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Abstract
This paper describes the AX Semantics sub-
mission to the SIGMORPHON 2018 shared
task on morphological reinflection.

We implemented two systems, both solving
the task for all languages in one codebase,
without any underlying language specific fea-
tures. The first one is a classifier, that chooses
the best paradigms to inflect the lemma; the
second system is a neural sequence model
trained to generate a sequence of copy, insert
and delete actions. Both provide reasonably
strong scores on solving the task in nearly all
103 languages.

1 Introduction

This paper describes our implementation and re-
sults for Task 1 of the CoNLL-SIGMORPHON
2018 Shared Task: Universal Morphological Rein-
flection (Cotterell et al., 2018). The task is to gen-
erate inflected word forms given the lemma and a
feature specification (Kirov et al., 2018). See Fig-
ure 1 for an example in German.

sehen (V;IND;PST;3;PL) → sahen

Figure 1: Task 1 Example, German: putting the verb
”sehen” into 3rd person past tense.

Including the surprise languages the task con-
sists of 103 languages. Three differently-sized
training sets were made available, namely a low
dataset containing only 100 samples, a medium
set with 1000, and a high set with 10000 sam-
ples. Most of the languages had all three sizes (89
languages), some only low and medium (13 lan-
guages), and one language only low.

We tackled the problem with two very differ-
ent approaches. System 1 is training a classifier to
predict an abstract paradigm according to which
the inflected form is created and the system 2 is a
character-based recurrent neural network.

2 System 1 - Paradigm classification

Our first approach to solve the task is based on the
system proposed by Sorokin (2016), which partic-
ipated in the SIGMORPHON-2016 Shared Task
(Cotterell et al., 2016). It realizes the automatic
inflection of word forms via the classification of
abstract paradigms created through the method of
longest common subsequence (LCS).

The idea of abstract paradigms was introduced
in Ahlberg et al. (2014) and implies the repre-
sentation of a lemma and an inflected form as
a list of patterns, where common parts of both
words are replaced by variables. Given e.g. the
lemma write and the target form writing the ab-
stract paradigm is 1+e#1+ing. In order to create
such a paradigm the LCS of both words has to be
determined, which later will be replaced by vari-
ables. Such a representation suggests that the LCS
is the stem of both words and the symbols not in
the LCS characterize the inflection.

Unlike Sorokin (2016) and Ahlberg et al.
(2014), who applied a finite state machine to ex-
tract the LCS and Ahlberg et al. (2015) who used
an SVM classifier, we made use of a sequence
alignment function provided by Biopython1. With
the input parameters write and writing the method
returns the alignment shown in Figure 2, based on
which the LCS and later the paradigm can be con-
structed. Another system searching for best edit
pairs is Morfette (Grzegorz Chrupala and van Gen-
abith, 2008), which in contrast to our approach
first reverses the strings to find the shortest se-
quence of insert and delete commands instead of
the LCS.

If multiple alignments and hence LCS exist,
we rate the options based on a set of rules and
thereafter choose the alignment with the minimum
score. More specifically, 0.5 points are given for a

1https://github.com/biopython/biopython
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write__

writing
| | | | . . .

Figure 2: Formatted output of the pairwise2 function in
Biopython for the strings write and writing

gap (specified by ) in one of both words, 1 point is
given for each unequal character in the alignment
(specified by .), and an additional amount of 100 is
added to the score if the alignment creates follow-
ing variables in the part of the abstract paradigm
representing the lemma. The latter part is espe-
cially important as the value of subsequent vari-
ables, the common part in both words they stand
for, can’t be determined unambiguously. This
poses a problem when the target form has to be
constructed based on the variables in the lemma
paradigm. We will discuss this issue in more de-
tail in the last part of this section.

Following the procedure described above we
created an abstract paradigm for each lemma and
inflected form provided in the maximum avail-
able training set (if no high set was available we
used the medium or low one respectively) for each
language and predicted the corresponding proper
test data. Thereupon we could train a classifier
to predict the correct abstract paradigm given a
lemma and the morphosyntactic description (e.g.
N;NOM;PL) of its inflected form. Apart from
the morphosyntactic description (MSD), we used
3 prefixes, as well as 5 suffixes of the lemma as
input features for the classification. We applied
one-hot-encoding on the features, creating a sparse
matrix consisting of only 0s and 1s (Table 1) and
eliminated all pre- and suffixes that occurred less
than three times in the lemmas of the training set.
This type of feature selection is the main differ-
ence between our system and the one described in
Sorokin (2016), which apart from excluding the
features seen less than 3 times only kept 10% of
all features according to an ambiguity measure.

en sch rite ite e .. PST NOM
1 0 0 0 1 .. 1 0
0 0 1 1 0 .. 0 1
.. .. .. .. .. .. .. ..

