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Abstract

This paper presents the system submitted
by IPS-WASEDA University for CoNLL–
SIGMORPHON 2018 Shared Task 1: Type
level inflection. We develop a system based
on a holistic approach which considers whole-
word form as a unit, instead of breaking them
into smaller pieces (e,g. morphemes) like the
baseline systems does. We also implement an
encoder-decoder model which has recently be-
come the new standard in many natural lan-
guage processing (NLP) tasks. The results
show that the neural approach outperforms the
baseline and our holistic approach on bigger
resources settings. The use of data augmenta-
tion helps to improve the performance of the
model in lower resources settings, although
it still cannot beat the other systems. In the
end, for the low resources setting, our holistic
approach performs best in comparison to the
baseline and the neural approach (even with
data augmentation).

1 Introduction

Lemma: illustrate
Target MSDs: V;V.PTCP;PRS

Target form: illustrating

Figure 1: An example of inflection task in English:
given the lemma illustrate, we are asked to generate
the present participle form illustrating.

We address the problem of inflection task: given
a lemma (e.g. the dictionary form of a word) and
the target form’s morphosyntactic descriptions
(MSD), generate a target inflected form. Figure 1
shows an example of inflection task in English.

Many NLP tasks, like machine translation, re-
quire analysis and generation of morphological
word forms, even previously unseen ones. Dif-
ferent languages exhibit different richness of mor-
phology. This makes the task an interesting prob-

lem. Dreyer and Eisner (2011) show that data
sparsity is a common issue for language with rich
morphology which usually leads to poor generali-
sations in machine learning.

There are three main approaches at the problem:

• The hand-engineered rule-based approach
offers a high accuracy but costs time during
construction. It usually faces the world cov-
erage problem and is language-dependent.

• The supervised approach automatically in-
duces the rules from a given training data
and applies the best rules to generate the tar-
get forms by using some classification tech-
niques (Ahlberg et al., 2015). It is practically
language independent and relatively easier to
build. However, the data sparsity is an issue.

• The neural approach is the model which
triumphed in the task recently, especially
the RNN encoder-decoder model (Kann and
Schütze, 2016; Makarov et al., 2017). Some
drawbacks of this approach are very long
training times and the need for a large amount
of training data.

This paper describes the systems we developed
for the CoNLL–SIGMORPHON 2018 Shared
Task 1 (Cotterell et al., 2018). The recent success
of neural approach encouraged us to implement
a sequence-to-sequence (seq2seq) model to solve
the task. Knowing that the neural approach tends
to need a large amount of training data, we also
consider another approach as a back-off, which is
a holistic approach. We treat the task of generat-
ing target forms as the task of solving analogical
equations between words.

2 Languages and data

Task 1 consists of 93 different languages. 10 addi-
tional surprise languages are given in the middle of
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Feature
low medium high

Avg Min Max Avg Min Max Avg Min Max
# of characters (train) 29 14 51 33 14 63 40 19 86
# of unseen characters (dev) 4 0 21 1 0 8 0 0 4
# of lemmata (train) 77 5 100 487 5 989 2,308 15 8,643
# of unseen lemmata (dev) 414 0 984 295 0 960 98 0 743
# of MSDs (train) 22 5 43 23 5 48 25 7 48
# of unseen MSDs (dev) 1 0 8 0 0 2 0 0 1
# of MSD patterns (train) 45 4 95 94 4 726 126 5 1,649
# of unseen MSD patterns (dev) 44 0 695 8 0 414 0 0 6
# of rules (train) 98 26 100 838 147 1,000 5,642 815 9,842
# of unseen rules (dev) 561 12 997 504 30 995 398 22 971

Table 1: Statistics on the dataset given. Number of rules and unseen rules are based on rule extraction method
explained in Section 5.3.1.

the development phase. The languages vary from
Germanic, Celtic and Slavic languages, which are
mainly used in Europe, to Indo-Aryan, Iranian,
etc. The dataset consists of lines of triplet. A
triplet consists of a lemma, a target form, and a tar-
get MSD pattern separated by tabulation charac-
ters. The MSDs are morphological tags presented
in Unimorph Schema (Kirov et al., 2018).

