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Abstract

This paper describes Fudan’s submission
to CoNLL 2018’s shared task Universal
Dependency Parsing. We jointly train
models when two languages are simi-
lar according to linguistic typology and
then do an ensemble of the models us-
ing a simple re-parse algorithm. Our
system outperforms the baseline method
by 4.4% and 2.1% on the develop-
ment and test set of CoNLL 2018 UD
Shared Task, separately.1. Our code is
available on https://github.com/
taineleau/FudanParser.

1 Introduction

Dependency Parsing has been a fundamental task
in Natural Language Processing (NLP). Recently,
universal dependency parsing (Zeman et al.,
2018a,b; Nivre et al., 2018) has unified the an-
notations of different languages and thus made
transfer learning among languages possible. Sev-
eral works using cross-lingual embedding (Duong
et al., 2015; Guo et al., 2015) have successfully in-
creased the accuracy of cross-lingual parsing. Be-
yond embedding-based methods, a natural ques-
tion is whether we can use a simple way to utilize
the universal information. Some previous research
either regarded the universal information as ex-
tra training signals (e.g., delexicalized embedding
(Dehouck and Denis, 2017)), or implicitly trained
a network with all features (e.g., adversarial train-
ing for parsing in Sato et al. (2017)). In our sys-
tem, we manually and explicitly share the univer-
sal annotations via a shared LSTM component.

* Authors contributed equally.
1Unfortunately, we did not finish the run before the dead-

line. As a result, the official accuracy gain for test set is only
0.54% and we ranks 17th out of 27 teams.

Similar to Vania et al. (2017), different lan-
guages are first grouped based on typology, as
shown in table 1. Then, we train a shared model
for each pair of languages within the same group,
and apply a simple ensemble method over all
trained models. Note that our method is orthogo-
nal to other cross-lingual approaches for universal
parsing such as cross-lingual embedding.

In the following parts, we first describe the
baseline method (Section 2) and our system (Sec-
tion 3). We show the result on both development
set and test set in Section 4 and provide some anal-
ysis of the model in Section 5.

2 Baseline

In this section, we briefly introduce the baseline
system, UDPipe 1.2 (Straka and Straková, 2017),
which is an improved version of original UDPipe
(Straka et al., 2016). The tokenizing, POS tagging
and lemma outputs of UDPipe are utilized by Fu-
danParser.

UDPipe employs a GRU network during the in-
ference of segmentation and tokenization. The
tagger uses characters features to predict the POS
and lemma tags. Finally, a transition-based neu-
ral dependency parser with one hidden layer pre-
dicts the transition actions. The parser also makes
use of the information from lemmas, POS taggings
and dependency relationships through a group of
embeddings precomputed by word2vec.

In the later discussion, we take the baseline per-
formance result from the web page of the shared
task 2 for comparison.

3 System Description

In this submission, we only consider parsing in an
end-to-end manner and handle each treebank sep-

2http://universaldependencies.org/
conll18/baseline.html

https://github.com/taineleau/FudanParser
https://github.com/taineleau/FudanParser
http://universaldependencies.org/conll18/baseline.html
http://universaldependencies.org/conll18/baseline.html
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Group Datasets
germanic Afrikaans-AfriBooms Danish-

DDT Dutch-Alpino Dutch-
LassySmall English-EWT
English-GUM English-
LinES German-GSD Gothic-
PROIEL Norwegian-Bokmaal
Norwegian-Nynorsk Swedish-
LinES Swedish-Talbanken

indo-iranian Hindi-HDTB Persian-Seraji
Urdu-UDTB

latin Latin-ITTB Latin-PROIEL
Latvian-LVTB

romance Catalan-AnCora French-GSD
French-Sequoia French-Spoken
Galician-CTG Italian-ISDT
Italian-PoSTWITA Old French-
SRCMF Portuguese-Bosque
Romanian-RRT Spanish-
AnCora

semitic Arabic-PADT Hebrew-HTB
slavic Bulgarian-BTB Croatian-

SET Czech-CAC Czech-
FicTree Czech-PDT
Old Church Slavonic-PROIEL
Polish-LFG Polish-SZ Russian-
SynTagRus Serbian-SET
Slovak-SNK Slovenian-SSJ

turkish Turkish-IMST Ukrainian-IU
Uyghur-UDT

uralic Estonian-EDT Finnish-FTB
Finnish-TDT

Table 1: Grouping languages according to typol-
ogy.

