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Abstract

In this paper we describe our sequence-to-
sequence model for morphological inflection.
We have constructed a common Encoder-
Decoder network that encodes the input
lemma into a dense vector to translate it to
an inflected form, based on input morpholog-
ical tags. The main novelty of the model is
that the input lemma is encoded in three dif-
ferent directions: left-to-right, right-to-left and
boundaries-to-center. In this paper we report
the accuracies of the model compared to the
same bidirectional approach.

1 Introduction

In this work we present the neural network ar-
chitecture prepared for the task of morphological
inflection in the CoNLL–SIGMORPHON 2018
Shared Task (Cotterell et al., 2018). Both morpho-
logical analysis and morphological inflection are
crucial in end-to-end Natural Language Process-
ing pipelines, as they are one of the initial steps
performed before solving more high-level prob-
lems such as Named-Entity Recognition, Senti-
ment Analysis, or others.

2 Task

In the CoNLL–SIGMORPHON 2018 Shared Task
there were two tasks to solve. In this work we
present a possible solution for the first task, in
which word-forms have to be built without consid-
ering the context. The input in the task is a lemma
and a list morphological tags. The system should
be then able to produce the corresponding word
form. The following is an example from the Span-
ish dataset

jaquear
V ;COND; 1;PL

↓
jaquearamos

in which the input lemma is jaquear and its mor-
phological tags state that the word form should be
a verb (V) in conditional tense (COND), first per-
son (1) in plural (PL). The output word form is
jaquearamos.

The models can be trained and tested in over
100 languages and in three different settings, low-,
medium- and high-resource scenarios (100, 1,000
or 10,000 training instances, respectively).

2.1 Dataset
As mentioned above we trained and tested our
models in the provided dataset, which contains
morphological inflections for over 100 languages.
The information is encoded using Unicode and
morphological tags follow the UniMorph tagging
schema (Kirov et al., 2018).

3 Method

Following previous successful attempts to mor-
phological inflection (Kann and Schütze, 2016),
we built a model based on Neural Networks,
specifically an Encoder-Decoder network (Cho
et al., 2014) with an attention mechanism (Bah-
danau et al., 2014). Furthermore, instead of con-
structing a linguistically inspired model, we have
shortly explored an engineering approach. The
main novelty of our model is in the way the input
is encoded.

In Lample et al. (2016) it is stated that recurrent
architectures such as Recurrent Neural Networks
are capable of encoding very long sequences, but
the representation is biased towards the last ex-
plored items. Because of that, a bidirectional RNN
could be expected to represent well the structure of
a word, as it models both the ending (suffix) and
the beginning (prefix) by the use of a forward en-
coder and a backward encoder, respectively.

Our model explores whether this architecture
can be improved adding another encoder that en-
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codes the word starting at the boundaries and end-
ing in the center, capturing in that way the central
structure of the word. The architecture is shown in
Figure 1.

Each input is encoded with three different en-
coders, left-to-right, right-to-left and boundaries-
to-center, and those encoded representations are
concatenated. Then, a many-hot encoding rep-
resentation of the morphological tags is concate-
nated at the end. In this way, we generate the rep-
resentation of our source lemma with its morpho-
logical information. This representation goes to
the decoder so that the output word is generated
character by character.

4 Model configuration

The implementation is based on a Machine Trans-
lation model created using the Pytorch framework.
It encodes sentences using three Recurrent Neural
Networks with 128 GRU cells in each encoder. In
order to train the decoder, we use a teacher forcing
ratio of 0.5. We started training all the models for
10 epochs, but we could observe that the models
from the low-resource scenario did not converge
and the ones in the high-resource scenario did not
improve results after the fifth epoch. Because of
that, we train our models for 20, 15 and 5 epochs
in the low-, medium- and high-resource scenarios,
respectively.

5 Results

We tested a bidirectional and a tridirectional
model and our expectations were that the tridirec-
tional one would show a better performance in the
development set. As you can see in Table 1, the
mean accuracy is slightly better than in the bidirec-
tional model with the same exact configuration,1

although these differences are not significant ac-
cording to a bootstrap test.

In Table 2 you can see the accuracies for each
language in each setting with the tridirectional ap-
proach2. In Figure 2 we plotted these accuracies
together with the accuracies of the bidirectional
model. In some cases, our tridirectional approach
is sufficiently more accurate than the bidirectional

1Same number of epochs, same cell types, and same size
of hidden memory size. We are aware, although, that the
tridirectional approach has more parameters because it has
three encoders instead of two.

2In order to make it more interpretable, we marked in bold
results that are better than the current baseline presented for
the shared task.

Mean accuracies

low medium high

Bidirectional model 2.3 28.4 54.8
Tridirectional model 2.8 32.4 55.6

Mean Levenshtein distances

low medium high

Bidirectional model 5.25 2.30 1.28
Tridirectional model 5.21 2.11 1.41

Table 1: Average results for the bidirectional and tridi-
rectional approaches in three different settings.

one, such as in Crimean-Tatar, Galician, Quechua
and welsh in the high setting, or Bashkir, Crimean-
Tatar, Ingrian, Napolitan, Tatar and Urdu in the
medium setting. There are other cases, although,
that the bidirectional approach shows a higher ac-
curacy. Check, for instance, Persian and Tatar in
the high setting or Kabardian in the medium set-
ting.

