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Abstract

This paper describes two systems for the sec-
ond subtask of CoNLL-SIGMORPHON 2018
shared task on universal morphological re-
inflection submitted by the University of Col-
orado Boulder team. Both systems are imple-
mentations of RNN encoder-decoder models
with soft attention. The first system is simi-
lar to the baseline system with minor differ-
ences in architecture and parameters, and is
implemented using PyTorch. It works for both
track 1 and track 2 of the subtask and generally
outperforms the baseline at low data settings
in both tracks. The second system predicts
the morphosyntactic description (MSD) of the
lemma to be inflected using an MSD predic-
tion model. The data for subtask 2 is processed
and reformatted to subtask 1 data format to
train an inflection model. Then the inflection
model predicts the inflected form for the tar-
get lemma given the predicted MSD. This sys-
tem achieves higher accuracies than the first
system when the training data is the most lim-
ited, though it does not perform better when
the training data is abundant.

1 Introduction

Several natural language processing tasks can ben-
efit from representational power in a computa-
tional model at the level of morphology. The task
of morphological inflection has been explored re-
cently in great depth (Cotterell et al., 2016, 2017),
resulting in several effective models for that task.
Of particular note is an architecture proposed by
Kann and Schiitze (2016), which is modeled after
an encoder-decoder model that found success in
machine translation (Cho et al., 2014).

A related, but relatively unexplored task is that
of morphological inflection in context. This paper
documents the University of Colorado Boulder’s
system for that task (subtask2) in the CoNLL-
SIGMORPHON 2018 shared task. We experi-
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mented with a model very similar to the provided
baseline, which computes the context for a given
inflection as the concatenation of word and MSD
embeddings to the left and right of the word that
is to be inflected. During encoding of an input se-
quence, the context vector is concatenated with the
character embedding at each time step.

We also experimented with an encoder compris-
ing of three separate LSTMs whose output states
are concatenated and used to predict the MSD for
the lemma to be inflected. We then use a sec-
ond encoder-decoder network to perform inflec-
tion over the given lemma according to that MSD,
thus formulating the second portion into the prob-
lem in taskl where the training data are pairs of
lemma, inflected word form, and the MSD for the
inflection and the task is to predict the inflected
word form given the lemma and MSD.

We find that the first system described here
outperforms the second one when there is ample
training data, whereas the latter performs better
when the training data is scarce.

2 Task and data description

The shared task is broken into 2 subtasks. This
paper presents systems that participated only in
subtask2. There are seven languages for this task:
German, English, Spanish, Finnish, French, Rus-
sian, and Swedish; and 3 data settings: low (< 100
sentence examples), medium (< 900 sentence ex-
amples), and high (< 8000 sentence examples).
Each data setting varies across languages with re-
gard to the number of training sentence examples.

Within subtask 2 there are two tracks. Both
tracks present each problem in context, that is,
given some lemma and the word forms surround-
ing it in a sentence, the goal is to generate the cor-
rectly inflected form of that lemma. In track one,
the MSD and lemma for each word in the sentence
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is available, whereas in track 2 only the inflected
word form is available. For testing in both tracks,
only the lemma of the form that should be inflected
is provided. More details about the tasks and data
can be found in Cotterell et al. (2018).

3 System description

3.1 System 1

Our first system is similar to the subtask 2 base-
line system provided by the shared task orga-
nizers (Cotterell et al., 2018) but with a few
changes in the architecture and parameters. It is an
encoder-decoder model with soft attention (Bah-
danau et al., 2015) implemented with PyTorch
based on the PyTorch tutorial of translation with a
sequence to sequence network and attention,! and
it works for both track 1 and track 2.