The provided resources are categorized into:

• train: this dataset is the dataset which can
be manipulated by the participant to solve the
task. It consists of three different sizes:

low : 100 word forms
medium : 1,000 word forms
high : 10,000 word forms

Telugu has only the low training dataset.
Some languages have only low and medium
training datasets: Cornish, Greenlandic,
Inggrian, Karelian, Kashubian, Kazakh,
Khakas, Mapudungun, Middle-Low-
German, Middle-High-German, Murrinh-
patha, Norman, Old-Irish, Scottish-Gaelic,
Tibetan, Turkmen.

• dev: this dataset is given to evaluate the per-
formance of our system during the develop-
ment phase. It consists of 1,000 word forms.

• test: this dataset is given at the test phase.
This dataset does not contain the target forms.
It consists of 1,000 word forms, similar to dev
dataset.

For some languages, the size of the dataset is
smaller than the one mentioned above.

Let us now look at some statistics on the given
dataset shown in Table 1. Overall, we can observe
a non-decreasing phenomenon from low to high
for all of the number of pieces of information (fea-
tures) found in the training dataset. On the oppo-
site, we found a non-increasing pattern for the un-
seen information contained in the dev dataset rel-
atively to training dataset. This shows that bigger
resources gradually cover the unseen data encoun-
tered in the smaller ones.

Norman, Telugu, Cornish, and Uzbek are lan-
guages with a smaller number of lemmata in the
training dataset. However, these languages tend
to have less, even zero for some languages, un-
seen lemmata relatively to the dev dataset. They
also have a smaller number of unseen charac-
ters. On the other hand, languages like Finnish,
Russian, English, French, and German have the
biggest number of unseen lemmata despite hav-
ing the biggest number of lemmata in the training
dataset compared to other languages.

Let us now turn to the number of MSDs and
MSD patterns. These numbers can be interpreted
as how large or complex the paradigm for that par-
ticular language is. Basque, Quechua, Turkish,
Zulu are languages with a higher variety of unique
MSD patterns. Basque, in particular, has astonish-
ingly more than 1,600 patterns in comparison to
the average of around 126 patterns per language
in high datasets. The same thing can be seen for
low and medium data. Almost all of the lines are
associated with different MSD patterns in the low
training dataset. Furthermore, Basque also topped
as the language with the highest number of unseen
MSD patterns for all dataset sizes.
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(substring, replacement, #_of_occurrences)
’-ε’ ’-ing’ 1,121
’-e’ ’-ing’ 832

’-ize’ ’-izing’ 162
...

...
...

’show’ ’showing’ 1
...

...
...

Figure 2: Excerpt of affixes remembered by the base-
line system from the training data. It memorizes all
changes from lemma into target form in various char-
acter length.

We also count the number of rules found in the
dataset (see the last two rows in Table 1). These
rules are not the morphological rules defined by
linguists but the one extracted from the method
explained in Section 5.3.1. For all languages and
all datasets, we count how many unique rules can
be extracted and relatively unseen to the respec-
tive dev dataset. Telugu, Tatar, and Swahili are the
languages with the lowest number of unseen rules.
We expect to have good performance in these lan-
guages because it means that most of the trans-
formations from lemma into the target form are
present in the training data.

3 Baseline system: morpheme-based

The CoNLL–SIGMORPHON 2018 organizers
provide a baseline system which is a morpheme-
based approach. For each language, it determines
whether the language is biased towards prefixing
or suffixing. The string will be reversed if the lan-
guage is biased to prefixing.

For each instance in the training data, it aligns
the lemma and target form using Levenshtein dis-
tance to cut the word into three categories of can-
didate: prefix, stem, and suffix. Prefixing and
suffixing rules are then extracted and grouped ac-
cording to the given MSD pattern. The rules are
stored as a knowledge in a list of triplets: sub-
string to replace, string replacement, and the num-
ber of occurrences. Figure 2 illustrates how the
baseline system stores the suffixing rules for En-
glish present participle.

In the generation step, it filters the candidate
rules by the given target MSD pattern. First, the
longest common suffixing rule with the highest
number of occurrences is applied. Then the most
frequent prefixing rule is applied in the succession
to generate the predicted target form.

4 Holistic approach

Another view on the problem is to see that word
forms are connected with other word forms sys-
tematically. Based on this observation, we can
treat the inflection task as the task of solving ana-
logical equation on words1:

lemmat : formt :: lemmaq : x ⇒ x = formq

4.1 Proportional analogy
Analogy is a relationship between four objects: A,
B, C, and D usually noted as A : B :: C : D . It
states that A is to B as C is to D where the ratio
between A and B is the same as the ratio between
C and D. Here, we consider analogy as a possi-
ble way to explain derivation between words as it
is already used from the ancient Greek and Latin
grammatical tradition up to recent works on com-
putational linguistics, like (Hathout, 2008, 2009).