Table 1: Abstract illustration of a feature matrix used
for the classification

In order to find the best performing classifier
we inspected several algorithms available in the

sklearn library for Python and conducted a ran-
domized search for the best hyperparameters of
each classifier. For 90 out of 103 languages a
neural network yielded the best results on the
development-set followed by the Decision Tree
(8 languages), Support Vector Machines (3 lan-
guages), Random Forest (1 language), and Logis-
tic Regression (1 language) algorithm.

After the classification of an abstract paradigm
for a lemma and a MSD, the only task left is
constructing the inflected form based on the ab-
stract paradigm and the lemma. The basic pro-
cedure for the generation is to first identify the
value of the variables in the abstract paradigm
and then to insert these letter sequences into the
abstract pardigm representing the inflected target
form. However, as previously indicated, this pro-
cedure does not always deliver an unambiguous
result. For example for the German lemma se-
hen (to see) and the MSD V;IND;PST;3;PL,
which would be the target form sahen (they saw),
the classifier should correctly predict the abstract
paradigm 1+e+2#1+a+2. Now there are two fit-
ting value combinations, which would reconstruct
the lemma, namely 1=s, 2=hen and 1=seh,
2=n, and hence two possible target forms exist
(sahen and sehan), only one of which is the right
target. The depicted example is fairly simple,
but more complex samples, especially when the
lemma paradigm consists of subsequent variables,
could produce an even larger number of possible
targets. The fraction of samples that yields more
than one combination and the number of combi-
nations if this is the case depends heavily on the
language of interest. English e.g. has only one
possible target form for 995 out of 1000 test sam-
ples and two possibilities for the remaining five,
whereas Arabic produces a much more compli-
cated result (1 combination = 5698 times, 2 com-
binations = 2677 times, 3 combinations = 1205
times, 4 combinations = 267 times, 5 combina-
tions = 43 times, 6 combinations = 1 times).

To address the problem of multiple possible
combinations we constructed a set of decision hi-
erarchy based on which one combination is cho-
sen. For each sample in the training set we
recorded the value combination that led to the in-
flected form. A combination was coded as the in-
dex of the fitting value of a variable in the list of all
possible values sorted by length. Then we could
identify the combination that most frequently led

44



i npu t_1 :  Inpu tLayer

e m b e d d i n g _ 1 :  E m b e d d i n g

inpu t_2 :  Inpu tLayer

e m b e d d i n g _ 2 :  E m b e d d i n g

dropou t_1 :  Dropou t d ropou t_2 :  Dropou t

c o n c a t e n a t e _ 1 :  C o n c a t e n a t e

bidirect ional_1(gru_1):  Bidirect ional(GRU)

repea t_vec to r_1 :  Repea tVec to r

bidirect ional_2(gru_2):  Bidirect ional(GRU)

t ime_dis t r ibu ted_1(dense_1) :  T imeDis t r ibu ted(Dense)

act ivat ion_1:  Act ivat ion

Figure 3: Sequence model for System 2

to the correct target for a specific set of variables
with a specific number of possible values for each
variable. In the example above we have two vari-
ables, 1 = [s, she] and 2 = [hen, n],
with two possible values each. For this specific
case we can now look up the index of the val-
ues that most often led to a correct target during
training and choose the combination which con-
sists of these values for the generation of the in-
flected form.

3 System 2 - Sequence Neural Model

Our second system is based on the paper by
(Makarov et al., 2017) which participated in the
SIGMORPHON2017 Shared Task (Cotterell et al.,
2017).

We used hamming distance (similar to the base-
line code given by the organizers) to align the
lemma and the expected result. On this alignment
we generated Copy, Delete and Insert oper-
ations to transfer the lemma to the inflected form
(analogous to Makarov et al. (2017, chaper 4.1)).
For each language we trained a different model
with a different charmap only consisting of the
characters in the given language. This charmap
is used for Insert operations. The sequence model
is implemented using keras and Tensorflow. See
model overview in Figure 3. The character based
lemma input and the feature matrix are both en-

coded in their own embeddings. The feature ma-
trix is a list of all possible features in all languages.
This list is the same as the one for System 1.

