
Proceedings of the CoNLL–SIGMORPHON 2018 Shared Task: Universal Morphological Reinflection, pages 64–68,
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

Attention-free encoder decoder for morphological processing

Stefan Daniel Dumitrescu and Tiberiu Boros
Research Institute for Artificial Intelligence “Mihai Drăgănescu”

Romanian Academy
13 September, no. 13, Bucharest, Romania

sdumitrescu@racai.ro, tibi@racai.ro

Abstract

We present RACAI’s Entry for the CoNLL-
SIGMORPHON 2018 shared task on univer-
sal morphological reinflection. The system
is based on an attention-free encoder-decoder
neural architecture with a bidirectional LSTM
for encoding the input sequence and a uni-
directional LSTM for decoding and produc-
ing the output. Instead of directly applying a
sequence-to-sequence model at character-level
we use a dynamic algorithm to align the input
and output sequences. Based on these align-
ments we produce a series of special symbols
which are similar to those of a finite-state-
transducer (FST).

1 Introduction

Languages with rich morphology convey mor-
phological attributes such as gender, case, num-
ber, obliqueness through character/grapheme vari-
ations applied to the dictionary form of the word
(lemma). It is often the case where these variations
are obtained by suffixing the word rather than al-
tering random characters, but this does not hold
for all languages or irregular word forms. Sill, the
variations inside the lemma are usually small, re-
quiring the system just to replace an average of 2.3
letters for the irregular word forms.

In our approach we exploit this property and
employ an encoder-decoder sequence-to-sequence
model that doesn’t require an attention mecha-
nism. This mitigates attention issues such as re-
peating or skipping character sequences and re-
duces the need for models with high representa-
tional capacity.

We exploit the property that alignments be-
tween the input and output character sequences
are monotonic: for example wordform men and
lemma man share two letters (alignments) in the
same order, without inversions. The standard
attention mechanism is well-suited for machine

learning tasks; however, when it comes to mono-
tonic alignments it sometimes fails to achieve sat-
isfactory results, in most cases due to the fact that
repeated characters or character sequences in the
input sequence confuse the attention mechanism
making it generate loops or skip characters.

There are several proposed methods that try to
solve this task with attention mechanisms such as
guided attention (Tachibana et al., 2017), location-
sensitive attention (Chorowski et al., 2015) and
other variations. Still, given the particularities of
morphological reinflection, we argue that there is
no need for an explicit attention mechanism. In-
stead we train the decoder to focus on a single
input symbol at each time-step and “self-attend”
by shifting the input cursor with one position at
a time. This method, though developed indepen-
dently, closely resembles that of Makarov et al.
(2017).

In our previous experiments we used this ar-
chitecture to perform lemmatization (the opposite
task of morphological reinflection) and we ob-
tained state-of-the-art results.

In what follows, we will present the attention-
free encoder-decoder architecture (Section 2), we
show our experimental results (Section 3) and fi-
nally we draw conclusions (Section 4).

2 Attention-free encoder-decoder

The architecture of our neural network is fairly
simple. We use an encoder that “sees” the se-
quence in both directions and a decoder which
is conditioned to produce the output sequence
using focused encoder states (see below for
details) concatenated with trainable embeddings
computed on morphological attributes.

As mentioned before, the classical attention
mechanism is not well suited for tasks where
the alignments between the input and output se-

64

quences are monotonic. Instead, connectionist
temporal classification (CTC) (Graves et al., 2006)
provides better results in these cases. However,
CTC requires that the number of input time-steps
is much higher than the number of output labels.
This renders CTC unsuitable for morphological
reinflection as the number of output labels is al-
most always greater than the number of input char-
acters.

Instead, we propose a simpler algorithm that
reduces the model complexity and computational
load. Our method requires preexisting alignments
between the input and output sequences. These
alignments are easy to obtain by exploiting a ba-
sic property of morphological reinflection, which
also holds for lemmatization: regardless of the
language and irregularity of the word-form, the
lemma and the inflected word form share many
symbols.