Various formalisations of analogy have been
proposed in (Yvon, 2003; Lepage, 2004; Stroppa
and Yvon, 2005). In this work, we select the fol-
lowing definition2.

A : B :: C : D ⇒





d(A,B) = d(C,D)
d(A,C) = d(B,D)
|A|a + |D|a = |B|a + |C|a,
∀a

(1)
We can construct analogical grids (Fam and

Lepage, 2017b, 2018) to give a compact view of
different analogies that emerge from a set of words
contained in a corpus. An analogical grid is a MxN
matrix of words. The special property of this ma-
trix is that any four words from two rows and two
columns is an analogy (see Formula 2).

P 1
1 :P 2

1 : · · · :Pm
1

P 1
2 :P 2

2 : · · · :Pm
2

...
...

...
P 1
n :P 2

n : · · · :Pm
n

∆⇐⇒
∀(i, k) ∈ {1, . . . , n}2,
∀(j, l) ∈ {1, . . . ,m}2,
P j
i : P l

i :: P
j
k : P l

k

(2)

4.2 Solving analogical equation to generate
word form

In contrast to the baseline system which uses a
morpheme-based approach, our holistic approach

1 Both lemmat and formt are a pair of lemma and target
form found in the training data; lemmaq is the lemma given
in the question; and formq is the predicted target form.

2 d(A,B) stands for the value of the LCS edit distance
between two strings A and B that uses only insertions and
deletions with cost of 1. |A|c is the number of occurrences of
character c in string A.
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Training data

lemma inflected morph. features
show showed V;PST
show showing V;V.PTCP;PRS
release released V;PST
release releasing V;V.PTCP;PRS
schmear schmeared V;PST
...

...
...

Question

Lemma: illustrate
Target MSDs: V;V.PTCP;PRS

LEMMA : V;V.PTCP;PRS : V;PST

release : releasing :: illustrate : x
⇒

x = illustrating

release : releasing : released
revise : revising : revised
age : aging : aged
bake : baking :

show : showing :: illustrate : x
⇒

x = illustrateing

show : showing : showed
enter : : entered

reason : reasoning : reasoned
schmear : : schmeared

Figure 3: How to generate target form (present participle) of the given lemma illustrate as solving analogical
equation. Different analogical grids may generate different target forms.

does not break words in pieces (Singh, 2000;
Singh and Ford, 2000; Neuvel and Singh, 2001).
We generate the target form by solving analogi-
cal equation based on the evidence observed in the
given training data.

First, the relevant analogical grid is selected ac-
cording to the given target MSD pattern. If sev-
eral candidates of analogical equation exist, we
use some heuristic features to select the analog-
ical equation. These heuristics are edit distance,
longest common subsequence, longest common
suffix, and longest common prefix, between the
given lemma and lemmata existed in the training
dataset. If there are still several candidates after
using heuristic features, we solve all of the possi-
ble analogical equations to generate all the possi-
ble predicted target form. The most frequent an-
swer is chosen as the predicted target form.

For example, Figure 3 illustrates how to gener-
ate the target form for the example given in Fig-
ure 1. Let us say that we are able to get two ana-
logical grids according to the given MSD pattern.
We construct the analogical equation as follows:

lemmat : formt :: illustrate : formq

taken from the first and second column of the ana-
logical grids according to the given MSD pattern.
Based on longest common suffix, we choose to use
the one in the top which produces the word form

illustrating instead of the bottom one which pro-
duces illustrateing.

5 Neural approach

Following the recent success of neural approach
in previous evaluation campaign, we implement a
common architecture of seq2seq model. We treat
the inflection task as the problem of translating the
given target MSDs and lemma into target form.
Thus, the input string for the example given in Fig-
ure 1 will be as follows.

V V.PTCP PRS i l l u s t r a t e

5.1 Seq2seq model

Our model is a standard seq2seq model with at-
tention mechanism inspired from the one which is
used for machine translation (Luong et al., 2015).
The difference is that we consider a character or
MSD as one token, instead of a word. Each token
(character) is represented by a continuous vector
representation learned in the embedding layer.

