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Abstract

This paper presents the system submitted
by IPS-WASEDA University for CoNLL-
SIGMORPHON 2018 Shared Task 1: Type
level inflection. We develop a system based
on a holistic approach which considers whole-
word form as a unit, instead of breaking them
into smaller pieces (e,g. morphemes) like the
baseline systems does. We also implement an
encoder-decoder model which has recently be-
come the new standard in many natural lan-
guage processing (NLP) tasks. The results
show that the neural approach outperforms the
baseline and our holistic approach on bigger
resources settings. The use of data augmenta-
tion helps to improve the performance of the
model in lower resources settings, although
it still cannot beat the other systems. In the
end, for the low resources setting, our holistic
approach performs best in comparison to the
baseline and the neural approach (even with
data augmentation).

1 Introduction
Lemma: illustrate
Target MSDs:  V;V.PTCP;PRS
Target form: illustrating
Figure 1: An example of inflection task in English:

given the lemma illustrate, we are asked to generate
the present participle form illustrating.

We address the problem of inflection task: given
a lemma (e.g. the dictionary form of a word) and
the target form’s morphosyntactic descriptions
(MSD), generate a target inflected form. Figure 1
shows an example of inflection task in English.

Many NLP tasks, like machine translation, re-
quire analysis and generation of morphological
word forms, even previously unseen ones. Dif-
ferent languages exhibit different richness of mor-
phology. This makes the task an interesting prob-
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lem. Dreyer and Eisner (2011) show that data
sparsity is a common issue for language with rich
morphology which usually leads to poor generali-
sations in machine learning.

There are three main approaches at the problem:

o The hand-engineered rule-based approach
offers a high accuracy but costs time during
construction. It usually faces the world cov-
erage problem and is language-dependent.

The supervised approach automatically in-
duces the rules from a given training data
and applies the best rules to generate the tar-
get forms by using some classification tech-
niques (Ahlberg et al., 2015). It is practically
language independent and relatively easier to
build. However, the data sparsity is an issue.

The neural approach is the model which
triumphed in the task recently, especially
the RNN encoder-decoder model (Kann and
Schiitze, 2016; Makarov et al., 2017). Some
drawbacks of this approach are very long
training times and the need for a large amount
of training data.

This paper describes the systems we developed
for the CoNLL-SIGMORPHON 2018 Shared
Task 1 (Cotterell et al., 2018). The recent success
of neural approach encouraged us to implement
a sequence-to-sequence (seq2seq) model to solve
the task. Knowing that the neural approach tends
to need a large amount of training data, we also
consider another approach as a back-off, which is
a holistic approach. We treat the task of generat-
ing target forms as the task of solving analogical
equations between words.

2 Languages and data

Task 1 consists of 93 different languages. 10 addi-
tional surprise languages are given in the middle of
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low medium high

Feature Avg Min Max | Avyg Min Max | Avg Min Max
# of characters (train) 29 14 51 33 14 63 40 19 86
# of unseen characters (dev) 4 0 21 1 0 8 0 0 4
# of lemmata (train) 77 5 100 | 487 5 989 | 2,308 15 8,643
# of unseen lemmata (dev) 414 0 984 | 295 0 960 98 0 743
# of MSDs (train) 22 5 43 23 5 48 25 7 48
# of unseen MSDs (dev) 1 0 8 0 0 2 0 0 1
# of MSD patterns (train) 45 4 95 94 4 726 126 5 1,649
# of unseen MSD patterns (dev) 44 0 695 8 0 414 0 0 6
# of rules (train) 98 26 100 | 838 147 1,000 | 5,642 815 9,842
# of unseen rules (dev) 561 12 997 | 504 30 995 398 22 971

Table 1:
explained in Section 5.3.1.

the development phase. The languages vary from
Germanic, Celtic and Slavic languages, which are
mainly used in Europe, to Indo-Aryan, Iranian,
etc. The dataset consists of lines of triplet. A
triplet consists of a lemma, a target form, and a tar-
get MSD pattern separated by tabulation charac-
ters. The MSDs are morphological tags presented
in Unimorph Schema (Kirov et al., 2018).
The provided resources are categorized into:

e train: this dataset is the dataset which can
be manipulated by the participant to solve the
task. It consists of three different sizes:

low 100 word forms
medium : 1,000 word forms
high  : 10,000 word forms

Telugu has only the low training dataset.
Some languages have only low and medium
training datasets: Cornish, Greenlandic,