arately. We first train a monotonic model for all
“big” treebanks. Besides, for each language, there
are N−1 models fine-tuned from joint-trained (see
Figure 2), where N is the number of languages in
the same language group.

For small treebanks where training set is less
than 50 sentences, we use the delexicalized
method the same as Shi et al. (2017)’s approach
for the surprise languages. Shi et al. (2017) took
delexicalized features (morphology and POS tag)
as input and apply 50% dropout rate to the input.
In practice, we found that the baseline method per-
forms much better than ours on“fi pud”, “br keb”
“ja modern” and “th pud”, so we use the baseline
method instead for these languages.

Our whole system needs about 90 hours to do
the inference of all models on TIRA and requires
no more than 560M main memory.

3.1 Architecture

Features We use words, characters as the lex-
ical information, and use morphological features3

and POS tags as the delexicalized information. We
also tried subword embeddings, but it mostly did
not help. More precisely, the character-level fea-
tures are treated as bag-of-characters. Similarly,
we use bag-of-morphology for morphological fea-
tures (one can see number=single as a charac-
ter). We first assign the embedding vectors for
characters and morphological features, and then
for each word, we apply a Convolutional Network
(CNN) to encode variable length embeddings into
one fixed length feature.

Biaffine BiLSTM. Similar to Shi et al. (2017);
Sato et al. (2017); Vania et al. (2017), we use last
year’s first-place model (Dozat et al., 2017), the
graph-based biaffine bizLSTM model as our back-
bone. Given a sentence of N words, the input is
first fed to a bi-directional LSTM and obtain the
feature of each word wi. A head MLP and a de-
pendent MLP are used to translate the features,
which is then fed into a hidden layer to calculate
the biaffine attention. Finally, we are able to com-
pute the score of arcs and labels in following way:

3we take the features column of the UD data
as the morphological features, which includes case,
number, tense, mood and so on. See http:
//universaldependencies.org/u/feat/
index.html for detailed information.

http://universaldependencies.org/u/feat/index.html
http://universaldependencies.org/u/feat/index.html
http://universaldependencies.org/u/feat/index.html
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Figure 1: An illustration of the joint training framework for two languages.

hhi = MLPhead(wi)

hdi = MLPdep(wi)

si = HhU1h
d
i +Hhu2

where U1 ∈ Rd×d and u2 ∈ Rd are trainable pa-
rameters.

3.2 Joint Training
For a joint training model of N languages, we have
N+1 Biaffne Bi-LSTMs (called LSTMs), see Fig-
ure 1. For each language, we have a language-
specific LSTM to process the lexical information
such as word- or character- level embedding, and
the output is wl

i,j . For all languages we have a
shared LSTM which takes delexicalized informa-
tion such as morphology and POS tags as input
and the output is wd

i,j . Inspired by Sato et al.
(2017), we use a gating mechanism to combine
these two set of features. Formally,

x = [wl
i,j ;w

d
i,j ],

g = G(x), y = x� g,

where wl indicates lexical feature, wd indicates
delexicalized feature, and � is element-wise mul-
tiplication.

The difference between Sato et al. (2017) and
ours is that we remove the adversarial training
loss, which is because we have already use the uni-
versal information in the shared network.