We use a bi-directional Gated Recurrent Unit
(GRU) cell (Cho et al., 2014) which is a vari-
ation of Long Short-Term Memory (LSTM)
cell (Hochreiter and Schmidhuber, 1997) that tries
to solve the vanishing gradient problem. Our de-
coder is two layers of uni-directional GRU cell
with attention mechanism. There are various im-
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plementations of attention mechanism like (Bah-
danau et al., 2015; Luong et al., 2015). In this
work, we use the one that has the weight normal-
ization (Salimans and Kingma, 2016) to help the
model converges faster.

To handle the unseen tokens, we remember
them in a First-In-First-Out (FIFO) list and replace
them with a special token <UNK> before feeding
them into our model. These special tokens are re-
verted back to the character contained in the list
after the decoding phase.

5.2 Hyperparameters

We fixed our hyperparameters for all languages
and amounts of resources after doing some prelim-
inary experiments. The number of hidden units is
fixed to 100 for each layer in the encoder and de-
coder. The size of the embedding is 300. We op-
timize the model using ADAM (Kingma and Ba,
2015) with learning rate of 5 × 104 during train-
ing. To make the training process faster, we use
mini-batch size of 20.

We trained the model using early-stop mecha-
nism of 30 epochs without improvement on valida-
tion data which is a set of lines randomly selected
from the original training data.

5.3 Simple data augmentation

Preliminary results show that the neural approach
suffers from the lack of data. To tackle this
problem, we perform a simple data augmenta-
tion which artificially creates additional training
data from evidences seen in the original train-
ing data. Additional training data is expected
to bring improvement to the performance of our
model, especially on low data situation (Kann and
Schütze, 2017; Bergmanis et al., 2017; Silfverberg
et al., 2017; Zhou and Neubig, 2017; Nicolai et al.,
2017).

5.3.1 Rule extraction
We find the longest common substring between
lemma and target form. The left part is assumed as
prefix candidate, while the right part is assumed as
suffix candidate. Figure 4 shows several examples
of rules extracted from the training data in three
different languages.

To capture situational affixing where the next
or previous character influences the changes, we
added the first character from the longest common
substring to the extracted prefix candidate and the
last character for the suffix candidate. This, for

• Insertion

Language: Irish
Lemma: fótaidhé-óid

Target MSDs: N;NOM;PL;DEF
Target form: na fótaidhé-óidí

prefix root suffix
lemma fótaidhé-óid
target form na fótaidhé-óid í

• Substitution

Language: French
Lemma: amoindrir

Target MSDs: V;SBJV;PST;3;SG
Target form: amoindrît

prefix root suffix
lemma amoindr ir
target form amoindr ît

• Insertion and substitution at the same time

Language: German
Lemma: einschließen

Target MSDs: V;SBJV;PST;2;SG
Target form: schlössest ein

prefix root suffix
lemma ein schl ießen
target form schl össest ein

Figure 4: Illustrations of rules extraction for data
augmentation: simple insertion (Irish); substitution
(French); insertion and substitution at the same time
(German).

example, happens for regular past form in English
where you add only -d as suffix for lemmata ended
with e, instead of adding -ed

At a glance, it looks similar to how the base-
line system extracts the affix rules. However, we
only memorize the left (prefix candidate) and right
part (suffix candidate), not all of the possible affix
combinations with the stem as the baseline sys-
tem does. It simplifies the rules extraction, and
thus, gives us a smaller number of extracted rules
in comparison to the baseline system.

5.3.2 Creating additional training data
For each rule which appears less than 10 times in
the training data, we artificially create 5 instances
of additional training data. The additional training
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Method
Accuracy

low medium high
Baseline 39.3 63.4 77.1
Holistic 39.6 64.5 77.3
Seq2seq 13.1 71.3 90.9
Seq2seq+Aug 36.9 78.5 89.1

Table 2: Average accuracy scores on dev dataset.

data is constructed by using a random string with
the length of random integer between 1 to 4. Here,
we do not employ any language model to asses the
probability of the character sequence like the one
described in (Silfverberg et al., 2017). For exam-
ple, we can create the following additional training
instance for the examples given in Figure 4. Char-
acters written in boldface are patterns from the ex-
tracted rules.

Irish: fbsód =⇒ na fbsódí
French: aifrir =⇒ aifrît

German: einsraftließen =⇒ sraftlössest ein

6 Experiment Protocol

We evaluate the performance of the systems using
average on accuracy. Accuracy is the ratio of cor-
rectly predicted target forms by the total number
of questions. Please refer to Formula 3 for the ex-
act definition3.

