazonaws.com/
amazon—-reviews—-pds/readme.html
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Dataset Language train dev. test
Yelp English (en) 5,796,996 100,000 100,000
English (en) - 100 1462
Spanish (es) - 100 1237
ABSA Dutch (nl) - 100 1125
Turkish (tr) - 100 855
English (en) 6,731,166 100,000 100,000
Amazon German (de) 659,121 10,000 10,000
French (fr) 234,080 10,000 10,000
Japanese (ja) 242,431 10,000 10,000

Table 2: Number of examples for sentiment analysis.

General cross-lingual word embeddings were
obtained using a state-of-the-art unsupervised
method with self-learning framework (Artetxe
et al., 2018).> This method takes monolingual
word embeddings of two languages and learns
a mapping between them to obtain cross-lingual
word embeddings. For monolingual word em-
beddings, we used pre-trained word embeddings
available online (Grave et al., 2018). They are
word embeddings with 300 dimensions obtained
by applying subword-information skip-gram (Bo-
janowski et al., 2017) to the Wikipedia corpus.

Preprocessing We use the tokenizer of Europarl
tools’ to tokenize all datasets except for Japanese.
For Japanese, we use MeCab v0.996® with IPA
dictionary v2.7.0. After tokenization, the tokens
are lowercased to match vocabularies of the pre-
trained word embeddings.

Models To evaluate the impact of our task-
specific word embeddings on multilingual models
and to compare the two methods for the cross-task
embeddings projections we proposed in § 3, we
compare the following five models.

CLWE fixed trains a bag-of-embeddings model
in the target language with its embedding lay-
ers fixed to the pre-trained cross-lingual word
embedding. The model takes the dimension-
wise average of all embeddings of input to-
kens into a feedforward neural network with
one hidden layer. This model is analogous
to (Duong et al., 2017) except that they use
the summation weighted by tf - idf.

Shttps://github.com/artetxem/vecmap
®https://fasttext.cc/docs/en/
crawl-vectors.html
"http://www.statmt.org/europarl/
$https://taku910.github.io/mecab/
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Method en-da en-de en-es en-fr en-it en-nl en-pt en-sv
CLWE fixed 0.621 0.813 0.363 0.772 0535 0.791 0.524 0.816
CLWE fixed + NNmap 0.593 0.843 0.448 0.815 0.583 0.794 0.554 0.503
CLWE opt (LP) 0.599 0.617 0.117 0.670 0.197 0.627 0.185 0.206
CLWE opt (LLM)

k=1 0.694 0.848 0.764 0.879 0.578 0.815 0.584 0.805

k tuned to task 0.672 0.809 0.705 0.885 0.623 0.814 0.580 0.831

k tuned to task/language  0.687 0.833 0.764 0.879 0.615 0.837 0.572 0.830
Monolingual 0968 0984 0975 0980 0932 0.950 0948 0.970

Table 3: Classification accuracy of topic classification task in cross-lingual settings. The underlined values indicate
that, among the three trials, the worst model of CLWE opt (LLM) outperforms the best model of CLWE fixed.

Amazon Yelp - ABSA

Method en-de en-fr en-ja en-es en-nl en-tr
CLWE fixed 0.798 0.805 0.798 0.731 0.675 0.591
CLWE fixed + NNmap 0.798 0.803 0.784 0.748 0.665 0.556
CLWE opt (LP) 0.797 0.804 0.779 0.725 0.655 0.605
CLWE opt (LLM)

k=1 0.813 0.811 0.764 0.731 0.680 0.569

k tuned to task 0.815 0.812 0.785 0.759 0.684 0.616

k tuned to task/language  0.815 810 0.777 0.766 0.719 0.617
Monolingual 0.879 0.857 0.838 - - -

Table 4: Classification accuracy of sentiment analysis task in cross-lingual settings. The underlined values indicate
that, among the three trials, the worst model of CLWE opt (LLM) outperforms the best model of CLWE fixed.