3.3 Fine-tuning
We fine-tunning each joint-training model for 100
steps (see Figure 2).

3.4 Tree Ensemble

We follow the re-parsing method proposed in
Sagae and Lavie (2006) to perform model en-
semble. Suppose k parsing trees have been ob-
tained, denoted by T1, T2, ...Tk, a new graph is
constructed by setting the score of each edge to

S[u→ v] =

k∑
i=1

[u→ v] ∈ Tk

This graph is feed to a MST algorithm to get the
ensemble parsing tree Te. Then the relation label
of edge [u→ v] in Te is voted by all inputs Ti that
contains edge [u→ v].

3.5 Hyper-parameters

We followed the hyper-parameter settings in
(Dozat et al., 2017). We train 30, 000 steps for
each model and then fine-tune (onot necessary) for
100 steps for the given language. For all the in-
put features, the dimension is 100. For LSTM, we
use hidden size equals to 400 and the number of
layers is 3. 0.33% dropout rate is applied to the
input and LSTM hidden layer. We use Bayesian
dropout (Gal and Ghahramani, 2016) in the LSTM
layers. We also use word dropout (dropping the
whole word with a probability) in the input layer.

4 Results

The results of the test and development set are
shown in Table 5 and Table 6, respectively. The
first three columns are the baseline results and the
second three columns are the results of our sub-
mission. Also, we list the performance improve-
ment of Fudan Parser compared to the baseline
system in the last three columns.
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Figure 2: Take four languages as an example. We aim at testing sentence in language 1. We first jointly
train languages 1 and other three languages in three separate network. And then we only keep LSTM 1
and the shared LSTM part to fine tune the models for language 1. Finally we re-parse it as an ensemble
to obtain the final parsing tree for a given sentence in language 1.

As shown in both Table 6 and 6, we find that
our system achieves higher improvements on the
datasets with large size of training data. It is rea-
sonable since our model contains enormous pa-
rameters, which is easy to get overfitting if the
training set is too small. More analysis are in-
cluded in Section 5.

5 Analysis

5.1 Language similarity

The accuracy of the joint training model actually
reveals the syntactic similarity between two lan-
guages. The accuracy of three language groups,
Slavic (Table 2), Romance (Table 3) and Germanic
(Table 4). A number in row i, column j means the
accuracy of language i testing on the model jointly
training on language i and language j. The bold
font indicates it is the best model for language i.
We can see that for every language, jointly trained
models consistently beat single models (the num-
ber on the diagonal) which shows the efficacy of
the proposed approach.

5.2 Morphology
Morphology is extremely helpful when predict-
ing the dependency between words, especially for
those morphology rich languages. However, the
UD Parsing task is not done in an end-to-end fash-
ion (i.e. the input morphological features are not
the ground-true labels) and thus the morphology
information is noisy. The performance is hurt
greatly because of the noisy predicted morphology
features. A significant accuracy gain should be ob-
tained if a better morphology prediction model is
used.

6 Conclusion

Our system provided a simple yet effective method
–sharing the universal features to the same part of
neural network– to boost the accuracy of syntactic
parsing. We also demonstrated that morphological
feature plays an important role in syntactic pars-
ing, which is a promising direction to work on.

In the future, we can investigate a better way to
do the ensemble or apply a multi-model compres-
sion method (e.g. knowledge distillation) to re-
duce the computational cost. Also, we can explore



260

Table 2: Slavic languages joint training result.
Acc.(%) bg hr cs pl ru sk sl max improvement

bg 92.6 92.5 92.8 92.7 92.7 92.3 92.4 0.2
hr 85.7 86 86.1 85.2 85.5 85.8 85.5 0.1
cs 91.2 91.2 91.2 91.1 91.3 91.3 91.2 0.1
pl 90.4 89.8 90.2 90.1 90.2 90.4 90.8 0.3
ru 84.4 84.7 85.2 84.4 83.8 84.1 84.6 1.4
sk 86.4 86.2 87.8 85.9 86.4 86.7 86.1 1.1
sl 91.4 91.8 91.7 91.4 91.4 91 91.2 0.6