Architecture The encoder is a single layer Gated
Recurrent Unit (GRU) (Cho et al., 2014). It takes
as input the concatenation of the context embed-
ding and the embedded characters in the lemma,
and outputs a sequence of state vectors, which are
then translated into a sequence of embeddings by
a one-layer GRU decoder using an attention mech-
anism. The embeddings are then transformed into
output characters by a log softmax layer. For
track 1, the context embedding is the concatena-
tion of word embeddings for the previous inflected
word form, previous lemma, previous MSD, cur-
rent lemma, next inflected word form, next lemma,
and next MSD. If a word is at the beginning of
the sentence, we add a special symbol (SOS) as its
history context, and if a word is at the end of the
sentence, we add another special symbol (FOS)
as its future context. The context embedding for
track 1 is illustrated in the bottom part of Figure
1. For track 2, the context embedding is the con-
catenation of word embeddings for the previous
inflected word form, current lemma, and next in-
flected word form as is shown in Figure 2. Special
symbols indicating the beginning and end of sen-
tences are also used. For the character embedding
of lemmas, we also used (SOS) and (EOS) to indi-
cate the beginning and end of the lemma.

The decoder starts decoding with input as (SOS)
and hidden state as the last hidden state of the en-
coder. An attention mechanism is implemented to

'"https://pytorch.org/tutorials/
intermediate/seqg2seq_translation_
tutorial.html

87

<S0S> P | a n s <EOS>
dmm
—
Decoder
GRU
eh0 eht eh eh6
— — —
E(<S0S>)+ || E(p)+ E(l)+ E(a)+ E(n)+ E(<E0S>)+
E(CONTEXT)| [E(CONTEXT)| [E(CONTEXT)| [E(CONTEXT) |E(CONTEXT) | | E(CONTEXT)
<SOS> P | a n <EOS>
| E(make) | | E(plan) | E(to) |
<SOS> Bush made _ to leave <EOS>

<S0S> Bush
PROPN;

SG

make

V;IND;
PST,FIN -

plan to leave <EOS>

<S0S> PART ViNFIN PUNCT <EOS>

Figure 1: Architecture of system 1 with track 1 context
embedding

allow the decoder network to focus on different
parts of the encoder’s outputs at each step of gen-
eration. It is implemented as another feed-forward
layer which takes as its input the decoder’s input
and hidden states and calculates a set of attention
weights. We multiply the attention weights with
the encoder output vectors to create a weighted
combination. This weighted combination will go
through a non-linear ReL.U layer before going to
the GRU process. In addition, a dropout layer is
added to the decoder input to deal with overfitting.
The dropout rate is 0.1. The decoding process
stops when the end symbol (EOS) is generated. It
may also stop early when a maximum prediction
length has been reached. The maximum predic-
tion length is set at 50. The overall architecture of
this system as to track 1 is shown in Figure 1. For
track 2, only the context embedding is different,
i.e. the context is the concatenation of the previ-
ous inflected word form, the target lemma and next
inflected word form embeddings.

Data To train the model for track 1, the model is
trained to make predictions for only entries whose
part-of-speech (POS) are verbs, nouns, or adjec-
tives. For track 2, the model is trained to make
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Figure 2: Context embedding for system 1 at track 2

predictions for entries where the lemma form is
provided.

Settings and Hyper-parameters The model is
trained to minimize the negative log likelihood
loss (NLLLoss) on the training data. The opti-
mization method is the Adam algorithm (Kingma
and Ba, 2015) with a learning rate of 0.00005. As
to other hyper-parameters, we use an embedding
size of 100 for the character, lemma, word-form
and MSD embeddings. The hidden size is 800 for
track 1 and 400 for track 2.

3.2 System 2: MSD prediction and inflection

In our second approach we reformulate the task
2 problem as a task 1 problem. This approach
involves predicting the morphosyntactic descrip-
tions of the lemma in question, given the inflected
word forms, the lemmas and the MSDs for the
rest of the sentence. Once we have the predicted
MSDs, we use a task 1 inflection model to get the
inflected form. This section describes the archi-
tecture for the MSD prediction model followed by
the inflection model. This system is only for track
1 as it relies on the morphosyntactic descriptions.