Inggrian, Karelian, Kashubian, Kazakh,
Khakas, Mapudungun, Middle-Low-
German, Middle-High-German, Murrinh-

patha, Norman, Old-Irish, Scottish-Gaelic,
Tibetan, Turkmen.

e dev: this dataset is given to evaluate the per-
formance of our system during the develop-
ment phase. It consists of 1,000 word forms.

o test: this dataset is given at the test phase.
This dataset does not contain the target forms.
It consists of 1,000 word forms, similar to dev
dataset.

For some languages, the size of the dataset is
smaller than the one mentioned above.

Statistics on the dataset given. Number of rules and unseen rules are based on rule extraction method

Let us now look at some statistics on the given
dataset shown in Table 1. Overall, we can observe
a non-decreasing phenomenon from low to high
for all of the number of pieces of information (fea-
tures) found in the training dataset. On the oppo-
site, we found a non-increasing pattern for the un-
seen information contained in the dev dataset rel-
atively to training dataset. This shows that bigger
resources gradually cover the unseen data encoun-
tered in the smaller ones.

Norman, Telugu, Cornish, and Uzbek are lan-
guages with a smaller number of lemmata in the
training dataset. However, these languages tend
to have less, even zero for some languages, un-
seen lemmata relatively to the dev dataset. They
also have a smaller number of unseen charac-
ters. On the other hand, languages like Finnish,
Russian, English, French, and German have the
biggest number of unseen lemmata despite hav-
ing the biggest number of lemmata in the training
dataset compared to other languages.

Let us now turn to the number of MSDs and
MSD patterns. These numbers can be interpreted
as how large or complex the paradigm for that par-
ticular language is. Basque, Quechua, Turkish,
Zulu are languages with a higher variety of unique
MSD patterns. Basque, in particular, has astonish-
ingly more than 1,600 patterns in comparison to
the average of around 126 patterns per language
in high datasets. The same thing can be seen for
low and medium data. Almost all of the lines are
associated with different MSD patterns in the low
training dataset. Furthermore, Basque also topped
as the language with the highest number of unseen
MSD patterns for all dataset sizes.
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(substring, replacement, #_of_occurrences)
g’ ’-ing’ 1,121
T-e’ ’-ing’ 832

-ize’ *-izing’ 162
"show’ ’showing’ 1

Figure 2: Excerpt of affixes remembered by the base-
line system from the training data. It memorizes all
changes from lemma into target form in various char-
acter length.

We also count the number of rules found in the
dataset (see the last two rows in Table 1). These
rules are not the morphological rules defined by
linguists but the one extracted from the method
explained in Section 5.3.1. For all languages and
all datasets, we count how many unique rules can
be extracted and relatively unseen to the respec-
tive dev dataset. Telugu, Tatar, and Swabhili are the
languages with the lowest number of unseen rules.
We expect to have good performance in these lan-
guages because it means that most of the trans-
formations from lemma into the target form are
present in the training data.

3 Baseline system: morpheme-based

The CoNLL-SIGMORPHON 2018 organizers
provide a baseline system which is a morpheme-
based approach. For each language, it determines
whether the language is biased towards prefixing
or suffixing. The string will be reversed if the lan-
guage is biased to prefixing.

For each instance in the training data, it aligns
the lemma and target form using Levenshtein dis-
tance to cut the word into three categories of can-
didate: prefix, stem, and suffix. Prefixing and
suffixing rules are then extracted and grouped ac-
cording to the given MSD pattern. The rules are
stored as a knowledge in a list of triplets: sub-
string to replace, string replacement, and the num-
ber of occurrences. Figure 2 illustrates how the
baseline system stores the suffixing rules for En-
glish present participle.