Avg. 0.54
# samples 8908 7690 68496 6101 3851 8484 6479

Table 3: Romance languages joint training result.
Acc. (%) ca fr gl it pt ro es max improvement
ca 92.6 92.4 92.6 92.7 92.6 92.4 92.5 0.1
fr 93.1 92.9 93 93.4 93.2 93.1 93.2 0.5
gl 86.9 86.3 86.1 86.7 86.4 86.3 86.4 0.8
it 93 92.6 92.7 92.3 93 92.8 93.1 0.8
pt 93 92.8 92.7 92.8 92.6 92.9 92.8 0.4
ro 88.8 88.9 88.9 89 88.7 88.4 88.7 0.6
es 90.9 90.8 90.5 91.1 91 90.6 90.7 0.4
Avg. 0.56
# samples 13124 14554 2277 12839 8332 8044 14188

Table 4: Germanic languages joint training result.
Acc. (%) da nl en de sv max improvement
da 85 85.1 85 85.2 85.6 0.6
nl 89 88.8 88.7 89.3 88.6 0.5
en 89.4 89.1 88.9 88.9 89.1 0.5
de 88.5 88.9 88.7 88.6 88.5 0.3
sv 85.7 85 86.5 85.9 85 1.5
Avg. 0.68
# samples 4384 12331 12544 14119 4303