Accuracy =

∑N
i=1 δ(predictedi = correcti)

N
×100

(3)
We carry experiments using training dataset and

measure the accuracies on dev dataset for all the
languages for all training dataset sizes. The sys-
tem which has the highest score will be picked as
our representative system in the test phase for that
particular language and dataset size.

7 Results

Table 2 shows the average accuracy in all lan-
guages for each of the systems. Our holistic ap-
proach is able to perform as good as the base-
line system, even slightly better under all of the
three dataset sizes. This is the same observation
found in (Fam and Lepage, 2017a) on previous
year dataset.

The results show that the neural approach us-
ing seq2seq model left behind both the baseline

3 N is the total number of questions. δ(A = B) equals to
1 if the two strings A and B are same, or else it is 0.

system and the holistic approach on medium and
high data situation. The gap is around 15 accu-
racy points. However, the lack of training data
exhibits the drawback of the neural approach as
it performs poorly under low data situation. Fur-
thermore, the use of data augmentation improves
the performance in most cases. We can see an im-
provement of around 3 times better accuracy on
low dataset although it still cannot overcome the
performance of either the baseline nor the holistic
approach.

The baseline system and the holistic approach
shine over the neural approach particularly for lan-
guages like Albanian, Czech, Haida, Neapolitan,
Norwegian-Bokmaal, and Uzbek. Our seq2seq
model seems to struggle even on high data sit-
uation for some of these languages. On the
other hand, our seq2seq model gets better accu-
racy than the baseline system or holistic approach
even on low data situation in some languages
like Azeri, Basque, Breton, Cornish, Greenlandic,
Hindi, Karelian, Khaling, Maltese, Middle-Low-
German, Middle-High-German, Murrinhpatha,
Norman, North-Frisian, Persian, Swahili, Turkish,
Turkmen, Welsh, Zulu.

The same trend can be seen on the results for
similar languages, like Romance (Catalan, Gali-
cian, Portuguese, and Spanish), Semitic (Arabic
and Hebrew), and Baltic (Latvian and Lithuanian)
languages. The baseline system leads the score on
low dataset size before started to be outperformed
by our seq2seq model on the dataset with big-
ger sizes. For other language families like Indo-
Aryan (Bengali, Hindi, Urdu), Finnic (Estonian
and Finnish), and Turkic (Turkish and Turkmen)
languages, our seq2seq model steadily leads the
score for all dataset sizes. Please refer to Table 3
for detail results per language.

8 Discussion

The results for the baseline system and our holistic
approach show the absence of necessity to break
down the words into morpheme. The derivation
between lemma and target form can also be ac-
quired through analogy. However, selecting the
candidates for constructing the analogical equa-
tion is a crucial thing. Thus, we need to improve
our selection method or use better heuristic fea-
tures. To handle the problem of unseen MSD pat-
terns, the use of formal concept analysis (Ganter
and Wille, 1999) is worth to consider.
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Accuracy
Language low medium high