This implies a high likelihood of aligning iden-
tical input and output symbols and does not re-
quire Expectation Maximization (EM) for com-
puting alignment probabilities. With this in mind,
we propose the following algorithm that:

1. Computes an alignment matrix using dy-
namic programming;

2. Reads the two sequences in reverse and uses
the previously computed matrix, favoring di-
agonal alignments over other alignments;

3. Generates alignment pairs, whenever the in-
put and output symbols are identical.

Figure 1 describes our approach step-by-step.
The algorithm is a slightly modified dynamic

algorithm in the sense that (a) it favors diago-
nal alignments (to cope with repeating consecu-
tive letters) and (b) it only considers an alignment
pair (i, j) if the characters from the source (s) and
destination (d) at the two indexes are identical (i.e.
si = dj).

Next, we use the produced alignments to gener-
ate the training data for our attention-free encoder-
decoder model. For our algorithm to work, we
need the decoder to keep track of the focused-on
character in the input sequence. This is achieved
by simulating a FST using neural networks. Given
the input sequence s, the decoder must produce
an output sequence d′ which is composed of three
specialized labels and arbitrary characters in the
vocabulary. The output symbols are:

s - input sequence of size n
d - output sequence of size m

a <− z e r o s (n +1 , m+1)
i n i t i a l i z a t i o n
f o r i = (0 , n) : a [i ,0]<− i
f o r i = (0 ,m) : a [0 , i]<− i

f o r i = (1 , n) :
f o r j = (1 ,m) :
i f s [i −1]==d [j −1]:

c o s t<−0
e l s e :

c o s t<−1
a [i , j]<− c o s t +

min (a [i −1, j −1] ,
a [i −1, j] ,
a [i , j −1])

a l i g n m e n t s ={} ; p i<−n ; pj<−m
w h i l e i !=1 or j ! = 1 :

i f i ==1: j<−j−1
e l s e i f j ==1: i<−i−1
e l s e :

i f a [i −1, j−1]<=a [i −1, j] and
a [i −1][j−1]<=a [i , j −1]:

i<−i −1; j<−j−1
e l s e i f a [i −1][j]<a [i] [j −1]:

i<−i−1
e l s e :

j<−j−1
i f s [i]== d [j] :

a l i g n m e n t s<−
a l i g n m e n t s +(i −1, j −1)

r e t u r n a l i g n m e n t s

Figure 1: Alignment algorithm

• Special symbol INC : This means that the
current focus-index of the input sequence
must be incremented by 1;

• Special Symbol COPY : The character at
the current focus-index must be “copied” in
order to compose the final sequence;

• Special Symbol EOS : The output se-
quence is complete and the algorithm stops;

• Any arbitrary character in the vocabu-
lary: This means that the final sequence must
be obtained by adding this character.

At runtime we start by setting the focus-index at

65

0 and the final sequence to the void string (“”) and
we follow the instructions of the decoder output
in order to construct the final sequence. During
training, it is highly important to do sanity checks
on the current focus-index to avoid index out-of-
bounds exceptions during the first training epochs
when the model has not yet converged. Once the
loss is small enough, we found that the model
rarely generates these exceptions. However, it is
still recommended to keep these checks in place.

To obtain the output sequence d′ on which we
train our network we use a fixed-oracle algorithm
that is summarized as:

1. Take every symbol in the output sequence
and check if it aligns with a symbol in the in-
put sequence (based on the alignments pro-
duced by the algorithm in Figure 1);

2. If the output symbol does not align with any
character, instruct the decoder to generate it
(the case of the arbitrary character in the vo-
cabulary);

3. If the output symbol aligns, instruct the de-
coder to generate INC symbols until the
focus-index would reach the corresponding
input character, and then generate an COPY
symbol;

4. When the sequence is completely generated,
instruct the decoder to generate an EOS
symbol.

Because English reinflection is fairly simple,
we chose an entry from the Romanian dataset for
which we present a step-by-step example.

Assume the lemma is “face” (en. “to do”)
and is has to be reinflected for the morphological
description V;IND;PST;3;PL;IPFV. The decoder
has to generate word form “făceau” (en. “they
were doing”). This means that the inflected form
is obtained by replacing the character ‘a’ with the
character ‘ă’ and by adding the suffix “au”.

Figure 2 shows the alignments obtained via dy-
namic programming between the characters of the
lemma (up) and the characters of the word form
(down). The dashed lines correspond to align-
ments where the characters in the source and desti-
nation are not identical. The final alignments pairs
are (according to the straight lines): (0,0), (2,2)
and (3,3).