a more sophisticated model (e.g., Neural Architec-
ture Search (Zoph and Le, 2016)) for joint training
on multiple languages.
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Baseline Fudan Improvement
Language code LAS MLAS BLEX LAS MLAS BLEX LAS MLAS BLEX
af afribooms 77.88% 64.48% 66.60% 80.02% 67.34% 66.04% 2.14% 2.86% -0.56%
grc perseus 57.75% 31.05% 38.74% 63.31% 34.58% 38.22% 5.56% 3.53% -0.52%
grc proiel 67.57% 49.51% 55.85% 69.54% 51.35% 53.03% 1.97% 1.84% -2.82%
ar padt 66.41% 55.01% 57.60% 67.33% 55.88% 58.63% 0.92% 0.87% 1.03%
hy armtdp 21.79% 5.00% 11.94% 26.24% 10.00% 13.85% 4.45% 5.00% 1.91%
eu bdt 70.13% 57.65% 63.50% 72.74% 58.98% 57.41% 2.61% 1.33% -6.09%
br keb 10.25% 0.00% 0.00% 10.25% 0.00% 0.00% 0.00% 0.00% 0.00%
bg btb 84.91% 75.30% 73.78% 86.47% 77.04% 77.70% 1.56% 1.74% 3.92%
bxr bdt 12.61% 0.00% 5.00% 12.61% 0.00% 5.00% 0.00% 0.00% 0.00%
ca ancora 85.61% 76.74% 77.27% 88.37% 80.17% 66.01% 2.76% 3.43% -11.26%
hr set 78.61% 58.72% 70.26% 81.01% 60.92% 66.61% 2.40% 2.20% -3.65%
cs cac 83.72% 70.89% 77.65% 86.28% 73.90% 79.54% 2.56% 3.01% 1.89%
cs fictree 82.49% 69.26% 74.96% 85.22% 72.01% 77.18% 2.73% 2.75% 2.22%
cs pdt 83.94% 74.32% 79.39% 85.35% 75.89% 74.68% 1.41% 1.57% -4.71%
cs pud 80.08% 66.53% 73.79% 81.05% 67.97% 68.99% 0.97% 1.44% -4.80%
da ddt 75.43% 65.41% 66.04% 78.38% 68.20% 62.51% 2.95% 2.79% -3.53%
nl alpino 77.60% 61.55% 64.76% 79.02% 63.89% 60.53% 1.42% 2.34% -4.23%
nl lassysmall 74.56% 61.85% 63.14% 77.41% 64.64% 49.81% 2.85% 2.79% -13.33%
en ewt 77.56% 68.70% 71.02% 78.44% 68.99% 62.92% 0.88% 0.29% -8.10%
en gum 74.20% 62.66% 62.14% 75.29% 63.36% 57.45% 1.09% 0.70% -4.69%
en lines 73.10% 64.03% 65.42% 74.83% 65.78% 62.80% 1.73% 1.75% -2.62%
en pud 79.56% 67.59% 71.14% 78.80% 67.20% 64.26% -0.76% -0.39% -6.88%
et edt 75.02% 67.12% 63.85% 77.80% 69.82% 61.53% 2.78% 2.70% -2.32%
fo oft 25.19% 0.00% 5.00% 26.95% 0.00% 5.00% 1.76% 0.00% 0.00%
fi ftb 75.64% 65.22% 61.76% 78.27% 68.03% 66.99% 2.63% 2.81% 5.23%
fi pud 80.15% 73.16% 65.46% 80.15% 73.16% 65.46% 0.00% 0.00% 0.00%
fi tdt 76.45% 68.58% 62.19% 79.18% 70.74% 59.79% 2.73% 2.16% -2.40%
fr gsd 81.05% 72.16% 74.22% 83.19% 74.01% 68.58% 2.14% 1.85% -5.64%
fr sequoia 81.12% 71.34% 74.41% 83.39% 73.59% 69.28% 2.27% 2.25% -5.13%
fr spoken 65.56% 53.46% 54.67% 65.63% 52.96% 52.82% 0.07% -0.50% -1.85%
gl ctg 76.10% 62.11% 65.29% 80.38% 67.42% 71.64% 4.28% 5.31% 6.35%
gl treegal 66.16% 49.13% 51.60% 68.08% 50.06% 52.80% 1.92% 0.93% 1.20%
de gsd 70.85% 34.09% 60.56% 71.88% 35.12% 34.30% 1.03% 1.03% -26.26%
got proiel 62.16% 48.57% 55.02% 65.49% 51.72% 54.63% 3.33% 3.15% -0.39%
el gdt 82.11% 65.33% 68.67% 82.56% 65.58% 64.68% 0.45% 0.25% -3.99%
he htb 57.86% 44.09% 46.51% 58.87% 44.89% 47.37% 1.01% 0.80% 0.86%
hi hdtb 87.15% 69.09% 79.93% 88.43% 70.48% 81.52% 1.28% 1.39% 1.59%
hu szeged 66.76% 52.82% 56.92% 68.74% 54.66% 53.52% 1.98% 1.84% -3.40%
zh gsd 57.91% 48.49% 52.92% 60.13% 49.17% 54.29% 2.22% 0.68% 1.37%