CLWE fixed + NNmap adds two embedding-
wise hidden layers to the original feedfor-
ward neural network in CLWE fixed. This is
aimed at giving the network the capability of
acquiring task-specific word embeddings by
enhancing the representation of the network.

CLWE opt (LP) is CLWE fixed with embedding
layer updated; we made this model cross-
lingual by the linear projection (§ 3.2).

CLWE opt (LLM) is CLWE fixed with the em-
bedding layer updated; we made this model
cross-lingual by the locally linear mapping
(§ 3.2). We report results with the three
strategies to tune the hyperparameter k for
cross-task projection.

Monolingual has the same network as CLWE
fixed with the embedding layer updated; we
trained the model with datasets in the same
languages as testing. We present this result
to show the upper bound of model accuracy.

The dimensions of all the layers of the above
five models are 300, and they are all optimized by
Adam optimizer (Kingma and Ba, 2014) for train-
ing. We conduct all experiments three times with
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Method Topic Class.  Senti. Analysis
Amazon Yelp

Monolingual fixed 0.921 0.828 0.799

Monolingual 0.980 0.872 0.866

Table 5: Classification accuracy of monolingual mod-
els in English.

different initialization of the model parameters and
report the average accuracy, and hyperparameter
tuning is conducted independently to each model.

5 Results

We evaluate the models in cross-lingual settings
to confirm how well our method produces task-
specific cross-lingual word embeddings (Table 3
and Table 4). Prior to reporting the results, we
confirm the impact of task-specific word embed-
dings in neural networks through experiments in a
monolingual setting in English (Table 5).

5.1 Impact of task-specific word embeddings

We examine the impact of optimizing the em-
bedding layer of a neural network to the given
task on model accuracy through experiments in



General Topic class.  Senti. analysis General Topic class. Senti. analysis
(Amazon) (Amazon)

excellent excellent,yccen:

excellently excellently  awesome excellenteexcerrent excellentsexcelient excellente

superb exceptional  perfect excellents excellente excellents

good tabcorp pleased bonggea excellentesexcelient excellentes

impressive novorossiisk timeless excellentes appréciableqypreciae  €xtraordinary

commendable southcorp mesmerizing excellery, excer bons parfaite

terrible terrible,ripe

horrible frightening  horrible terribleserripie terribles terribles

dreadful devastating  useless horribleorribie horrible horrible

awful shocking wasted terriblementyeripiy meurtrieyounded débileypia

horrendous mishaps miserably épouvantable gwynplaine horriblesyorribie

horrific ugliness refund effroyablee,riying épouvantesye,rified stupidesupia

economic économie,conomy

economy imf addition €CONOMiC,conomy économiqUecconomic ~ €conomie

macroeconomic trade nightstand économique économiqueSeconomic  €CONOMiques

economies economy finances macroéconomi€acroeconomy ~ CONJONCtUIEconjuncrure  €CONOMICeconomic

microeconomic  wto everyday géoéconomiegcoeconomy fmipr €conomiqueeconomic

socio economist arguably microéconomi€picrocconomy ~ €CONOMIQUEcconomic ~ ECONOMIES conomies
(a) English (b) French (English translations are given as subscripts)

Table 6: Nearest neighbors of some words in the semantic space of general and task-specific word embeddings.

English by comparing Moneolingual to Monolin-
gual fixed which is the same network as Mono-
lingual with the embedding layer fixed to gen-
eral words embeddings. We show the results of
topic classification and sentiment analysis tasks
in Table 5. In both tasks, Monolingual outper-
formed Monolingual fixed with a wide margin,
which indicates that task-specific word embed-
dings are indeed crucial to obtain better model per-
formance. This result motivates us to learn task-
specific cross-lingual word embeddings to exploit
the fully task-specific neural network.

