
Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 248–255
Brussels, Belgium, October 31 – November 1, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/K18-2025

248

AntNLP at CoNLL 2018 Shared Task:
A Graph-based Parser for Universal Dependency Parsing

Tao Ji, Yufang Liu, Yijun Wang, Yuanbin Wu, Man Lan
1Department of Computer Science and Technology

2East China Normal University
{taoji, yfliu, yjwang}.antnlp@gmail.com

{ybwu, mlan}@cs.ecnu.edu.cn

Abstract

We describe the graph-based dependency
parser in our system (AntNLP) submitted
to the CoNLL 2018 UD Shared Task. We
use bidirectional lstm to get the word rep-
resentation, then a bi-affine pointer net-
works to compute scores of candidate de-
pendency edges and the MST algorithm to
get the final dependency tree.

From the official testing results, our sys-
tem gets 70.90 LAS F1 score (rank 9/26),
55.92 MLAS (10/26) and 60.91 BLEX
(8/26).

1 Introduction

The focus of the CoNLL 2018 UD Shared Task
is learning syntactic dependency parsers that can
work over many typologically different languages,
even low-resource languages for which there is lit-
tle or no training data. The Universal Dependen-
cies (Nivre et al., 2017a,b) treebank collection has
82 treebanks over 57 kinds of languages.

In this paper we describe our system (AntNLP)
submitted to the CoNLL 2018 UD Shared Task.
Our system is based on the deep biaffine neural
dependency parser (Dozat and Manning, 2016).
The system contains a BiLSTM feature extractor
for getting context-aware word representation and
two biaffine classifiers to predict the head token
of each word and the label between a head and its
dependent.

There are three main metrics for this task, LAS
(labeled attachment score), MLAS (morphology-
aware labeled attachment score) and BLEX (bi-
lexical dependency score). From the official
testing results, our system gets 70.90 LAS F1
score (rank 9/26), 55.92 MLAS (10/26) and 60.91
BLEX (8/26). In a word, Our system is ranked top
10 according to the three metrics described above.

Figure 1: The structure of the entire system.

Additionally, in the categories of small treebanks,
our system obtains the sixth place with a MLAS
score of 63.73. Besides that, our system ranked
tenth in the EPE 2018 campaign with a 55.71 F1
score.

The rest of this paper is organized as follows.
Section 2 gives a brief description of our over-
all system, including the system framework and
parser architecture. In Section 3, 4 we describe
our monolingual model and multilingual model.
In Section 5, we briefly list our experimental re-
sults.

2 System Overview

The CoNLL 2018 UD Shared Task aims to con-
struct dependency trees based on raw texts, which
means that the participants should not only build

249

Figure 2: The architecture of our parser system.

the parsing model, but also preprocess systems
of the sentence segmentation, tokenization, POS-
tagging and morphological analysis. We use pre-
processors from the official UDPipe tool in our
submission. The structure of the entire system is
shown in Figure 1. Our main focus is on building
a graph-based parser.

We implement a graph-based bi-affine parser
following Dozat and Manning (2016). The parser
architecture is shown in Figure 2, which consists
of the following components:

• Token representation, which produces the
context independent representation of each
token in the sentence.

• Deep Bi-LSTM Encoder, which produces
the context-aware representation of each to-
ken in the sentence based on context.

• Bi-affine Pointer Networks, which assign
probabilities to all possible candidate edges.

We describe the three sub-modules in the follow-
ing sections in detail.

2.1 Token representation
Recent studies on dependency parsing show that
densely embedded word representation could help
to improve empirical parser performance. For ex-
ample: Chen and Manning (2014) map words and

POS tags to a d-dimensional vector space. Dozat
and Manning (2016) use the pre-trained GloVe
embeddings as an extra representation of the word.
Ma et al. (2018) use Convolutional Neural Net-
works (CNNs) to encode character-level informa-
tion of a word.

The token representation module of our parser
also uses dense embedding representations. De-
tails on token embeddings are given in the follow-
ing.

• Word ewi : The word embedding is ran-
domly initialized from the normal distribu-
tion N (0, 1) (ewi ∈ R100).

• Lemma eli: The lemma embedding is ran-
domly initialized from the normal distribu-
tion N (0, 1) (eli ∈ R100).

• Pre-trained Word epwi : The FastText pre-
trained word embedding (epwi ∈ R300). We
will not update epwi during the training pro-
cess.