id gsd 74.37% 63.42% 62.50% 75.51% 63.54% 71.50% 1.14% 0.12% 9.00%
ga idt 62.93% 37.66% 42.06% 64.87% 39.22% 42.44% 1.94% 1.56% 0.38%
it isdt 86.26% 77.06% 77.12% 88.28% 79.48% 72.47% 2.02% 2.42% -4.65%
it postwita 66.81% 53.64% 53.99% 67.58% 53.93% 44.53% 0.77% 0.29% -9.46%
ja gsd 72.32% 58.35% 60.17% 73.16% 59.39% 60.92% 0.84% 1.04% 0.75%
ja modern 22.71% 10.00% 10.00% 22.71% 10.00% 10.00% 0.00% 0.00% 0.00%
kk ktb 24.21% 10.00% 10.00% 24.21% 10.00% 10.00% 0.00% 0.00% 0.00%
ko gsd 61.40% 54.10% 50.50% 74.94% 68.34% 62.21% 13.54% 14.24% 11.71%
ko kaist 70.25% 61.49% 57.68% 82.74% 75.55% 69.47% 12.49% 14.06% 11.79%
kmr mg 23.92% 5.00% 11.86% 23.92% 5.00% 11.86% 0.00% 0.00% 0.00%
la ittb 75.95% 66.08% 71.87% 80.07% 71.95% 76.29% 4.12% 5.87% 4.42%
la perseus 47.61% 30.16% 32.19% 49.99% 31.35% 33.75% 2.38% 1.19% 1.56%
la proiel 59.66% 47.05% 53.65% 63.93% 51.19% 54.64% 4.27% 4.14% 0.99%
lv lvtb 69.43% 54.96% 58.25% 70.89% 56.14% 57.30% 1.46% 1.18% -0.95%
pcm nsc 12.18% 5.00% 10.87% 10.00% 5.00% 5.00% -2.18% 0.00% -5.87%
sme giella 56.98% 46.05% 42.35% 61.58% 49.88% 44.19% 4.60% 3.83% 1.84%
no bokmaal 83.47% 74.65% 76.32% 85.29% 76.97% 70.82% 1.82% 2.32% -5.50%
no nynorsk 82.13% 72.40% 74.22% 84.09% 74.71% 69.97% 1.96% 2.31% -4.25%
no nynorsklia 48.95% 37.60% 40.69% 52.84% 40.67% 43.70% 3.89% 3.07% 3.01%
fro srcmf 79.27% 70.70% 74.45% 82.70% 75.06% 78.96% 3.43% 4.36% 4.51%
cu proiel 65.46% 53.96% 58.39% 70.03% 58.51% 63.28% 4.57% 4.55% 4.89%
fa seraji 79.10% 72.20% 69.43% 79.57% 71.96% 69.42% 0.47% -0.24% -0.01%
pl lfg 87.53% 74.54% 78.58% 88.78% 75.92% 77.55% 1.25% 1.38% -1.03%
pl sz 81.90% 63.84% 71.98% 83.54% 65.25% 72.25% 1.64% 1.41% 0.27%
pt bosque 82.07% 67.40% 72.04% 84.59% 70.21% 62.91% 2.52% 2.81% -9.13%
ro rrt 80.27% 71.48% 71.87% 82.67% 74.11% 71.11% 2.40% 2.63% -0.76%
ru syntagrus 84.59% 76.87% 78.01% 87.70% 79.58% 82.35% 3.11% 2.71% 4.34%
ru taiga 55.51% 36.79% 39.79% 57.94% 38.59% 42.12% 2.43% 1.80% 2.33%
sr set 82.07% 70.04% 74.12% 83.54% 70.86% 66.69% 1.47% 0.82% -7.43%
sk snk 75.41% 54.38% 60.35% 78.45% 56.57% 67.75% 3.04% 2.19% 7.40%
sl ssj 77.33% 63.47% 68.93% 79.15% 65.05% 69.10% 1.82% 1.58% 0.17%
sl sst 46.95% 34.19% 38.73% 46.19% 33.61% 38.00% -0.76% -0.58% -0.73%
es ancora 84.43% 76.01% 76.43% 87.66% 80.08% 68.03% 3.23% 4.07% -8.40%
sv lines 74.06% 58.62% 66.39% 75.87% 59.96% 64.81% 1.81% 1.34% -1.58%
sv pud 70.63% 43.38% 54.47% 72.26% 44.27% 52.52% 1.63% 0.89% -1.95%
sv talbanken 77.91% 69.22% 70.01% 80.00% 70.66% 71.49% 2.09% 1.44% 1.48%
th pud 0.70% 0.03% 0.42% 0.70% 0.03% 0.42% 0.00% 0.00% 0.00%
tr imst 54.04% 44.50% 45.91% 57.57% 46.59% 46.27% 3.53% 2.09% 0.36%
uk iu 74.91% 56.78% 63.72% 76.27% 57.66% 63.11% 1.36% 0.88% -0.61%
hsb ufal 23.64% 5.00% 11.72% 29.92% 10.00% 15.16% 6.28% 5.00% 3.44%
ur udtb 77.29% 50.31% 63.74% 77.91% 50.78% 64.30% 0.62% 0.47% 0.56%
ug udt 56.26% 36.82% 43.53% 55.88% 35.84% 43.16% -0.38% -0.98% -0.37%
vi vtb 39.63% 33.49% 35.72% 39.53% 32.33% 32.07% -0.10% -1.16% -3.65%