3.2.1

The MSD prediction model uses a many-to-one
encoder-decoder neural network to predict the
MSDs of the lemma to be inflected.

MSD prediction model

Architecture The encoder uses three separate
single-layer bidirectional LSTMs (LST M.y,
LST Myyse and LST M,;4p¢) to encode the input
into a fixed length vector c. It is based on Vylo-
mova et al. (2017). LST M.y, takes as input the
sequence that is to the left of the current lemma
in the sentence and computes the hidden states
" e RH,

b = fil@®, )
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Figure 3: Architecture of the MSD prediction model

where z() e R3F is a concatenation of
the inflected word form embedding e(w;), the
lemma embedding e(l;) and the MSD embed-
ding e(msd;) for some word ¢ in the sentence;
e(wy),e(ly), e(msd;) € R¥, where E is the di-
mension of the embedding layer.

In a similar fashion, LST M,y takes as in-
put the sequence that is to the right of the current
lemma in the sentence.

B(®)

T

= fo(a®,BID)

r

LST My, takes as input the sequence of char-
acter embeddings, e(c;), concatenated with the
lemma embedding, e(l), for every character ¢ in
the lemma.

W = (@ n{=)

The input to the decoder is the vector ¢ € R3H
which is the concatenation of the final states from

the three encoder LSTMs.
= [hl(Tl); hquT); hl(sz)]

The decoder acts as a classifier that classifies the
input into one of the possible MSD combinations.

ha = fa(c, hY)
Ppysq = softmax(W.hg + b)

The high level architecture of the model is
shown in Figure 3.

Data To train the MSD prediction model,



we used only lemmas whose POS are verbs,
nouns or adjectives.

Settings and Hyper-parameters We used a
hidden size of 100 and an embedding size of
100 for the character, lemma, word and MSD
embeddings. We used Adam as the optimizer with
a learning rate of 0.0005.

3.2.2 Inflection model

The Inflection model outputs the inflected
word-form given a lemma and its associated
morphosyntactic features (for example, touch +
V:V.PTCP;PRS = touching). It is an encoder-
decoder soft-attention based neural network that
takes as input the sequence of lemma charac-
ters and the morphosyntactic descriptions, and
produces a sequence of characters as output.
The Inflection model is based on University
of Colorado Boulder’s submission to CoNLL-
SIGMORPHON 2017 Shared Task (Silfverberg
etal., 2017).

Architecture The encoder is a single layer
bi-directional GRU that takes as input the
embeddings e(.) of lemma characters and the
morphosyntactic descriptions, and produces a
sequence of state vectors. The decoder then uses
this sequence of state vectors to generate the
sequence of output embeddings. At each stage
in the decoding process, the decoder uses the
following to compute the current state vector:

o the previous decoder hidden state.
o the previous output embedding.
e A weighted sum of all the encoder states.

The decoding process starts with the embedding
for the word boundary symbol (EOS) and a ran-
domly initialized hidden state hy. The weights for
the encoder states is computed using an Attention
mechanism which uses the previous decoder state
as input. The weights are normalized using a soft-
max function. The overall architecture of the in-
flection model is shown in Figure 4.

Data The data to train the inflection model was
generated from the task2 training data by taking
out entries of verbs, nouns or adjectives and
putting them into task 1 data format. The amount
of training data we get in this way is comparable
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Figure 4: Architecture of the inflection model

to the data size of task 1 at different data settings
for all the 7 languages; more than 10000 examples
for the high data setting, more than 2000 examples
for the medium data setting, and more than 250
examples for the low data setting.

Settings and Hyper-parameters The inflec-
tion model uses an embedding size of 100 and
a hidden state of size 100 for the encoder and
the decoder. The data is processed in batches of
20. Masking is used to mask part of the input
sequences which are shorter than the maximum
length in the batch. Stochastic Gradient De-
scent (SGD) with gradient clipping is used for
optimization and the loss function is NLLLoss.