In the generation step, it filters the candidate
rules by the given target MSD pattern. First, the
longest common suffixing rule with the highest
number of occurrences is applied. Then the most
frequent prefixing rule is applied in the succession
to generate the predicted target form.
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4 Holistic approach

Another view on the problem is to see that word
forms are connected with other word forms sys-
tematically. Based on this observation, we can
treat the inflection task as the task of solving ana-
logical equation on words':

lemma, : form; :: lemma, : * = x = form,

4.1 Proportional analogy

Analogy is a relationship between four objects: A,
B, C,and D usuallynotedas A:B: C:D .1t
states that A is to B as C'is to D where the ratio
between A and B is the same as the ratio between
C and D. Here, we consider analogy as a possi-
ble way to explain derivation between words as it
is already used from the ancient Greek and Latin
grammatical tradition up to recent works on com-
putational linguistics, like (Hathout, 2008, 2009).

Various formalisations of analogy have been
proposed in (Yvon, 2003; Lepage, 2004; Stroppa
and Yvon, 2005). In this work, we select the fol-
lowing definition.

d(A, B) = d(C, D)

d(A,C) =d(B,D)
A:B:C:D= ’

|A|a + |D‘a = ‘ |a + |C|a,

Ve

ey
We can construct analogical grids (Fam and
Lepage, 2017b, 2018) to give a compact view of
different analogies that emerge from a set of words
contained in a corpus. An analogical grid is a MxN
matrix of words. The special property of this ma-
trix is that any four words from two rows and two
columns is an analogy (see Formula 2).

P11:P12: R

1.p2. ... .pm V(i k) € {1,...,n}?,
P2 . 2 - R .P2 A A

. = V(5,0 e{L,...,m}?

Do : Jj . pl. pi.pl
pl.p2. ... . pm P P/ PPy

2
4.2 Solving analogical equation to generate
word form

In contrast to the baseline system which uses a
morpheme-based approach, our holistic approach

! Both lemma, and form; are a pair of lemma and target
form found in the training data; lemma, is the lemma given
in the question; and form, is the predicted target form.

2 d(A, B) stands for the value of the LCS edit distance
between two strings A and B that uses only insertions and
deletions with cost of 1. |A|. is the number of occurrences of
character c in string A.



Training data
lemma inflected morph. features
show showed V:PST
show showing V:V.PTCP;PRS
release released V:PST
release releasing V:V.PTCP;PRS
schmear  schmeared  V:PST
LEMMA V:V.PTCP;PRS V:PST
release releasing released
revise revising revised
age aging aged
bake baking
show showing showed
enter entered
reason reasoning reasoned
schmear schmeared

Question
Lemma: illustrate
Target MSDs:  V;V.PTCP;PRS

release : releasing :: illustrate : x
=
x = illustrating

show : showing :: illustrate : x
=

S .

Figure 3:

How to generate target form (present participle) of the given lemma illustrate as solving analogical

equation. Different analogical grids may generate different target forms.

does not break words in pieces (Singh, 2000;
Singh and Ford, 2000; Neuvel and Singh, 2001).
We generate the target form by solving analogi-
cal equation based on the evidence observed in the
given training data.

First, the relevant analogical grid is selected ac-
cording to the given target MSD pattern. If sev-
eral candidates of analogical equation exist, we
use some heuristic features to select the analog-
ical equation. These heuristics are edit distance,
longest common subsequence, longest common
suffix, and longest common prefix, between the
given lemma and lemmata existed in the training
dataset. If there are still several candidates after
using heuristic features, we solve all of the possi-
ble analogical equations to generate all the possi-
ble predicted target form. The most frequent an-
swer is chosen as the predicted target form.

For example, Figure 3 illustrates how to gener-
ate the target form for the example given in Fig-
ure 1. Let us say that we are able to get two ana-
logical grids according to the given MSD pattern.
We construct the analogical equation as follows:

lemmay; : form; :: illustrate : form,

taken from the first and second column of the ana-
logical grids according to the given MSD pattern.
Based on longest common suffix, we choose to use
the one in the fop which produces the word form

36

illustrating instead of the bottom one which pro-
duces illustrateing.

5 Neural approach

Following the recent success of neural approach
in previous evaluation campaign, we implement a
common architecture of seq2seq model. We treat
the inflection task as the problem of translating the
given target MSDs and lemma into target form.
Thus, the input string for the example given in Fig-
ure 1 will be as follows.