low medium high

Adyghe 0.3 65.2 99.0
Albanian 0.2 11.9 13.4
Arabic 0.0 7.1 41.9
Armenian 0.0 13.0 48.0
Asturian 1.0 48.3 87.1
Azeri 1.0 11.0 44.0
Bashkir 1.0 68.3 62.9
Basque 0.3 44.6 69.9
Belarusian 0.5 13.0 65.5
Bengali 1.0 75.0 78.0
Breton 5.0 68.0 60.0
Bulgarian 0.0 33.2 58.1
Catalan 0.2 24.1 85.8
Classical-Syriac 0.0 67.0 76.0
Cornish 18.0 46.0 -
Crimean-Tatar 0.0 54.0 99.0
Czech 0.2 7.8 34.1
Danish 0.2 32.7 64.8
Estonian 0.1 7.1 43.3
Faroese 0.5 9.0 25.7
Finnish 0.0 0.0 1.5
Friulian 1.0 73.0 98.0
Galician 0.6 40.4 92.0
Georgian 0.2 36.2 82.2
Greek 0.2 4.2 21.2
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Figure 1: Architecture of our Tridirectional Encoder-Decoder model.

low medium high

Greenlandic 4.0 22.0 -
Haida 0.0 14.0 18.0
Hebrew 0.4 24.3 77.9
Hindi 1.1 73.2 84.6
Hungarian 0.1 1.0 12.9
Icelandic 0.4 11.1 41.4
Ingrian 4.0 58.0 -
Irish 0.2 3.6 13.8
Italian 0.0 12.8 34.9
Kabardian 6.0 58.0 96.0
Karelian 2.0 40.0 -
Kashubian 8.0 20.0 -
Kazakh 0.0 22.0 -
Khakas 2.0 22.0 -
Khaling 1.0 28.8 88.7
Kurmanji 0.0 30.6 68.1
Ladin 5.0 60.0 93.0
Latin 0.0 3.5 9.6
Latvian 0.2 8.3 50.9
Lithuanian 0.2 3.9 37.3
Livonian 1.0 25.0 57.0
Lower-Sorbian 0.8 13.7 72.6
Macedonian 0.0 14.8 52.8
Maltese 4.0 57.0 47.0
Mapudungun 30.0 96.0 -
Middle-French 1.1 52.8 83.1

low medium high

Middle-High-German 12.0 90.0 -
Murrinhpatha 14.0 76.0 -
Navajo 0.4 9.7 28.1
Neapolitan 7.0 70.0 56.0
Norman 6.0 12.0 -
Northern-Sami 0.1 9.4 46.0
Norwegian-Bokmaal 0.8 26.2 47.8
Norwegian-Bynorsk 0.4 17.6 37.7
Occitan 1.0 40.0 99.0
Old-Armenian 0.0 11.8 60.7
Old-Church-Slavonic 7.0 33.0 29.0
Old-French 0.0 18.2 53.9
Old-Irish 2.0 6.0 -
Old-Saxon 0.6 15.1 77.1
Pashto 2.0 48.0 85.0
Persian 0.2 47.3 29.3
Portuguese 0.2 25.9 72.6
Quechua 0.2 18.0 43.0
Romanian 0.2 13.2 41.1
Sanskrit 0.9 14.4 52.7
Scottish-Gaelic 16.0 54.0 -
Serbo-Croatian 0.1 5.4 26.3
Slovak 0.7 10.6 59.3
Slovene 1.2 21.2 59.3
Sorani 0.3 28.0 29.3
Spanish 0.2 26.8 58.5
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low medium high

Swahili 4.0 70.0 90.0
Swedish 0.3 11.2 31.8
Tatar 1.0 53.0 44.0
Telugu 38.0 - -
Tibetan 24.0 24.0 -
Turkish 0.0 7.9 23.4
Turkmen 6.0 36.0 -
Ukrainian 0.7 12.3 32.6
Urdu 4.4 79.8 95.9
Uzbek 2.0 16.0 8.0
Venetian 2.3 46.9 88.9
Votic 1.0 55.0 23.0
Welsh 0.0 23.0 91.0
West-Frisian 3.0 88.0 13.0
Yiddish 0.0 60.0 82.0
Zulu 0.3 16.2 72.7

Mean 2.8 32.4 55.6

Table 2: Accuracies for all languages in the low-,
medium- and high-resource scenario using the tridirec-
tioal Encoder-Decoder model. The last row shows the
average accuracy for each resource scenario.

6 Conclusion and Future work

In this experiment we tried to approach morpho-
logical inflection using a slightly more complex
Encoder-Decoder architecture, by encoding the
lemmas in three different directions (left-to-right,
right-to-left and boundaries-to-center).

Although the model works quite well in some
cases, there is plenty room for improvement.
The main improvement that must be done is to
continue experimenting with more parameters to
check whether the addition of parameters im-
proves results. Both in the medium- and high-
resource settings, there are some languages that
show very bad performance, especially Finnish,
Hungarian and Latin. We feel that there is a need
of carefully analyzing their outputs so that to bet-
ter understand the motivation for these low results.

Data augmentation techniques were success-
fully used in the last CoNLL–SIGMORPHON
2018 Shared Task (Bergmanis et al., 2017; Kann
and Schütze, 2017; Nicolai et al., 2017; Silfver-
berg et al., 2017) and thus, we think that our model
could see its results improved in the low- and
the medium-resource setting by adding artificially
generated data.

We expect that using external resources, such

as Wikipedia, would have a positive effect. We
could even analyze how much effect does a spe-
cific amount of text have in this task pretraining
character embeddings with, for instance, 10,000,
50,000 or 100,000 characters.
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