The hyperparameters of the model are a dropout
of 0.2, the number of features is 370, lemma in-
put and output lengths are 100, and length of fea-
ture sequence is set to 20. The 2 bidirectional
GRUs (Chung et al., 2015) have 256 hidden units.
The activation function used is softmax as the out-
put is a sequence of Stop, Copy, Delete and
Insert of a character from the charmap. Ev-
ery time the full sequence accuracy improved the
model is saved. The full sequence accuracy is de-
fined by the fact that all characters in a sequence
are correct. The optimizer used is adam (Kingma
and Ba, 2014).

4 Results

The performance of the presented systems on the
test data is shown in Table 2 and Table 3 (on
page 4). It can be seen that the first system yields
slightly better results compared to the second sys-
tem. The paradigm model outperforms the base-
line in 77 cases whereas the sequence model beats
the baseline in 53 out of 103 languages. Over-
all, both systems do fairly well compared to the
baseline in nearly all languages, whereas when the
baseline comes close the difference is only a mi-
nor fractions of the accuracy percentages. Regard-
ing the paradigm model it has to be stated that the
displayed values are probably lower than the clas-
sification accuracy, meaning that in some cases the
correct paradigm may have been predicted, but the
right target could not be constructed. We can’t
verify this assumption for the test data, but on
the development data we observed that for some
languages the classification performance was a lot
better than the final accuracy. Irish e.g. had a clas-
sification accuracy of nearly 78% for the abstract
paradigms, but the final performance amounted
only to ca. 68% due to the mistakes made dur-
ing the target creation. Improving the method of
handling multiple possible targets could therefore
further enhance the performance of the paradigm
model.

Unsurprisingly, languages that provided lower
numbers of data size don’t perform very well over-
all.

For comparison of the error intensity of the two
systems we calculated the Levenshtein distance
between the system results and the expected in-
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Figure 4: Levenshtein distance histogram for Persian.
Errors left for system 1; right for system 2. Distances
without error are removed.

language data size system 1 system 2 baseline
cornish medium 2 32 12
greenlandic medium 54 82 72
karelian medium 62 98 42
kashubian medium 76 60 68
kazakh medium 44 86 50
khakas medium 96 96 84
mapudungun medium 90 98 82
middle-high-german medium 84 52 54
middle-low-german medium 76 30 38
murrinhpatha medium 54 4 0
norman medium 28 34 46
old-irish medium 8 8 16
scottish-gaelic medium 70 50 50
telugu low 72 46 70
tibetan medium 44 42 36
turkmen medium 96 94 68

Table 2: Results for test data compared to baseline
(medium and low)

flected forms. Of course if the system has a better
accuracy on the task, it makes fewer errors than the
other system. This calculation is not very conclu-
sive, but allows for some basic predicates, see Fig-
ure 4 for a histogram of error distributions. When
both systems are equally strong the sums of the
distances are not that divergent. For example for
Persian the sum of Levenshtein distances for sys-
tem 1 is 919 and for system 2 it is 804 but for
Georgian the distance for system 1 is 40 and for
system 2 it is 55.

5 Conclusion

Our goal is to improve our morphology system
component in our Natural Language Generation
SaaS (Weißgraeber and Madsack, 2017). The two
systems described herewithin compete against a
handcrafted morphology and a reasonable lexicon.
The handcrafted morphology and the lexicon is al-
ways better on very regular POS types (i.e. Ger-
man adjectives). So all three systems (the two
described in this paper and the handcrafted one)
are evaluated for every language and POS type,
and can be combined into a best-of-breed selection
scheme by preferring the most appropriate system
for each POS type and language combination.