• UPOS eui : The UPOS-tag embedding is ran-
domly initialized from the normal distribu-
tion N (0, 1) (eui ∈ R100).

• XPOS exi : The XPOS-tag embedding is ran-
domly initialized from the normal distribu-
tion N (0, 1) (exi ∈ R100).

• Char eci : The character-level embedding is
obtained by the character-level CNNs (eci ∈
R64).

Our parser uses two kinds of token represen-
tations, one is a lexicalized representation of the
monolingual model, another one is the delexical-
ized representation of the multilingual model.

The lexicalized representation xli of token wi is
defined as:

xli = [ewi + eli;︸ ︷︷ ︸
word

eui + exi︸ ︷︷ ︸
POS

; epwi ; eci] (1)

and the delexicalized representation xdi of token
wi is defined as:

xdi = [eui ; e
x
i ; e

c
i] (2)

In the following sections, we uses xi to represent
xli or xdi when the context is clear.

250

2.2 Deep Bi-LSTM Encoder
Generally, the token embeddings defined above
are context independent, which means that the
sentence-level information is ignored. In recent
years, some work shows that the deep BiLSTM
can effectively capture the contextual informa-
tion of words (Dyer et al., 2015; Kiperwasser and
Goldberg, 2016; Dozat and Manning, 2016; Ma
et al., 2018).

In order to encode context features, we use a 3-
layer sentence level BiLSTM on top of x1:n:

~ht = LSTM(~ht−1, xi, ~θ)

~ht = LSTM(~ht+1, xi, ~θ)

vi = ~hi ◦ ~hi

~θ are the model parameters of the forward hidden
sequence ~h. ~θ are the model parameters of the
backward hidden sequence ~h. The vector vi is our
final vector representation of ith token in s, which
takes into account both the entire history ~hi and
the entire future ~hi by concatenating ~hi and ~hi.

2.3 Biaffine Pointer Networks
How to determine the probability of each depen-
dency edge is an important part of the graph-
based parser. The work of Dozat and Manning
(2016) shows that the biaffine pointer (attention)
networks can calculate the probability of each de-
pendency edge well. Here we used a similar bi-
affine pointer network structure.

In order to better represent the direction of the
dependency edges, we use multi-layer perceptron
(MLP) networks to learn each word as the repre-
sentation of head and dependent words, rather than
simply exchanging feature vectors. And we also
separate the predictions of dependent edges and
their labels. First, for each vi, we use two MLPs
to define two pointers harci and sarci , which is the
representation of vi with respect to whether it is
seen as a head or a modifier of an candidate edge.

harci = MLP
(arc)
head (vi)

sarci = MLP
(arc)
dep (vi)

Similarly, we use hreli and srel to describe xi when
determine the relation label of a candidate edge.

hreli = MLP
(rel)
head(vi)

sreli = MLP
(rel)
dep (vi)

We first use the arc-biaffine pointer networks to
predict the probability of a dependency edge be-
tween any two words. For any two words wi and
wj in a sentence, the probability p(arc)i→j that they
form a dependency edge wi → wj is as follows:

a
(arc)
i→j = harci ·W(arc) · sarcj + u(arc) · sarcj

p
(arc)
i→j = softmax(a

(arc)
i→∗)[j]

where θarc = {W(arc), u(arc)} are the model pa-
rameters, a(arc)i→j is the computed score of the de-

pendency edge. a
(arc)
i→∗ is a vector, and the kth

dimension is the score of the dependency edge
a
(arc)
i→k . p(arc)i→j is the jth dimension of normaliza-

tion of the vector a(arc)i→∗ , meaning the probability
of dependency edge wi → wj .

We obtain a dependency tree representation T
of a complete graph p

(arc)
∗→∗ using the maximum

spanning tree (MST) algorithm. The probability
p
(rel)

i
r−→j

of the relation r of each dependency edge

wi → wj ∈ T is then computed. The definition of
p
(rel)

i
r−→j

is as follows:

a
(rel)

i
∗−→j

= hreli ·W(rel) · srelj

+V(rel) · hreli +U(rel) · srelj
p
(rel)

i
r−→j

= softmax(a
(rel)

i
∗−→j

)[r]

where θrel = {W(rel),V(rel),U(rel)} are the
model parameters, W(rel) is a 3-dimensional ten-
sor. a(rel)

i
∗−→j

is a vector, and the kth dimension is the

score of the dependency edge wi
k−→ wj .