5.2 Performance of multilingual models

Table 3 and Table 4 report the classification ac-
curacy of the models on topic classification and
sentiment analysis, respectively. All models are
trained in English and evaluated in the target
languages. CLWE opt with hyperparameter %
tuned on the source language successfully out-
performed the two baselines, CLWE fixed and
CLWE fixed + NNmap, in all task-language pairs
except for English-German in the topic classifi-
cation task and English-Japanese in the sentiment
analysis task. This result indicates the importance
of task-specific word representation in the multi-
lingual model and that our projection successfully
induced task-specific cross-lingual word embed-
dings. Although we gained some improvements
by tuning k to the target language using the min-
imal development set in some configurations, the
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gains are smaller than the gains over the two base-
lines. This implies that k is more sensitive to the
target task rather than the target language, which
we discuss further in § 5.3.

In some languages, CLWE fixed + NNmap has
even lower classification accuracy than CLWE
fixed. We hypothesize that by having more layers,
the model becomes more sensitive to the small dif-
ference in word representation, which means that
the noise in pre-trained cross-lingual word embed-
dings affects on the model accuracy.

Comparing CLWE opt (LLM) to CLWE opt
(LP), we found that our locally linear mapping
outperforms the linear projection method for a
cross-task embedding projection. For some con-
figurations, the performance of CLWE opt (LP)
degrades significantly. These results indicate that
the topology of the general and task-specific em-
bedding spaces are so apart from each other that
simple projection methods such as the linear pro-
jection are inappropriate. We will further discuss
the difference in the topologies of the general and
task-specific embedding spaces in § 5.3 by looking
into nearest neighbors of some target words in the
semantic space of general and task-specific cross-
lingual word embeddings (Table 6).

In all configurations where sufficient dataset is
available in the target languages, monolingual
outperformed cross-lingual models with a wide
margin. This indicates that there is still space for
improvements in cross-lingual models.
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Figure 2: Distribution of the reconstruction weights & for the nearest words of the target words and the other

nearest neighbors.

5.3 Analysis

We conduct further investigation to gain a pro-
found understanding of our method and the re-
sulting task-specific cross-lingual word embed-
dings. We first analyze the task-specific cross-
lingual word embeddings through nearest neigh-
bors of some words. We next investigate the dis-
tribution of the reconstruction weights to see the
impact of k nearest neighbors other than the near-
est one. We then evaluate the sensitivity of the
model accuracy to the value of k.

Properties of task-specific embeddings Here,
we examine the properties of task-specific word
embeddings obtained using our cross-task projec-
tion. For this purpose, we present nearest neigh-
bors of frequent words in the tasks in various em-
beddings in English and French.

Table 6a shows nearest neighbors of “excel-
lent,” “terrible,” and “economic” in the general
word embeddings, and the embedding layer of the
models optimized for the training data in English.
In the general embeddings, the words are close
to words that have similar semantic or syntactic
while the task-specific word embeddings show dif-
ferent properties specific to the target tasks.

In the embedding layer optimized for topic
classification, we found “economic” to be close
to “imf (International Monetary Fund)” or “wto
(World Trade Organization).” Even though they
are semantically distinct, they all strongly indicate
the Economy label. In contrast, the nearest neigh-
bors of “excellent” and “terrible” are noisy since
they do not contribute to the topic classification
task.
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The embedding layers optimized for sentiment
analysis exhibit different properties. While the
nearest neighbors of “excellent” and “terrible” are
not semantically close, they all indicate positive
and negative polarities in the respective domains.
However, the nearest neighbors of “economic” are
noisy as they do not contribute to the task.

Table 6b shows nearest neighbors of “excellent
(excellent),” “terrible (terrible),” and “économie
(economy)” in French; the general word embed-
dings (General) and the task-specific word em-
beddings obtained using our cross-task projec-
tion (LLM). General embeddings exhibit similar
properties as English ones.