V VPTCP PRS i Il u s trat.e

5.1 Seq2seq model

Our model is a standard seq2seq model with at-
tention mechanism inspired from the one which is
used for machine translation (Luong et al., 2015).
The difference is that we consider a character or
MSD as one token, instead of a word. Each token
(character) is represented by a continuous vector
representation learned in the embedding layer.

We use a bi-directional Gated Recurrent Unit
(GRU) cell (Cho et al., 2014) which is a vari-
ation of Long Short-Term Memory (LSTM)
cell (Hochreiter and Schmidhuber, 1997) that tries
to solve the vanishing gradient problem. Our de-
coder is two layers of uni-directional GRU cell
with attention mechanism. There are various im-



plementations of attention mechanism like (Bah-
danau et al., 2015; Luong et al., 2015). In this
work, we use the one that has the weight normal-
ization (Salimans and Kingma, 2016) to help the
model converges faster.

To handle the unseen tokens, we remember
them in a First-In-First-Out (FIFO) list and replace
them with a special token <UNK> before feeding
them into our model. These special tokens are re-
verted back to the character contained in the list
after the decoding phase.

5.2 Hyperparameters

We fixed our hyperparameters for all languages
and amounts of resources after doing some prelim-
inary experiments. The number of hidden units is
fixed to 100 for each layer in the encoder and de-
coder. The size of the embedding is 300. We op-
timize the model using ADAM (Kingma and Ba,
2015) with learning rate of 5 x 10* during train-
ing. To make the training process faster, we use
mini-batch size of 20.

We trained the model using early-stop mecha-
nism of 30 epochs without improvement on valida-
tion data which is a set of lines randomly selected
from the original training data.

5.3 Simple data augmentation

Preliminary results show that the neural approach
suffers from the lack of data. To tackle this
problem, we perform a simple data augmenta-
tion which artificially creates additional training
data from evidences seen in the original train-
ing data. Additional training data is expected
to bring improvement to the performance of our
model, especially on low data situation (Kann and
Schiitze, 2017; Bergmanis et al., 2017; Silfverberg
etal., 2017; Zhou and Neubig, 2017; Nicolai et al.,
2017).

5.3.1 Rule extraction

We find the longest common substring between
lemma and target form. The left part is assumed as
prefix candidate, while the right part is assumed as
suffix candidate. Figure 4 shows several examples
of rules extracted from the training data in three
different languages.

To capture situational affixing where the next
or previous character influences the changes, we
added the first character from the longest common
substring to the extracted prefix candidate and the
last character for the suffix candidate. This, for
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e Insertion

Language: Irish
Lemma: fotaidhé-oid
Target MSDs: N;NOM;PL;DEF
Target form: na fotaidhé-oidi
prefix root suffix
lemma fotaidhé-oid
target form na | fotaidhé-oid i
e Substitution
Language: French
Lemma: amoindrir
Target MSDs:  V;SBJV;PST;3;SG
Target form: amoindrit
prefix root suffix
lemma amoindr ir
target form amoindr it

e Insertion and substitution at the same time

Language: German
Lemma: einschliefen
Target MSDs:  V;SBJV;PST:2;SG
Target form: schlossest ein
prefix | root suffix
lemma ein | schl ieflen
target form schl | Ossest ein

Figure 4:  Illustrations of rules extraction for data
augmentation: simple insertion (Irish); substitution
(French); insertion and substitution at the same time
(German).

example, happens for regular past form in English
where you add only -d as suffix for lemmata ended
with e, instead of adding -ed

At a glance, it looks similar to how the base-
line system extracts the affix rules. However, we
only memorize the left (prefix candidate) and right
part (suffix candidate), not all of the possible affix
combinations with the stem as the baseline sys-
tem does. It simplifies the rules extraction, and
thus, gives us a smaller number of extracted rules
in comparison to the baseline system.