B H S S+Aug B H S S+Aug B H S S+Aug
adyghe 59.8 71.6 35.5 73.8 85.5 88.1 88.0 89.5 94.8 93.6 95.6 95.2
albanian 22.7 24.5 0.6 11.6 60.2 71.5 44.8 65.2 77.2 86.4 81.1 80.5
arabic 22.9 24.7 0.1 21.0 37.0 46.2 61.1 67.9 42.8 59.1 93.0 91.7
armenian 37.9 35.7 1.2 34.2 72.4 76.9 76.5 83.7 88.6 89.6 94.1 90.9
asturian 59.8 58.6 19.7 53.1 87.9 88.0 87.4 89.7 95.5 95.4 97.8 97.2
azeri 21.0 28.0 13.0 37.0 48.0 57.0 69.0 67.0 69.0 72.0 81.0 82.0
bashkir 38.8 38.6 11.5 35.9 73.8 71.8 87.0 81.0 89.1 86.7 94.1 92.6
basque 0.1 0.2 1.9 8.6 1.9 2.5 67.0 79.2 8.4 9.8 97.4 96.9
belarusian 7.2 10.7 4.6 5.7 22.5 25.3 44.6 55.4 41.4 42.3 85.3 80.9
bengali 44.0 43.0 14.0 49.0 75.0 74.0 94.0 96.0 84.0 84.0 98.0 99.0
breton 20.0 17.0 18.0 61.0 51.0 59.0 83.0 88.0 55.0 61.0 91.0 92.0
bulgarian 32.7 33.0 4.3 49.8 74.4 76.9 70.6 82.1 90.6 89.5 95.4 94.3
catalan 54.3 51.2 4.6 32.6 82.2 81.2 85.0 92.3 94.3 94.2 98.1 95.9
classical-syriac 89.0 87.0 41.0 72.0 98.0 98.0 94.0 98.0 98.0 97.0 98.0 100.0
cornish 2.0 0.0 7.5 22.5 4.0 2.0 47.5 57.5
crimean-tatar 53.0 66.0 16.0 63.0 74.0 76.0 95.0 89.0 93.0 92.0 99.0 98.0
czech 38.1 38.4 1.6 26.1 78.8 79.4 51.1 76.6 89.0 89.5 85.5 86.3
danish 57.4 65.2 30.2 53.0 78.1 79.7 74.3 69.8 88.9 88.8 91.3 85.8
estonian 22.6 21.7 0.7 28.4 62.4 60.6 60.0 70.3 76.2 77.0 90.6 88.0
faroese 35.6 38.3 3.3 16.6 61.0 63.0 51.0 60.6 74.2 74.5 79.8 74.5
finnish 15.4 15.4 0.7 18.7 43.5 43.3 42.6 69.9 79.3 77.2 84.1 82.0
friulian 51.0 48.0 25.0 49.0 86.0 85.0 89.0 94.0 94.0 93.0 98.0 99.0
galician 52.5 51.9 9.1 30.7 82.3 81.2 77.9 88.9 93.7 93.2 98.4 97.4
georgian 71.8 70.5 17.2 58.9 89.7 90.0 82.9 92.5 93.8 94.0 98.5 98.4
greek 27.7 27.0 2.0 12.0 61.0 63.0 44.3 56.6 77.4 77.6 81.7 83.3
greenlandic 36.0 42.0 27.5 57.5 74.0 60.0 75.0 85.0
haida 43.0 28.0 5.0 23.0 59.0 59.0 50.0 52.0 71.0 68.0 53.0 52.0
hebrew 27.9 29.8 4.1 13.8 40.0 49.0 76.3 76.3 55.9 60.7 98.1 97.2
hindi 34.9 31.8 23.9 65.6 86.1 83.9 94.3 95.1 93.6 93.5 98.6 97.5
hungarian 14.9 22.0 0.9 12.1 39.9 46.7 47.3 53.1 68.7 69.7 77.5 63.5
icelandic 35.8 38.1 6.5 14.9 60.4 63.6 52.3 61.3 77.2 77.1 84.3 78.7
ingrian 20.0 12.0 27.5 20.0 46.0 42.0 80.0 75.0
irish 31.8 35.7 3.7 20.9 44.7 49.2 42.6 57.7 54.3 58.1 83.0 77.2
italian 43.3 44.4 3.3 41.3 70.5 83.1 81.3 91.1 77.2 93.1 97.9 95.4
kabardian 78.0 74.0 51.0 83.0 90.0 87.0 95.0 95.0 90.0 86.0 96.0 96.0
karelian 40.0 34.0 20.0 67.5 48.0 48.0 95.0 97.5
kashubian 56.0 64.0 12.5 57.5 74.0 68.0 85.0 92.5
kazakh 44.0 50.0 52.5 47.5 64.0 62.0 72.5 77.5
khakas 36.0 48.0 27.5 65.0 92.0 92.0 85.0 92.5
khaling 3.9 1.6 4.6 11.2 18.4 17.8 77.3 86.4 53.8 48.0 99.6 98.4
kurmanji 82.1 85.8 0.0 58.4 84.7 88.9 83.7 88.2 91.9 91.4 92.8 91.4
ladin 59.0 53.0 30.0 52.0 85.0 86.0 88.0 95.0 92.0 91.0 98.0 98.0
latin 16.0 12.6 0.8 5.4 36.8 28.5 25.2 36.2 45.6 37.1 70.1 55.5
latvian 53.4 50.9 4.1 18.3 85.8 86.6 60.5 82.4 92.0 91.2 94.8 94.8
lithuanian 23.5 19.4 0.8 5.6 53.0 50.3 33.7 51.6 64.7 63.6 86.2 84.1
livonian 25.0 27.0 1.0 27.0 47.0 47.0 69.0 77.0 58.0 59.0 92.0 92.0
lower-sorbian 30.7 35.8 2.9 19.3 70.4 79.3 64.1 81.4 88.1 87.9 95.2 94.8
macedonian 51.4 47.4 5.1 37.7 83.8 88.2 75.7 89.8 93.2 93.5 96.4 95.3
maltese 11.0 19.0 0.0 23.0 21.0 29.0 87.0 93.0 25.0 29.0 97.0 98.0
mapudungun 62.0 60.0 57.5 95.0 80.0 88.0 97.5 97.5
middle-french 78.7 76.1 10.1 67.2 90.8 91.3 89.2 93.0 95.8 95.1 98.8 96.3
middle-high-german 44.0 48.0 35.0 67.5 54.0 60.0 97.5 97.5
murrinhpatha 2.0 4.0 25.0 35.0 14.0 10.0 95.0 90.0
navajo 14.3 14.6 2.0 13.8 31.8 31.2 35.8 41.5 40.0 40.5 82.5 76.0
neapolitan 83.0 81.0 25.0 65.0 94.0 93.0 91.0 95.0 99.0 98.0 95.0 95.0
norman 38.0 34.0 45.0 60.0 60.0 52.0 77.5 80.0
northern-sami 17.8 13.1 2.1 11.6 38.8 35.0 43.2 60.7 64.5 62.4 93.4 88.0
norwegian-bokmaal 69.0 73.2 13.8 54.8 79.8 81.0 78.0 76.5 90.6 90.3 88.9 77.0
norwegian-nynorsk 51.4 53.7 11.9 37.6 61.6 61.1 52.5 57.0 74.7 75.1 84.0 75.8
occitan 79.0 77.0 15.0 55.0 87.0 87.0 94.0 98.0 94.0 92.0 100.0 100.0
old-armenian 27.6 28.8 1.5 14.8 64.9 68.0 48.9 69.3 76.7 79.3 86.0 85.1
old-church-slavonic 34.0 32.0 11.0 29.0 65.0 65.0 74.0 78.0 64.0 57.0 92.0 96.0
old-french 30.4 27.6 4.9 35.4 61.3 65.2 65.0 68.9 79.7 79.5 87.5 84.8
old-irish 12.0 12.0 5.0 5.0 20.0 18.0 20.0 32.5
old-saxon 25.3 19.0 2.7 5.2 41.7 35.6 63.0 68.0 60.5 56.0 95.3 94.6
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Accuracy
Language low medium high