Table 5: All results on test set.
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Baseline Fudan Improvement
Language code LAS MLAS BLEX LAS MLAS BLEX LAS MLAS BLEX
el gdt 81.37% 63.92% 65.21% 82.31% 64.62% 61.66% 0.94% 0.70% -3.55%
tr imst 54.83% 44.25% 45.81% 58.65% 46.16% 45.81% 3.82% 1.91% 0.00%
id gsd 74.40% 63.51% 63.29% 74.82% 63.16% 71.21% 0.42% -0.35% 7.92%
da ddt 75.16% 65.29% 66.07% 78.20% 68.34% 63.80% 3.04% 3.05% -2.27%
et edt 76.50% 68.27% 64.17% 79.86% 71.38% 62.30% 3.36% 3.11% -1.87%
got proiel 62.03% 48.16% 54.39% 75.09% 61.20% 63.54% 13.06% 13.04% 9.15%
sl ssj 77.72% 63.96% 68.97% 83.77% 69.66% 72.37% 6.05% 5.70% 3.40%
en gum 76.63% 65.57% 67.20% 78.81% 67.61% 62.09% 2.18% 2.04% -5.11%
cu proiel 66.12% 54.48% 59.16% 79.39% 67.52% 70.80% 13.27% 13.04% 11.64%
ur udtb 77.44% 49.91% 63.55% 77.92% 50.79% 64.01% 0.48% 0.88% 0.46%
fro srcmf 79.15% 70.43% 74.27% 81.90% 74.01% 77.87% 2.75% 3.58% 3.60%
hi hdtb 87.26% 69.78% 80.59% 88.55% 71.17% 82.16% 1.29% 1.39% 1.57%
ko gsd 57.25% 49.06% 44.24% 72.41% 65.18% 57.04% 15.16% 16.12% 12.80%
cs fictree 83.16% 70.72% 75.80% 85.99% 73.49% 77.82% 2.83% 2.77% 2.02%
gl ctg 76.32% 62.58% 65.57% 81.75% 68.93% 73.42% 5.43% 6.35% 7.85%
lv lvtb 70.67% 57.79% 60.96% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
fr gsd 85.81% 77.80% 79.16% 88.83% 81.24% 70.55% 3.02% 3.44% -8.61%
ru syntagrus 83.87% 75.78% 77.27% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
hu szeged 68.41% 56.47% 60.17% 70.67% 58.33% 57.56% 2.26% 1.86% -2.61%
sv lines 76.23% 62.16% 67.63% 77.91% 63.39% 65.60% 1.68% 1.23% -2.03%
no bokmaal 84.56% 75.95% 78.04% 86.54% 78.64% 72.31% 1.98% 2.69% -5.73%
sv talbanken 75.39% 66.87% 68.25% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
es ancora 85.08% 76.81% 77.48% 88.21% 80.75% 68.74% 3.13% 3.94% -8.74%
he htb 61.95% 49.28% 51.45% 79.89% 65.68% 67.50% 17.94% 16.40% 16.05%
uk iu 77.94% 59.66% 68.07% 78.75% 60.11% 66.23% 0.81% 0.45% -1.84%
grc proiel 69.13% 52.42% 57.92% 77.67% 61.50% 59.95% 8.54% 9.08% 2.03%
eu bdt 70.06% 57.46% 63.39% 72.94% 59.11% 56.95% 2.88% 1.65% -6.44%
fi ftb 75.76% 65.72% 62.68% 79.90% 70.61% 69.82% 4.14% 4.89% 7.14%
cs pdt 84.85% 75.35% 80.55% 86.83% 77.45% 75.86% 1.98% 2.10% -4.69%
sk snk 75.73% 54.34% 59.71% 80.35% 57.64% 69.80% 4.62% 3.30% 10.09%