language data size system 1 system 2 baseline
adyghe high 99.0 99.6 91.6
albanian high 88.9 40.9 79.5
arabic high 58.2 34.0 4.1
armenian high 90.3 73.4 86.6
asturian high 95.3 91.1 95.2
azeri high 94.0 100.0 70.0
bashkir high 99.8 99.8 90.7
basque high 8.2 5.4 7.3
belarusian high 47.3 52.8 41.0
bengali high 96.0 78.0 81.0
breton high 80.0 85.0 73.0
bulgarian high 88.7 75.6 89.0
catalan high 95.9 92.1 95.7
classical-syriac high 100.0 99.0 97.0
crimean-tatar high 98.0 98.0 95.0
czech high 89.2 83.0 90.6
danish high 92.7 90.4 87.0
dutch high 85.1 88.6 87.7
english high 95.8 96.5 95.9
estonian high 87.7 64.1 78.0
faroese high 79.6 76.8 76.1
finnish high 77.0 52.0 78.0
french high 85.3 79.6 83.0
friulian high 97.0 99.0 96.0
galician high 96.7 95.0 95.1
georgian high 95.1 95.4 93.9
german high 82.3 82.3 81.1
greek high 78.2 54.8 78.3
haida high 93.0 100.0 66.0
hebrew high 84.3 54.5 53.7
hindi high 100.0 80.0 93.0
hungarian high 76.9 80.9 68.8
icelandic high 80.9 79.3 76.9
ingrian high 44.0 80.0 46.0
irish high 67.2 34.1 53.0
italian high 94.2 63.7 77.5
kabardian high 99.0 99.0 86.0
kannada high 90.0 97.0 66.0
khaling high 72.0 17.1 53.7
kurmanji high 92.6 87.8 92.9
ladin high 93.0 87.0 92.0
latin high 46.2 37.2 47.6
latvian high 93.2 90.2 92.8
lithuanian high 70.6 52.0 64.2
livonian high 82.0 76.0 67.0
lower-sorbian high 94.2 95.5 88.1
macedonian high 92.7 94.2 91.2
maltese high 63.0 28.0 16.0
middle-french high 97.0 95.4 95.1
navajo high 43.6 6.8 0.0
neapolitan high 94.0 95.0 95.0
northern-sami high 61.7 75.5 62.3
north-frisian high 80.0 33.0 37.0
norwegian-bokmaal high 90.8 87.2 91.0
norwegian-nynorsk high 82.8 88.0 74.8
occitan high 94.0 92.0 96.0
old-armenian high 84.9 82.2 79.2
old-church-slavonic high 92.0 88.0 80.0
old-english high 69.3 34.3 40.9
old-french high 80.8 82.0 80.7
old-saxon high 87.3 54.0 60.1
pashto high 92.0 78.0 72.0
persian high 63.7 62.6 80.7
polish high 87.6 82.9 87.1
portuguese high 97.3 94.6 96.7
quechua high 99.8 98.8 95.1
romanian high 82.6 62.4 79.8
russian high 88.0 76.1 86.5
sanskrit high 92.8 93.7 80.6
serbo-croatian high 87.4 69.1 83.0
slovak high 91.5 91.1 83.1
slovene high 7.0 90.9 79.7
sorani high 76.0 27.6 63.6
spanish high 94.4 81.3 92.4
swahili high 98.0 1.0 0.0
swedish high 88.0 88.5 84.7
tatar high 99.0 97.0 95.0
turkish high 87.9 95.9 73.2
ukrainian high 93.1 87.2 86.3
urdu high 99.3 83.7 95.9
uzbek high 100.0 99.0 96.0
venetian high 98.5 97.6 93.0
votic high 37.0 66.0 34.0
welsh high 82.0 88.0 72.0
west-frisian high 82.0 67.0 67.0
yiddish high 97.0 99.0 94.0
zulu high 93.8 2.5 0.2

Table 3: Results for test data compared to baseline
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Of course, all three systems have pros and
cons. The handcrafted one fails on completely
new words (or even rare words), that are not reg-
ularly inflected. The paradigm system is in some
languages better compared to the sequence model
and the errors of the paradigm system are not that
disturbing, since they are usually more plausible,
whereas the sequence model tends to make more
arbitrary errors.

On error the sequence model may return for ex-
ample something like this: gerksent for murksen
V.PTCP;PST (German, correct form: gemurkst).
An examplary major error for the paradigm system
would be kiefen for kaufen V;PST;3;PL (correct
form: kauften), where a native speaker can see the
relation to the inflection of laufen, where the past
form is liefen. This kind of errors are greatly re-
duced by training with a lot more data.

In the future we will try to improve especially
the sequence model for the languages we use on
our platform.
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