B H S S+Aug B H S S+Aug B H S S+Aug
pashto 41.0 41.0 8.0 21.0 71.0 73.0 69.0 75.0 77.0 77.0 100.0 98.0
persian 27.1 29.3 2.8 35.7 67.3 71.7 82.1 85.7 81.0 83.7 96.0 95.4
portuguese 65.7 64.3 6.9 31.0 92.2 91.8 78.2 92.5 97.1 97.2 97.6 97.5
quechua 17.1 11.7 3.2 31.2 71.5 52.1 52.0 55.9 95.2 89.6 56.3 56.0
romanian 44.1 42.8 3.2 30.3 70.2 73.0 59.7 72.3 80.4 78.5 84.6 83.1
sanskrit 30.0 37.5 4.8 42.7 57.9 77.8 67.9 80.7 78.7 83.4 88.0 88.3
scottish-gaelic 42.0 38.0 25.0 50.0 46.0 44.0 80.0 90.0
serbo-croatian 22.8 20.9 1.3 25.4 67.3 65.4 52.9 74.1 84.0 85.0 85.2 86.9
slovak 37.7 46.3 3.3 23.8 71.0 72.9 61.3 70.6 82.5 82.8 90.0 89.9
slovene 35.2 37.4 13.7 25.9 73.5 75.2 63.4 86.0 87.3 85.7 95.2 93.8
sorani 20.5 18.8 1.2 15.6 52.8 52.1 60.3 71.4 64.3 60.1 88.0 87.7
spanish 62.4 57.7 4.9 46.7 85.9 84.9 84.3 90.3 91.5 93.6 97.1 95.8
swahili 29.0 29.0 27.0 66.0 71.0 76.0 94.0 93.0 72.0 82.0 100.0 100.0
swedish 55.6 62.8 7.8 39.9 75.2 76.8 62.2 68.0 85.8 85.6 86.1 76.2
tatar 57.0 68.0 17.0 53.0 85.0 88.0 94.0 87.0 91.0 91.0 100.0 99.0
telugu 80.0 80.0 40.0 82.5
tibetan 54.0 42.0 32.5 42.5 48.0 50.0 37.5 52.5
turkish 11.8 12.3 1.1 28.5 32.1 40.1 71.4 68.3 72.3 74.4 91.8 87.0
turkmen 30.0 54.0 37.5 60.0 70.0 76.0 87.5 92.5
ukrainian 39.4 44.6 6.7 23.3 72.7 71.8 55.3 71.3 84.8 84.3 89.9 87.1
urdu 29.9 27.4 24.9 57.8 86.8 85.7 91.5 95.0 96.0 95.7 97.4 97.6
uzbek 53.0 35.0 47.0 74.0 93.0 92.0 78.0 78.0 93.0 94.0 78.0 78.0
venetian 69.0 68.3 16.6 42.3 89.5 89.0 91.6 93.1 93.7 92.1 99.6 99.0
votic 15.0 12.0 11.0 13.0 38.0 39.0 68.0 76.0 41.0 39.0 78.0 78.0
welsh 26.0 23.0 11.0 30.0 55.0 56.0 83.0 88.0 71.0 70.0 95.0 95.0
west-frisian 47.0 44.0 8.0 40.0 66.0 64.0 86.0 93.0 66.0 62.0 91.0 95.0
yiddish 70.0 68.0 6.0 60.0 80.0 79.0 83.0 92.0 88.0 83.0 98.0 99.0
zulu 19.2 18.4 11.0 33.3 56.5 65.8 81.6 86.7 71.0 81.1 99.2 97.7
dutch 53.2 54.2 7.8 24.1 72.0 72.8 73.5 79.4 88.9 87.3 96.2 95.1
english 77.2 81.7 28.5 56.4 90.8 91.4 85.7 88.0 94.9 94.7 95.6 93.6
french 56.8 54.5 3.9 37.7 74.1 73.7 71.9 71.6 81.9 81.0 83.7 73.5
german 51.4 54.2 10.7 11.5 74.2 77.8 66.0 71.1 83.1 85.8 88.4 82.0
kannada 31.0 36.0 9.0 27.0 58.0 64.0 83.0 90.0 66.0 62.0 95.0 95.0
middle-low-german 20.0 18.0 22.5 25.0 34.0 30.0 90.0 92.5
north-frisian 23.0 23.0 11.0 27.0 33.0 32.0 85.0 82.0 31.0 32.0 94.0 95.0
old-english 16.7 11.8 4.3 12.7 28.2 22.1 38.3 53.3 44.2 35.8 83.8 79.5
polish 40.7 42.8 1.8 13.9 73.6 76.9 60.0 76.1 88.4 88.6 88.1 89.5
russian 41.4 41.6 1.8 11.5 75.7 77.8 54.4 76.5 85.2 85.7 89.2 87.7
Average 39.3 39.6 13.1 36.9 63.4 64.5 71.3 78.5 77.1 77.3 90.9 89.1