2.4 Training Details
We train our model by minimizing the negative log

likelihood of the gold standard (wi
r(wi)−−−→ wh(wi))

arcs in all training sentences:

J (arc) = − 1

|τ |
∑
S∈τ

NS∑
i=1

log p
(arc)
i→h(wi)

J (rel) = − 1

|τ |
∑
S∈τ

NS∑
i=1

log p
(rel)

i
r(wi)−−−→h(wi)

J = J (arc) + J (rel)

where τ is the training set, h(wi) and r(wi) is wi’s
gold standard head and relation within sentence S,
and Ns is the number of words in S.

251

Figure 3: The architecture of our parser system.

3 Monolingual Model

There are 82 treebanks in the CoNLL 2018 UD
Shared Task, including 61 big treebanks, 5 PUD
treebanks (additional parallel test sets), 7 small
treebanks and 9 low-resource language treebanks.
There are several languages in which there are
many treebanks, such as en ewt, en gum and
en lines in English. We combine training sets
and development sets for multiple treebanks of the
same language. And then just train a model for
the language and make predictions on its different
treebanks.

For each language of UD version 2.2 sets (Nivre
et al., 2018; Zeman et al., 2018) with both a train-
ing set and a development set, we train a parser
using lexicalized token representation and only us-
ing its monolingual training set (no cross-lingual
features)1 . The architecture of the monolingual
model is shown in Figure 3.

4 Multilingual Model

For 7 languages without a development set, we di-
vide them into two classes based on the size of
their training set, which can be fine-tuned (ga,
sme) and can not be fine-tuned (bxr, hsb, hy, kk,
kmr).

For each language of UD version 2.2 sets (Nivre

1In total, we trained 46 monolingual models.

et al., 2018; Zeman et al., 2018) with both a train-
ing set and a development set, we train a parser us-
ing delexicalized token representation as a cross-
language model. The architecture of the multilin-
gual model is shown in Figure 3. The training
set of these 5 languages are then used as a de-
velopment set to validate the performance of each
cross-language model (see Table 1). We select
the best performance model as a cross-language
model for the corresponding language. For both
ga and sme, we manually divide the development
set from the training set and fine-tune the cross-
language model. Prediction and fine-tuning results
are shown in the Table 2.

5 Experimental Results

We trained our system based on a Nvidia GeForce
GTX Titan X. We used the official TIRA (Potthast
et al., 2014) to evaluate the system.

We used Dynet neural network library to build
our system (Neubig et al., 2017). The hyper-
parameters of the final system used for all the re-
ported experiments are detailed in Table 5.

5.1 Overall Results

The main official evaluation results are given in
Table 4. And the Table 6 shows the per-treebank
LAS F1 results. Our system achieved 70.90 F1
(LAS) on the overall 82 tree banks, ranked 9th out

252

Language #Train Cross language LAS
Buryat (bxr) 19 Uyghur (ug) 27.45
Upper Sorbian (hsb) 23 Croatian (hr) 39.35
Armenian (hy) 50 Latvian (lv) 29.35
Kazakh (kk) 9 Turkish (tr) 23.44
Kurmanji (kmr) 19 Persian (fa) 26.03

Table 1: Corpus listed above are languages that don’t have development set and the training set size is too
small to be fine-tuned. “#Train” means the number of sentences. “Cross Language” means the language
with the highest LAS score for corresponding origin language in our delexicalized cross-language model.

Corpus #Total #Train #Dev Cross language LAS Fine-tune
Irish (ga) 566 476 90 Hebrew (he) 36.13 68.49
North Sami (sme) 2464 1948 516 Swedish (sv) 36.13 63.00

Table 2: Corpus listed above are languages that don’t have development set. Because the training set
size is much bigger, we decide to divide the training set into two parts, one for training set and the other
for development set.