hr set 77.84% 59.60% 69.99% 80.63% 61.89% 66.75% 2.79% 2.29% -3.24%
no nynorsk 82.75% 73.88% 75.76% 85.07% 76.64% 72.06% 2.32% 2.76% -3.70%
grc perseus 57.89% 30.80% 40.49% 63.21% 34.03% 39.99% 5.32% 3.23% -0.50%
fr spoken 65.09% 54.00% 55.42% 73.46% 64.24% 63.19% 8.37% 10.24% 7.77%
pl sz 82.65% 63.92% 72.59% 84.02% 65.11% 73.04% 1.37% 1.19% 0.45%
fi tdt 76.39% 68.60% 62.33% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
ca ancora 85.63% 77.04% 77.56% 88.30% 80.31% 67.64% 2.67% 3.27% -9.92%
ar padt 66.81% 55.67% 57.90% 76.11% 63.98% 65.94% 9.30% 8.31% 8.04%
sr set 82.12% 69.12% 73.06% 84.49% 70.73% 67.66% 2.37% 1.61% -5.40%
bg btb 84.67% 74.54% 73.78% 86.73% 76.96% 78.24% 2.06% 2.42% 4.46%
vi vtb 43.65% 37.39% 39.18% 57.34% 49.57% 47.08% 13.69% 12.18% 7.90%
de gsd 75.55% 38.52% 65.39% 77.00% 39.91% 40.77% 1.45% 1.39% -24.62%
fr seguoia 82.72% 74.13% 76.34% 85.71% 76.53% 71.16% 2.99% 2.40% -5.18%
cs cac 84.42% 72.17% 78.29% 86.46% 74.65% 77.70% 2.04% 2.48% -0.59%
pl lfg 88.79% 75.15% 79.18% 89.98% 76.88% 79.01% 1.19% 1.73% -0.17%
en lines 75.78% 66.29% 68.57% 78.17% 67.59% 67.22% 2.39% 1.30% -1.35%
zh gsd 57.39% 48.19% 52.84% 70.09% 58.37% 64.74% 12.70% 10.18% 11.90%
it postwita 65.85% 52.14% 52.90% 77.23% 66.00% 53.42% 11.38% 13.86% 0.52%
la proiel 61.33% 48.40% 55.10% 74.41% 61.54% 64.39% 13.08% 13.14% 9.29%
fa seraji 79.78% 73.03% 73.35% 80.41% 72.61% 73.63% 0.63% -0.42% 0.28%
af afribooms 80.19% 65.98% 70.40% 80.95% 67.26% 68.10% 0.76% 1.28% -2.30%
ko kaist 71.00% 63.32% 59.19% 83.17% 77.37% 71.51% 12.17% 14.05% 12.32%
la ittb 73.23% 59.94% 67.43% 78.06% 66.21% 72.02% 4.83% 6.27% 4.59%
en ewt 77.62% 68.58% 70.98% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
ug udt 56.88% 37.43% 43.34% 57.78% 37.54% 44.08% 0.90% 0.11% 0.74%
pt bosque 84.93% 73.22% 76.02% 88.19% 76.65% 66.58% 3.26% 3.43% -9.44%
ro rrt 80.32% 71.21% 71.82% 83.42% 74.27% 71.73% 3.10% 3.06% -0.09%
nl lassysmall 73.61% 59.99% 61.71% 77.63% 64.44% 52.55% 4.02% 4.45% -9.16%
it isdt 85.95% 77.20% 77.37% 87.81% 79.30% 71.82% 1.86% 2.10% -5.55%
nl alpino 80.21% 67.14% 69.77% 81.66% 69.04% 58.68% 1.45% 1.90% -11.09%
ja gsd 75.48% 62.39% 64.58% 92.51% 83.13% 85.11% 17.03% 20.74% 20.53%

Table 6: All results on development set.
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