5.3.2 Creating additional training data

For each rule which appears less than 10 times in
the training data, we artificially create 5 instances
of additional training data. The additional training



Accuracy
Method low | medium| high
Baseline 39.3 63.4 77.1
Holistic 39.6 64.5 77.3
Seq2seq 13.1 71.3 90.9
Seq2seq+Aug 36.9 78.5 89.1

Table 2: Average accuracy scores on dev dataset.

data is constructed by using a random string with
the length of random integer between 1 to 4. Here,
we do not employ any language model to asses the
probability of the character sequence like the one
described in (Silfverberg et al., 2017). For exam-
ple, we can create the following additional training
instance for the examples given in Figure 4. Char-
acters written in boldface are patterns from the ex-
tracted rules.
Irish:  fbsod = na fbsodi
French: aifrir = aifrit
German: einsrafiliefen —> sraftlossest ein

6 Experiment Protocol

We evaluate the performance of the systems using
average on accuracy. Accuracy is the ratio of cor-
rectly predicted target forms by the total number
of questions. Please refer to Formula 3 for the ex-
act definition®.

sz\i 1 6(predicted; = correct;)

100
i X

3)

We carry experiments using training dataset and

measure the accuracies on dev dataset for all the

languages for all training dataset sizes. The sys-

tem which has the highest score will be picked as

our representative system in the test phase for that
particular language and dataset size.

Accuracy =

7 Results

Table 2 shows the average accuracy in all lan-
guages for each of the systems. Our holistic ap-
proach is able to perform as good as the base-
line system, even slightly better under all of the
three dataset sizes. This is the same observation
found in (Fam and Lepage, 2017a) on previous
year dataset.

The results show that the neural approach us-
ing seq2seq model left behind both the baseline

3 N is the total number of questions. §(A = B) equals to
1 if the two strings A and B are same, or else it is 0.
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system and the holistic approach on medium and
high data situation. The gap is around 15 accu-
racy points. However, the lack of training data
exhibits the drawback of the neural approach as
it performs poorly under low data situation. Fur-
thermore, the use of data augmentation improves
the performance in most cases. We can see an im-
provement of around 3 times better accuracy on
low dataset although it still cannot overcome the
performance of either the baseline nor the holistic
approach.

The baseline system and the holistic approach
shine over the neural approach particularly for lan-
guages like Albanian, Czech, Haida, Neapolitan,
Norwegian-Bokmaal, and Uzbek. Our seq2seq
model seems to struggle even on high data sit-
uation for some of these languages. On the
other hand, our seq2seq model gets better accu-
racy than the baseline system or holistic approach
even on low data situation in some languages
like Azeri, Basque, Breton, Cornish, Greenlandic,
Hindi, Karelian, Khaling, Maltese, Middle-Low-
German, Middle-High-German, Murrinhpatha,
Norman, North-Frisian, Persian, Swahili, Turkish,
Turkmen, Welsh, Zulu.

The same trend can be seen on the results for
similar languages, like Romance (Catalan, Gali-
cian, Portuguese, and Spanish), Semitic (Arabic
and Hebrew), and Baltic (Latvian and Lithuanian)
languages. The baseline system leads the score on
low dataset size before started to be outperformed
by our seq2seq model on the dataset with big-
ger sizes. For other language families like Indo-
Aryan (Bengali, Hindi, Urdu), Finnic (Estonian
and Finnish), and Turkic (Turkish and Turkmen)
languages, our seq2seq model steadily leads the
score for all dataset sizes. Please refer to Table 3
for detail results per language.

8 Discussion

The results for the baseline system and our holistic
approach show the absence of necessity to break
down the words into morpheme. The derivation
between lemma and target form can also be ac-
quired through analogy. However, selecting the
candidates for constructing the analogical equa-
tion is a crucial thing. Thus, we need to improve
our selection method or use better heuristic fea-
tures. To handle the problem of unseen MSD pat-
terns, the use of formal concept analysis (Ganter
and Wille, 1999) is worth to consider.