Origin language language family Cross Language Language family
Buryat (bxr) Mongolic Uyghur (ug) Turkic Southeastern
Upper Sorbian (hsb) IE Slavic Croatian (hr) IE Slavic
Armenian (hy) IE Armenian Latvian (lv) IE Baltic
Kazakh (kk) Turkic Northwestern Turkish (tr) Turkic Southwestern
Kurmanji (kmr) IE Iranian Persian (fa) IE Iranian
Irish (ga) IE Celtic Hebrew (he) Afro-Asiatic Semitic
North Sami (sme) Uralic Sami Swedish (sv) IE Germanic

Table 3: language families and genera for origin language and cross language (IE = Indo-European).2

Corpus FLAS Baseline Rank MLAS Baseline Rank BLEX Baseline Rank
All treebanks(82) 70.90 65.80 9 55.92 52.42 10 60.91 55.80 8
Big treebanks(61) 79.61 74.14 12 65.43 61.27 11 70.34 64.67 9
PUD treebanks(5) 68.87 66.63 11 53.47 51.75 10 57.71 54.87 8
Small treebanks(7) 63.73 55.01 6 42.24 38.80 7 48.31 41.06 6
Low resource(9) 18.59 17.17 10 3.43 2.82 9 8.61 7.63 8

Table 4: Official experiment results with rank. (number): number of corpora. FLAS means F1 score of
LAS.

253

word/lemma dropout 0.33
upos/xpos tag dropout 0.33

char-CNN dropout 0.33
BiLSTM layers 3

BiLSTM hidden layer dimensions 400
Hidden units in MLP (arc) 500
Hidden units in MLP (rel) 100

Learning rate 0.002
Optimization algorithm Adam

Table 5: Hyper-parameter values used in shared
task.

of 26 teams. Compared to the baseline obtained
with UDPipe1.2 (Straka et al., 2016), our system
gained 5.10 LAS improvement on average. Our
system shows better results on 7 small treebanks.
Performance improvement are more obvious when
considering only small treebanks(for example, our
system ranked fourth best on ru taiga and sl sst).
Besides that, our system ranked tenth in the EPE3

2018 campaign with a 55.71 F1 score.

5.2 Discussion on Multilingual Model

As described in section 4, we trained 46 cross-
language models and selected the corresponding
cross-language model for 7 languages that did not
have a development set. Generally, cross-language
models are trained in the language of the same
family. However, apart from grammatical similar-
ity, the language family division also considers the
linguistic history, geographical location and other
factors. We want to select a language’s cross-
language model to consider only grammatical sim-
ilarity. So we use a cross-language model to pre-
dict the results in this language as a basis for se-
lection.

In table 3, the experimental results show that the
Cross-language model with the best performance
in hsb, hy, kk, and kmr languages comes from the
same language family, while the Cross-language
model with the best performance in bxr, ga, and
sme is not from the same language family. There-
fore, constructing a cross-language model accord-
ing to the language of the same family is only ap-
plicable to some languages, not all of them. We’ve
only chosen the best performing cross-language
model at the moment. In the future, we will try
to select the top-k cross-language model.

2Information from http://universaldependencies.org.
3http://epe.nlpl.eu

6 Conclusions

In this paper, we present a graph-based depen-
dency parsing system for the CoNLL 2018 UD
Shared Task, which composed of a BiLSTMs fea-
ture extractor and a bi-affine pointer networks.
The results suggests that a deep BiLSTM extrac-
tor and a bi-affine pointer networks is a way to
achieve competitive parsing performances. We
will continue to improve our system in our future
work.

Acknowledgments

References
Danqi Chen and Christopher D Manning. 2014. A fast

and accurate dependency parser using neural net-
works. In Empirical Methods in Natural Language
Processing (EMNLP).

Timothy Dozat and Christopher D. Manning.
2016. Deep biaffine attention for neural de-
pendency parsing. CoRR abs/1611.01734.
http://arxiv.org/abs/1611.01734.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of the 53rd An-
nual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint
Conference on Natural Language Processing of
the Asian Federation of Natural Language Pro-
cessing, ACL 2015, July 26-31, 2015, Beijing,
China, Volume 1: Long Papers. pages 334–343.
http://aclweb.org/anthology/P/P15/P15-1033.pdf.

Eliyahu Kiperwasser and Yoav Goldberg.
2016. Simple and accurate dependency
parsing using bidirectional LSTM fea-
ture representations. TACL 4:313–327.
https://transacl.org/ojs/index.php/tacl/article/view/
885.

Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng,
Graham Neubig, and Eduard H. Hovy. 2018. Stack-
pointer networks for dependency parsing. CoRR
abs/1805.01087. http://arxiv.org/abs/1805.01087.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, Kevin Duh, Manaal
Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji,
Lingpeng Kong, Adhiguna Kuncoro, Gaurav Ku-
mar, Chaitanya Malaviya, Paul Michel, Yusuke
Oda, Matthew Richardson, Naomi Saphra, Swabha
Swayamdipta, and Pengcheng Yin. 2017. Dynet:
The dynamic neural network toolkit. arXiv preprint
arXiv:1701.03980 .

http://arxiv.org/abs/1611.01734
http://arxiv.org/abs/1611.01734
http://arxiv.org/abs/1611.01734
http://aclweb.org/anthology/P/P15/P15-1033.pdf
http://aclweb.org/anthology/P/P15/P15-1033.pdf
http://aclweb.org/anthology/P/P15/P15-1033.pdf
http://aclweb.org/anthology/P/P15/P15-1033.pdf
https://transacl.org/ojs/index.php/tacl/article/view/\885
https://transacl.org/ojs/index.php/tacl/article/view/\885
https://transacl.org/ojs/index.php/tacl/article/view/\885
https://transacl.org/ojs/index.php/tacl/article/view/\885
https://transacl.org/ojs/index.php/tacl/article/view/\885
http://arxiv.org/abs/1805.01087
http://arxiv.org/abs/1805.01087
http://arxiv.org/abs/1805.01087

254

Corpus AntNLP Rank Best Baseline
af afr* 82.63 11 85.47 77.88
ar pad* 70.75 12 77.06 66.41
bg btb 87.24 13 91.22 84.91
br keb 10.06 16 38.64 10.25
bxr bdt 19.53 1 1 12.61
ca anc* 89.28 13 91.61 85.61
cs cac 90.47 6 91.61 83.72
cs fic* 90.14 7 92.02 82.49
cs pdt 89.41 9 91.68 83.94
cs pud 84.76 6 86.13 80.08
cu pro* 68.23 13 75.73 65.46
da ddt 80.56 10 86.28 75.43
de gsd 76.88 10 80.36 70.85
el gdt 85.76 12 89.65 82.11
en ewt 80.74 12 84.57 77.56
en gum 79.70 11 85.05 74.20
en lin* 79.25 5 81.97 73.10
en pud 84.60 9 87.89 79.56
es anc* 88.84 11 90.93 84.43
et edt 81.37 11 85.35 75.02
eu bdt 79.01 11 84.22 70.13
fa ser* 83.98 11 88.11 79.10
fi ftb 83.72 11 88.53 75.64
fi pud 85.50 10 90.23 80.15
fi tdt 83.18 11 88.73 76.45
fo oft 20.13 21 49.43 25.19
fr gsd 84.84 10 86.89 81.05
fr seq* 85.32 10 89.89 81.12
fr spo* 70.96 8 75.78 65.56
fro src* 83.13 12 87.12 79.27
ga idt 64.38 11 70.88 62.93
gl ctg 81.12 8 82.76 76.10
gl tre* 72.03 8 74.25 66.16

got pro* 62.97 14 69.55 62.16
grc per* 70.76 9 79.39 57.75
grc pro* 73.82 9 79.25 67.57
he htb 61.43 12 76.09 57.86
hi hdt* 90.44 11 92.41 87.15
hr set 83.48 12 87.36 78.61

hsb ufa* 31.36 6 46.42 23.64
hu sze* 73.19 12 82.66 66.76

Corpus AntNLP Rank Best Baseline
hy arm* 25.09 10 37.01 21.79
id gsd 76.86 16 80.05 74.37
it isd* 89.14 12 92.00 86.26
it pos* 72.30 9 79.39 66.81
ja gsd 72.82 17 83.11 72.32

ja mod* 12.94 22 28.33 22.71
kk ktb 19.26 18 31.93 24.21

kmr mg 23.20 16 30.41 23.92
ko gsd 80.15 12 85.14 61.40
ko kai* 85.01 11 86.91 70.25
la itt* 83.14 12 87.08 75.95
la per* 60.99 5 72.63 47.61
la pro* 66.24 12 73.61 59.66
lv lvt* 75.56 12 83.97 69.43
nl alp* 84.69 11 89.56 77.60
nl las* 82.04 8 86.84 74.56

no bok* 89.19 7 91.23 83.47
no nyn* 88.26 9 90.99 82.13
no nyn* 66.26 4 70.34 48.95
pcm nsc 18.30 6 30.07 12.18