Based on these alignments, the FST sym-
bols generated by the fixed-oracle algorithm are:

COPY , ‘Ă’, INC , INC , COPY , INC ,
COPY , ‘A’, ‘U’, EOS . Notice that after copy-

ing the first symbol (‘F’) to the output, the oracle
immediately generates the vocabulary item ‘Ă’,
because it is not aligned with any symbol in the
source lemma. However, the next (3rd) symbol in
the destination string is aligned with a character in
the source string and the index is incremented with
two INC commands. The rest of the sequence is
generated in a similar fashion.

Figure 2: Alignment example

Note 1: Fixed-oracle training is known to pro-
duce suboptimal results, when compared with
dynamic-oracle training. However, we did not
have time to experiment with the later mentioned
training method and leave this for future work.

3 Training details and experimental
results

For our implementation is based on DyNET (Neu-
big et al., 2017), which is a dynamic computation
graph network framework. That means that we do
not require any padding when we prepare mini-
batches.

We evaluated our approach on the data provided
during the SIGMORPHON 2018 Shared Task on
morphological reinflection (Cotterell et al., 2018).
During the evaluation campaign, each language
was provided with 3 datasets of different sizes
(high, medium and low). Because, neural ap-
proaches traditionally require more training data
to generalize better, we only built models for the
“high” datasets, which were composed of 10K
training examples for each language.

Our model was trained using ADAM optimiza-
tion (Kingma and Ba, 2014), with the default pa-
rameters α = 1e−3, β1 = 0.9 and β2 = 0.999. We
used a mini-batch size of 1K words and we used
trained each model until the accuracy on the de-
velopment set stopped improving for 20 iterations.
At the end, we used the best performing model for
each languages.

66

Language Acc. Acc.* Language Acc. Acc.* Language Acc. Acc.*
adyghe 92.00 97.90 irish 81.80 86.90 sanskrit 76.60 94.10
albanian 95.60 97.10 italian 90.00 91.10 serbo-croatian 88.00 90.70
arabic 88.50 90.00 kabardian 92.00 94.00 slovak 88.80 92.60
armenian 0.00 93.90 khaling 44.70 45.40 slovene 93.40 94.10
asturian 95.40 97.00 kurmanji 90.40 92.10 sorani 86.80 89.00
azeri 90.00 99.00 ladin 86.00 90.00 spanish 72.70 75.00
bashkir 0.00 98.10 latin 16.20 16.20 swahili 98.00 99.00
basque 86.80 96.40 latvian 92.90 97.40 swedish 85.20 92.10
belarusian 3.80 5.10 lithuanian 65.20 66.20 tatar 95.00 97.00
bengali 99.00 99.00 livonian 87.00 97.00 turkish 79.30 80.20
breton 0.00 82.00 lower-sorbian 93.70 96.30 ukrainian 90.50 94.80
bulgarian 77.80 79.90 macedonian 91.90 94.60 urdu 43.50 44.30
catalan 89.40 89.70 maltese 4.00 91.00 uzbek 0.00 36.00
classical-syriac 87.00 98.00 middle-french 96.70 96.30 venetian 98.50 98.70
crimean-tatar 94.00 96.00 navajo 79.00 84.00 votic 0.00 73.00
czech 90.20 92.50 neapolitan 0.00 40.00 welsh 92.00 92.00
danish 91.80 94.90 northern-sami 90.70 93.10 west-frisian 0.00 93.00
estonian 93.80 97.00 nor-bokmaal 88.90 92.50 yiddish 92.00 99.00
faroese 76.30 88.80 nor-nynorsk 79.40 93.10 zulu 73.30 74.40
finnish 87.20 92.20 occitan 83.00 83.00 dutch 92.20 94.80
friulian 78.00 79.00 old-armenian 80.40 82.30 english 93.80 95.10
galician 89.90 91.10 old-church-slv. 9.00 74.00 french 84.30 89.80
georgian 97.80 98.40 old-french 0.00 00.00 german 37.40 42.50
greek 81.10 85.90 old-saxon 54.50 54.80 kannada 99.00 98.00
haida 96.00 93.00 pashto 84.00 89.00 north-frisian 15.00 69.00
hebrew 85.70 87.20 persian 95.60 97.70 old-english 28.20 30.00
hindi 89.40 90.60 portuguese 84.00 84.50 polish 87.80 90.40
hungarian 79.50 86.50 quechua 96.80 98.30 russian 86.80 91.40
icelandic 80.60 89.90 romanian 82.00 88.00 Average 72.49 83.77

Table 1: Accuracy figures for all languages in the SIGMORPHON Shared Task 2018

For all languages we used a two-layer encoder
with 200 LSTM cells (in each direction - total 400
cells per layer) and a two-layer decoder of 200 uni-
directional cells. Each character in the vocabulary
is embedded as a 100-dimensional vector. We also
use a 100-dimensional embedding size for each
unique morphological descriptor.