Table 3: Accuracy scores on development set (dev) in each language for baseline system (B), holistic approach(H),
our seq2seq model without data augmentation (S) and with data augmentation (S+Aug).

The improvement shown by using data augmen-
tation seems promising. One may think to in-
crease the amount of the artificially created ad-
ditional training data. However, there is a trade-
off between performance and training time. An-
other thing to consider is how many more addi-
tional training data should be created. We can see
that the data augmentation seems not to improve
the performance on high data situation anymore.
In addition, the current method to extract the affix
rules is very simple. Although it may capture cir-
cumfixes, it is still strongly biased to prefixing and
suffixing only. A better method is expected to also
capture other phenomena, such as parallel infix-
ing (Arabic), repetition (Greek), and reduplication
(Malay, Indonesian).

9 Conclusion

We developed several systems for morphological
inflection task. The first one is based on a holistic
approach. We generate the target forms by solving
analogical equations on words. The second one is
a seq2seq neural network model. A simple data
augmentation is also implemented to help on low
data situation. We evaluated their performance on
the development dataset and choose the best sys-
tem on each language and dataset size as our rep-
resentative system for the submission.

Experimental results show that the neural ap-
proach using seq2seq model has the best perfor-
mance in most cases on medium and high data sit-
uation. However, both baseline and our holistic
approach are toe-to-toe on low data situation.
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