4 Experiments

4.1 Exploratory experiment: lemma copying

As the first exploration of the task and an evalua-
tion of task complexity, we experimented by copy-
ing the lemma directly. In other words, we sim-
ply guess that the inflected form of a lemma in the
context is the lemma itself. This experiment will
be referred to as the copy system going further.

4.2 System 1

We tuned the architecture and the parameters for
the first system on track 1 and finally settled on
the architecture and parameters described in sec-
tion 3.1 for track 1 and track 2. For both tracks,
we train the model for 50 epochs at the low data
setting and 40 epochs at medium and high data
settings, and use the model at the epoch which
gets the highest accuracy on the development set
to make predictions on the test set.



| HIGH | MEDIUM | Low

LANGUAGE | COPY SYS1 SYS2 BASELINE | Copy SYS1 SYS2 BASELINE | Copy SYS1 SYS2 BASELINE
DE 5895 633 6249 64.51 5895 5511 55.11 54.4 5895 1041 3215 02

EN 62.64 7623  68.58 72.91 62.64 6516 6657 60.02 6264 576  59.62 1.81

ES 2553 5175 3675 53.44 2553 418 3268 23.14 2553 2553 2177 8.98

FI 2236 43.07 3024 49.05 2236 2338 23 28.21 2236 712 1144 0.76
FR 2363 5804 609 63.54 2363 442 4216 45.01 2363 2566 2688 0

RU 1837 6516 5552 71.18 1837 44.58 4046 50.3 1837 1506  22.09 0

Y 3245  60.53  37.77 62.23 3245  49.68 3457 4755 3245 2074 29.04 1.17
AVERAGE | 3485 59.73  50.32 62.41 3485 46.27 42.08 44.09 3485 2316  29.86 1.85

Table 1: Track 1 accuracies for original form of the copy system, system 1, system2, and baseline

| HIGH | MEDIUM | Low

LANGUAGE | COPY SYS1 SYS2 BASELINE | Copy SYS1 SYS2 BASELINE | Cory SYS1 SYS2 BASELINE
DE 5895 5996 - 65.72 5895 4954 - 56.93 5895 11.02 - 0.1

EN 62.64 708 - 70.39 62.64 61.53 - 57.6 62.64 5891 - 2.22
ES 2553 4586 - 51.05 2553 3534 - 41.23 2553 2791 - 8.98

FI 2236 2402 - 34.82 2236 17.15 - 19.19 2236 7.88 - 0.38
FR 2363 4827 - 58.45 2363 3605 - 21.38 23.63  23.01 - 0

RU 1837 3976 - 46.89 1837 27.21 - 30.52 1837 2108 - 271
SV 3245 5415 - 54.04 3245 4117 - 43.09 3245 1649 - 0.96
AVERAGE | 3485 4897 - 54.48 3485 3829 - 38.56 3485 2376 - 2.19

Table 2: Track 2 accuracies for original form of the copy system, system 1, system2, and baseline

4.3 System 2

In our experiments for System 2, we train the
MSD prediction model for 10 epochs on all data
settings. To train the inflection model we used 200
epochs for the low data setting and 100 epochs
for the medium and high data settings. We also
experimented with higher embedding and hidden
sizes of 200 for the MSD prediction model and we
found no significant improvements.