LLM embeddings of topic classification task
have “fmi (IMF; International Monetary Fund)”
and “conjoncture (conjuncture)” as nearest neigh-
bors of “économie.” This indicates that our cross-
task projection successfully obtains word embed-
dings optimized for the task since they are strong
signals of the Economy label. For sentiment anal-
ysis, the word embeddings obtained by our cross-
task projection of Amazon dataset captures “ex-
traordinary” and “parfaite,” which strongly indi-
cate positive polarity, as the nearest neighbors of
“excellent” In contrast, the words strongly associ-
ated with negative polarity, “débile” and “stupide,”
are the nearest neighbors of “terrible” in the em-
bedding space. These properties suggest that our
cross-task projection successfully obtains task-
specific cross-lingual word embeddings.

Distribution of the reconstruction weights To
see how much the nearest neighbors for the target
words contribute to the projection, we investigate
the distribution of & induced by Eq. 3. Figure 2
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Figure 3: Classification accuracy as a function of k in cross-task embedding projection.

shows the distribution of the absolute value of &
for the nearest neighbors of the target word and
the other nearest neighbors. For this experiment,
we used k tuned on the source language.

Even though the nearest words tend to have a
slightly higher value of & compared to the other
nearest neighbor words, the difference is not so
significant for most of the configuration. This ob-
servation indicates that all of the k-nearest neigh-
bors contribute to the projection.

Sensitivity to hyperparameter k& We proposed
three strategies to tune the hyperparameter k£ of
our locally linear mapping for cross-task embed-
ding projection of cross-lingual word embeddings:
tuning on the development data in the source lan-
guage as described in § 3.2, preparing small devel-
opment data (100 samples) in the target languages,
or fixing k = 1. Revisiting results in Table 3
and Table 4, for the topic classification task, the
classification accuracy of the models are consis-
tent among all of the tuning methods (Table 3),
while for the sentiment analysis task, fixing k£ = 1
yields lower classification acuracy (Table 4). Here,
we conduct further analysis to gain a profound un-
derstanding of the effect of the value of k.

Figure 3 depicts the classification accuracy of
the models on the test set while varying &k in
the topic classification task and sentiment anal-
ysis task. Across languages, a smaller value of
k yields better performance for the topic classifi-
cation task, while a larger value of k yields bet-
ter performance for the sentiment analysis task.
These results indicate that the best value of k£ is
language-independent and thus, the tuning k for
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the development set of source language suffices to
achieve good results.

6 Conclusions

We proposed a method to obtain a fully task-
specific multilingual model without relying on any
cross-lingual resources or annotated corpora in the
target language by a cross-task embedding projec-
tion. Because a naive linear projection puts too
strong assumption on the topologies of two em-
bedding spaces, we present an effective method
for the cross-task embedding projection named lo-
cally linear mapping. The locally linear mapping
assumes and preserves the local topology across
the semantic spaces before and after the projec-
tion. Experimental results demonstrated that the
locally linear mapping successfully obtains task-
specific word embeddings of the target language,
and the resulting fully task-specific multilingual
model exhibited better model accuracy than the
existing multilingual model that fixes its embed-
ding layer to general word embeddings.

We plan to evaluate our method on various
NLP tasks, languages, and neural network mod-
els, and investigate the results to devise an adap-
tive method to tune & for individual words.
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A Derivation of the locally linear
mapping

Recall that X&" and Y#°" represent general cross-
lingual word embeddings of the source and target
languages, respectively. Also, for each word ¢ in
the target language, we denote the set of its k£ near-
est neighbors in the target language in the seman-
tic space of the general cross-lingual word embed-
dings as N
We reconstruct Y as a linear combination,
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where «; is the weight vector which we optimize.
The reconstruction error is given as
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We minimize this reconstruction error ¢ under

the constraint of > jenen i = 1. Applying the
method of Lagrange multiplier, we have
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The resulting value of a; is then used to com-
pute the task-specific word embedding of ¢ as
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We then solve = 0 to obtain

where XP¢° is the tast-specific word embeddings
of the source language.
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