Accuracy

Language low medium high

B H S S+Aug B H S  S+Aug B H S S+Aug
adyghe 598 71.6 355 73.8 | 855 88.1 88.0 89.5 | 948 93,6 95.6 95.2
albanian 227 245 0.6 11.6 | 60.2 71.5 4438 652 | 772 864  81.1 80.5
arabic 229 247 0.1 21.0 | 37.0 462 61.1 679 | 428 59.1 93.0 91.7
armenian 379 357 1.2 342 | 724 769 765 83.7 | 88.6 89.6 94.1 90.9
asturian 598 58.6 19.7 53.1 | 879 88.0 874 89.7 | 955 954 978 97.2
azeri 21.0 28.0 13.0 37.0 | 480 57.0 69.0 67.0 | 69.0 720 81.0 82.0
bashkir 388 386 115 359 | 738 71.8 87.0 81.0 | 89.1 86.7 94.1 92.6
basque 0.1 0.2 1.9 8.6 1.9 25 670 79.2 84 98 974 96.9
belarusian 72 107 46 57 225 253 446 554 | 414 423 853 80.9
bengali 440 43.0 140 49.0 | 75.0 74.0 94.0 96.0 | 840 84.0 98.0 99.0
breton 200 17.0 18.0 61.0 | 51.0 59.0 83.0 88.0 | 550 61.0 91.0 92.0
bulgarian 327 330 43 49.8 | 744 769 70.6 82.1 | 90.6 89.5 954 94.3
catalan 543 512 46 326 | 822 812 85.0 923 | 943 942  98.1 95.9
classical-syriac 89.0 87.0 41.0 72.0 | 98.0 98.0 94.0 98.0 | 98.0 97.0 98.0 100.0
cornish 20 00 75 225 | 40 20 475 57.5
crimean-tatar 53.0 66.0 16.0 63.0 | 740 76.0 95.0 89.0 | 93.0 92.0 99.0 98.0
czech 38.1 384 1.6 26.1 | 788 794 51.1 76.6 | 89.0 89.5 855 86.3
danish 574 652 30.2 53.0 | 78.1 79.7 743 69.8 | 889 88.8 913 85.8
estonian 226 217 07 284 | 624 60.6 60.0 703 | 762 77.0  90.6 88.0
faroese 356 383 33 16.6 | 61.0 63.0 51.0 60.6 | 742 745 798 74.5
finnish 154 154 07 18.7 | 435 433 426 69.9 | 793 772  84.1 82.0
friulian 51.0 48.0 25.0 49.0 | 86.0 85.0 89.0 94.0 | 940 93.0 98.0 99.0
galician 525 519 9.1 30.7 | 823 812 779 88.9 | 937 932 984 97.4
georgian 71.8 705 172 589 | 89.7 90.0 829 925 | 93.8 940 985 98.4
greek 277 270 20 120 | 61.0 63.0 443 56.6 | 774 716 817 83.3
greenlandic 36.0 420 275 575 | 740 60.0 75.0 85.0
haida 43.0 280 50 23.0 | 59.0 59.0 50.0 520 | 71.0 68.0  53.0 52.0
hebrew 279 298 4.1 13.8 | 40.0 49.0 76.3 76.3 | 559 60.7  98.1 97.2
hindi 349 31.8 239 65.6 | 86.1 839 943 95.1 | 93.6 935  98.6 97.5
hungarian 149 220 09 12.1 | 399 46.7 473 53.1 | 687 69.7 715 63.5
icelandic 358 381 65 149 | 604 63.6 523 613 | 772 77.1 84.3 78.7
ingrian 200 12.0 275 20.0 | 46.0 42.0 80.0 75.0