Table 1 summarizes the testset results for all
languages in the SIGMORPHON Challenge 2018.
During the official evaluation campaign, our sys-
tem was affected by a bug which caused all
weights belonging to non-recurrent cells to be con-
stant (not trainable during backprop). This issue
had a strong negative impact on the results. Af-
ter this, we retrained our models and we include
the unofficial results in the same table, under the
“Acc.*” column. For almost all languages, af-
ter correcting the bug, the accuracy strongly in-

creased; for Welsh we observed no increase, and
only for 2 languages did we observe a less than
1 point decrease (probably due to weight initial-
ization compounded by small models where the
LSTMs overcame the fixed random weights of the
dense layers). Overall, we observed a strong re-
sult increase, from an average of 72.49 to 83.77.
For example, for West Frisian where initially the
model would not converge (0.00), we now obtain
93.00; similarly, for Armenian, we have gone from
0.00 to 93.9.

4 Conclusions

We introduced a specially designed attention-free
encoder-decoder model for morphological rein-
flection. Aside for mitigating standard atten-
tion issues, such as repeated or skipped charac-
ter sequences, this approach allows training sim-

67

pler models. This is mainly (a) because our
model introduces the COPY operation and re-
duces the representational load of the encoder-
decoder model and (b) and because we keep track
of the focus-index externally.

Also, we reduce the computational complexity
of the model by completely removing calculation
involved in the soft attention mechanism (n ∗ m
matrix multiplications, where n is the size of the
input sequence and m the size of the output se-
quence).

Moreover, the fact that the decoder does not re-
quire taking the previous output and embedding it
as input for the next step, demonstrates that there
is far less representational overhead involved in
generating the output sequence.

As a side note, in our previous experiments with
lemmatization, we observed that using this model
yields a 2-5% absolute increase in accuracy over
the standard soft-attention sequence-to-sequence
model.

Acknowledgments

The research presented here is funded by the
Romanian Government through the Executive
Agency for Higher Education, Research, De-
velopment and Innovation Funding (UEFISCDI),
programme “Experimental demonstration project
(PED) PED-2016”, project ID: PN-III-P2-2.1-
PED-2016-1974, contract number 229PED.

References
Jan K Chorowski, Dzmitry Bahdanau, Dmitriy

Serdyuk, Kyunghyun Cho, and Yoshua Bengio.
2015. Attention-based models for speech recogni-

tion. In Advances in neural information processing
systems, pages 577–585.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
Géraldine Walther, Ekaterina Vylomova, Arya D.
McCarthy, Katharina Kann, Sebastian Mielke, Gar-
rett Nicolai, Miikka Silfverberg, David Yarowsky,
Jason Eisner, and Mans Hulden. 2018. The CoNLL–
SIGMORPHON 2018 shared task: Universal mor-
phological reinflection. In Proceedings of the
CoNLL–SIGMORPHON 2018 Shared Task: Univer-
sal Morphological Reinflection, Brussels, Belgium.
Association for Computational Linguistics.

Alex Graves, Santiago Fernández, Faustino Gomez,
and Jürgen Schmidhuber. 2006. Connectionist
temporal classification: labelling unsegmented se-
quence data with recurrent neural networks. In Pro-
ceedings of the 23rd international conference on
Machine learning, pages 369–376. ACM.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Peter Makarov, Tatiana Ruzsics, and Simon Clematide.
2017. Align and copy: Uzh at sigmorphon 2017
shared task for morphological reinflection. In
Proceedings of the CoNLL SIGMORPHON 2017
Shared Task: Universal Morphological Reinflection,
pages 49–57, Vancouver. Association for Computa-
tional Linguistics.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, et al. 2017. Dynet: The
dynamic neural network toolkit. arXiv preprint
arXiv:1701.03980.

Hideyuki Tachibana, Katsuya Uenoyama, and Shun-
suke Aihara. 2017. Efficiently trainable text-to-
speech system based on deep convolutional net-
works with guided attention. arXiv preprint

arXiv:1710.08969.

68