5 Results and discussion

The evaluation result as to original forms for track
1 is shown in Table 1. In general, our first system
(SYS 1) outperforms the second system (SYS 2)
in both high and medium data settings, though nei-
ther of them get a higher averaged accuracy than
the baseline system when the training data size is
high and the first system is only marginally bet-
ter than the baseline when the training data is of
medium size. For the four systems summarized in
the table, our first system performs the best only
with English at high data setting, and it achieves
the highest accuracies with Spanish and Swedish
at medium data setting. The second system out-
performs the other three systems with English at
medium data setting. However, when the train-
ing data is the most limited, i.e. at the low data
setting, the second system outperforms both the
first system and the baseline as to average accu-

90

racy over the seven languages, though it is still
worse than the copy system. To be specific, direct
lemma copy produces the best results for German,
English, Finnish and Swedish among the four sys-
tems at the low data setting. The second system
outperforms the other three systems with Spanish,
French, and Russian.

Table 2 provides the evaluation results for the
baseline system, our first system and the copy sys-
tem, as to original forms for track 2. Our second
system relies on the prediction of MSDs and does
not work for track 2. For this track, we see the pat-
tern of the system performance is similar to that
of track 1. That is, the baseline system generally
outperforms our first system and the copy system
at the high data setting and gets very close to the
first system in terms of averaged accuracies at the
medium data setting, and our first system outper-
forms the baseline by a large margin at the low
data setting though it is still worse than the copy
system.

When the training data is the most limited, com-
paring the results of system 1 for track 1 and track
2, shows that track 1 results are not better than
track 2 results, indicating that the MSD and lemma
information does not really help with the perfor-
mance of the first system when a limited amount
of data is available. However, the second system
outperforms the first system on track 1 for all lan-
guages, and the results of SYS 2 on track 1 are



higher than the results of SYS 1 on track 2 on most
languages (except Spanish, for which SYS 2 track
1 is amere 0.14% lower). This suggests that, when
training data is very limited, the MSDs introduce
a lot of ambiguity if only used as contextual in-
formation. On the other hand, if we first predict
the MSD as our second system does, the ambigu-
ity is reduced and thus the system generates bet-
ter predictions. German is the language where the
second system is most significantly better than the
first system on the track 1 low data setting. Ger-
man is a language with much ambiguity in its in-
flected forms. For a German word form, there can
be as many as 40 different readings (Miiller and
Schiitze, 2015). This fact also supports the ambi-
guity explanation for the difference in the perfor-
mance of our first and second systems.

In the low setting, Finnish, German and Russian
have the lowest scores for our first model. Finnish
and Russian are the two languages with the most
complex inflection systems in the sense that they
have the highest number of distinct MSDs. In
the high data setting, counting only the parts-
of-speech the model is supposed to predict, i.e.
nouns, verbs and adjectives, there are 346 distinct
MSDs in Finnish training data and 345 in Rus-
sian training data. The rich inflection requires
more data for the model to learn. Though Ger-
man has less distinct MSDs than Finnish and Rus-
sian, its inflection is also complex in the sense that
it’s less predictable: Unlike Russian and Finnish
which use almost exclusively suffixes, German is
not primarily suffixing but employs prefixing, cir-
cumfixing, and umlauting. Its inflectional rules are
less regular than Finnish or Russian. A qualitative
analysis of the predictions in the low data setting,
finds that our first model tends to make changes in
the stem for German though not for Finnish and
Russian, and the wrong changes in the stem cause
wrong predictions for German words while for
Finnish and Russian the errors are mainly wrong
suffixation. This agrees with the distinct features
of their inflection systems.

The intuition behind just copying the lemma
when the training data is limited, is the linguis-
tic observation that the lemma form is usually the
most frequently used form and thus any uninfor-
mative inflection tends to be less likely than the
lemma.
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6 Conclusion

For this task, we explored the performance of
RNN encoder-decoder models with soft attention
as to predicting the inflected forms of a lemma
in context. We developed two systems by imple-
menting the encoder-decoder model in different
ways. We found that when the training data is
very limited, morpho-syntactic descriptions con-
tribute to better prediction results. Though both
of our systems outperform the baseline at the low
data setting, none of the systems are better than
the blind guess of the inflected form being the
lemma itself. However, when the training data is
abundant, neural network systems outperform the
lemma copying approach.
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