irish 31.8 357 37 209 | 447 492 426 57.7 | 543 58.1 83.0 77.2
italian 433 444 33 413 | 705 831 813 91.1 | 77.2 93.1 97.9 954
kabardian 78.0 74.0 51.0 83.0 | 90.0 87.0 95.0 95.0 | 90.0 86.0  96.0 96.0
karelian 40.0 34.0 200 67.5 | 480 48.0 95.0 97.5
kashubian 56.0 64.0 125 575 | 740 68.0 85.0 92.5
kazakh 440 50.0 525 475 | 640 62.0 725 77.5
khakas 36.0 48.0 275 65.0 | 920 92.0 85.0 92.5
khaling 39 1.6 4.6 112 | 184 17.8 773 86.4 | 53.8 480 99.6 98.4
kurmanji 82.1 858 0.0 584 | 847 88.9 837 882 1 919 914 928 914
ladin 59.0 53.0 30.0 520 | 85.0 86.0 88.0 95.0 | 920 91.0  98.0 98.0
latin 160 126 0.8 54 ] 368 285 252 362 | 456 37.1 70.1 55.5
latvian 534 509 4.1 183 | 858 86.6 60.5 824 1 920 912 948 94.8
lithuanian 235 194 08 56 | 53.0 503 337 51.6 | 647 63.6  86.2 84.1
livonian 250 27.0 1.0 27.0 | 470 470 69.0 77.0 | 580 59.0 92.0 92.0
lower-sorbian 307 358 29 193 | 704 793 64.1 814 | 88.1 879 952 94.8
macedonian 514 474 5.1 37.7 | 83.8 882 757 89.8 | 932 935 964 95.3
maltese 11.0 190 0.0 23.0 | 21.0 29.0 87.0 93.0 | 250 29.0 97.0 98.0
mapudungun 62.0 60.0 575 95.0 | 80.0 88.0 975 97.5
middle-french 787 76.1 10.1 67.2 | 90.8 913 89.2 93.0 | 958 95.1 98.8 96.3
middle-high-german | 44.0 48.0 35.0 67.5 | 540 60.0 975 97.5
murrinhpatha 2.0 4.0 25.0 35.0 | 140 100 95.0 90.0
navajo 143 146 20 13.8 | 31.8 312 358 415 | 400 405 825 76.0
neapolitan 83.0 81.0 25.0 65.0 | 940 930 0910 95.0 | 99.0 98.0 95.0 95.0
norman 38.0 34.0 45.0 60.0 | 60.0 520 775 80.0
northern-sami 17.8 13.1 2.1 11.6 | 388 350 432 60.7 | 645 624 934 88.0
norwegian-bokmaal | 69.0 73.2 13.8 548 | 79.8 81.0 78.0 76.5 | 90.6 90.3 88.9 77.0
norwegian-nynorsk 514 537 119 376 | 61.6 61.1 525 57.0 | 7477 751 84.0 75.8
occitan 790 77.0 15.0 55.0 | 87.0 87.0 94.0 98.0 | 940 92.0 100.0 100.0
old-armenian 27.6 28.8 1.5 148 | 649 68.0 489 69.3 | 76.7 79.3 86.0 85.1
old-church-slavonic | 34.0 32.0 11.0 29.0 | 65.0 65.0 74.0 780 | 640 570 920 96.0
old-french 304 276 49 354 | 613 652 65.0 689 | 79.7 795 875 84.8
old-irish 120 120 5.0 50 | 200 18.0 20.0 32.5
old-saxon 253 190 27 52 | 417 356 63.0 68.0 | 60.5 56.0 953 94.6
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Accuracy

Language low medium high

B H S  S+Aug B H S  S+Aug B H S  S+Aug
pashto 41.0 41.0 8.0 210 | 71.0 73.0 69.0 75.0 | 77.0 77.0 100.0 98.0
persian 271 293 2.8 357 | 67.3 71.7 821 85.7 | 81.0 837 96.0 95.4
portuguese 65.7 643 6.9 310 | 922 918 782 925 | 97.1 972 97.6 97.5
quechua 17.1 117 32 31.2 | 71.5 521 52.0 559 | 952 89.6 56.3 56.0
romanian 4.1 428 32 303 | 702 73.0 597 723 | 80.4 785 84.6 83.1
sanskrit 300 375 4.8 4.7 | 579 718 679 80.7 | 787 834 88.0 88.3
scottish-gaelic 42.0 38.0 250 50.0 | 46.0 440 80.0 90.0
serbo-croatian 22.8 209 1.3 254 | 673 654 529 74.1 | 840 85.0 85.2 86.9
slovak 37.7 463 33 238 | 71.0 729 613 70.6 | 825 828 90.0 89.9
slovene 352 374 137 259 | 735 752 634 86.0 | 873 857 95.2 93.8
sorani 20.5 18.8 1.2 156 | 528 52.1 603 714 | 643 60.1 88.0 87.7
spanish 624 57.7 4.9 46.7 | 859 849 843 90.3 | 91.5 93.6 97.1 95.8
swahili 29.0 29.0 27.0 66.0 | 71.0 76.0 94.0 93.0 | 720 82.0 100.0 100.0
swedish 55.6 628 7.8 399 | 752 768 622 68.0 | 858 85.6 86.1 76.2
tatar 57.0 68.0 17.0 530 | 85.0 88.0 94.0 87.0 | 91.0 91.0 100.0 99.0
telugu 80.0 80.0 40.0 82.5
tibetan 54.0 42.0 325 425 | 480 500 375 52.5
turkish 11.8 123 1.1 28.5 | 32.1 40.1 714 683 | 723 744 91.8 87.0
turkmen 300 540 375 60.0 | 700 76.0 875 92.5
ukrainian 394  44.6 6.7 233 | 7277 71.8 553 713 | 84.8 843 89.9 87.1
urdu 299 274 249 578 | 86.8 857 915 95.0 | 96.0 957 97.4 97.6
uzbek 53.0 35.0 47.0 74.0 | 93.0 920 78.0 78.0 | 93.0 94.0 78.0 78.0
venetian 69.0 683 16.6 423 | 895 89.0 091.6 93.1 | 93.7 921 99.6 99.0
votic 15.0 120 11.0 13.0 | 38.0 39.0 68.0 76.0 | 41.0 39.0 78.0 78.0
welsh 26.0 23.0 11.0 30.0 | 550 56.0 83.0 88.0 | 71.0 70.0 95.0 95.0
west-frisian 47.0 44.0 8.0 40.0 | 66.0 640 86.0 93.0 | 66.0 62.0 91.0 95.0
yiddish 70.0 68.0 6.0 60.0 | 80.0 79.0 83.0 92.0 | 88.0 83.0 98.0 99.0
zulu 192 184 11.0 333 | 565 658 81.6 86.7 | 71.0 81.1 99.2 91.7
dutch 532 542 7.8 241 | 720 728 735 794 | 889 873 96.2 95.1
english 712 81.7 285 564 | 90.8 914 857 88.0 | 949 947 95.6 93.6
french 56.8 545 39 37.7 | 741 737 719 71.6 | 81.9 81.0 83.7 73.5
german 514 542 107 115 | 742 778 66.0 71.1 | 83.1 858 88.4 82.0
kannada 31.0 36.0 9.0 27.0 | 580 64.0 83.0 90.0 | 66.0 62.0 95.0 95.0
middle-low-german | 20.0 18.0 225 25.0 | 340 30.0 90.0 92.5
north-frisian 23.0 23.0 11.0 27.0 | 330 320 85.0 82.0 | 31.0 32.0 94.0 95.0
old-english 16.7 118 4.3 12.7 | 282 221 383 533 | 442 358 83.8 79.5
polish 40.7 428 1.8 139 | 73.6 769 60.0 76.1 | 88.4 88.6 88.1 89.5
russian 414 41.6 1.8 115 | 757 1718 544 76.5 | 852 857 89.2 87.7
Average 393 39.6 13.1 369 | 634 645 713 785 | 77.1 713 90.9 89.1

Table 3: Accuracy scores on development set (dev) in each language for baseline system (B), holistic approach(H),
our seq2seq model without data augmentation (S) and with data augmentation (S+Aug).

The improvement shown by using data augmen-
tation seems promising. One may think to in-
crease the amount of the artificially created ad-
ditional training data. However, there is a trade-
off between performance and training time. An-
other thing to consider is how many more addi-
tional training data should be created. We can see
that the data augmentation seems not to improve
the performance on high data situation anymore.
In addition, the current method to extract the affix
rules is very simple. Although it may capture cir-
cumfixes, it is still strongly biased to prefixing and
suffixing only. A better method is expected to also
capture other phenomena, such as parallel infix-
ing (Arabic), repetition (Greek), and reduplication
(Malay, Indonesian).
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9 Conclusion

We developed several systems for morphological
inflection task. The first one is based on a holistic
approach. We generate the target forms by solving
analogical equations on words. The second one is
a seq2seq neural network model. A simple data
augmentation is also implemented to help on low
data situation. We evaluated their performance on
the development dataset and choose the best sys-
tem on each language and dataset size as our rep-
resentative system for the submission.
Experimental results show that the neural ap-
proach using seq2seq model has the best perfor-
mance in most cases on medium and high data sit-
uation. However, both baseline and our holistic
approach are toe-to-toe on low data situation.
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