pl lfg 91.16 13 94.86 87.53
pl sz 85.03 14 92.23 81.90

pt bos* 86.71 8 87.81 82.07
ro rrt 84.92 8 86.87 80.27

ru syn* 90.20 10 92.48 84.59
ru tai* 68.99 4 74.24 55.51
sk snk 81.14 12 88.85 75.41
sl ssj 83.26 12 91.47 77.33
sl sst 56.30 4 61.39 46.95

sme gie* 57.15 13 69.87 56.98
sr set 85.77 10 88.66 82.07

sv lin* 80.01 10 84.08 74.06
sv pud 76.54 10 80.35 70.63
sv tal* 83.41 12 88.63 77.91
th pud 0.36 18 13.70 0.70
tr ims* 59.68 12 66.44 54.04
ug udt 61.42 10 67.05 56.26
uk iu 79.91 12 88.43 74.91

ur udt* 79.85 14 83.39 77.29
vi vtb 42.65 11 55.22 39.63
zh gsd 62.83 13 76.77 57.91

Table 6: Official experiment results on each treebank. The results in table are F1(LAS). *: some corpus’
name too long to display completely, using * to indicate omission.

255

Joakim Nivre et al. 2017a. Universal Dependencies
2.0. LINDAT/CLARIN digital library at the Insti-
tute of Formal and Applied Linguistics, Charles Uni-
versity, Prague, http://hdl.handle.net/
11234/1-1983. http://hdl.handle.net/11234/1-
1983.

Joakim Nivre et al. 2017b. Universal Dependencies
2.0 CoNLL 2017 shared task development and test
data. LINDAT/CLARIN digital library at the Insti-
tute of Formal and Applied Linguistics, Charles Uni-
versity, Prague, http://hdl.handle.net/
11234/1-2184. http://hdl.handle.net/11234/1-
2184.

Joakim Nivre et al. 2018. Universal Dependen-
cies 2.2. LINDAT/CLARIN digital library
at the Institute of Formal and Applied Lin-
guistics, Charles University, Prague, http:
//hdl.handle.net/11234/1-1983xxx.
http://hdl.handle.net/11234/1-1983xxx.

Martin Potthast, Tim Gollub, Francisco Rangel, Paolo
Rosso, Efstathios Stamatatos, and Benno Stein.
2014. Improving the reproducibility of PAN’s
shared tasks: Plagiarism detection, author iden-
tification, and author profiling. In Evangelos
Kanoulas, Mihai Lupu, Paul Clough, Mark Sander-
son, Mark Hall, Allan Hanbury, and Elaine Toms,
editors, Information Access Evaluation meets Mul-
tilinguality, Multimodality, and Visualization. 5th
International Conference of the CLEF Initiative
(CLEF 14). Springer, Berlin Heidelberg New York,
pages 268–299. https://doi.org/10.1007/978-3-319-
11382-1 22.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, POS tagging and parsing. In Proceedings
of the 10th International Conference on Language
Resources and Evaluation (LREC 2016). European
Language Resources Association, Portoro, Slovenia.

Dan Zeman et al. 2018. Universal Dependencies
2.2 CoNLL 2018 shared task development and test
data. LINDAT/CLARIN digital library at the Insti-
tute of Formal and Applied Linguistics, Charles Uni-
versity, Prague, http://hdl.handle.net/
11234/1-2184. http://hdl.handle.net/11234/1-
2184.

http://hdl.handle.net/11234/1-1983
http://hdl.handle.net/11234/1-1983
http://hdl.handle.net/11234/1-1983
http://hdl.handle.net/11234/1-1983
http://hdl.handle.net/11234/1-1983
http://hdl.handle.net/11234/1-1983
http://hdl.handle.net/11234/1-2184
http://hdl.handle.net/11234/1-2184
http://hdl.handle.net/11234/1-2184
http://hdl.handle.net/11234/1-2184
http://hdl.handle.net/11234/1-2184
http://hdl.handle.net/11234/1-2184
http://hdl.handle.net/11234/1-2184
http://hdl.handle.net/11234/1-1983xxx
http://hdl.handle.net/11234/1-1983xxx
http://hdl.handle.net/11234/1-1983xxx
http://hdl.handle.net/11234/1-1983xxx
http://hdl.handle.net/11234/1-1983xxx
https://doi.org/10.1007/978-3-319-11382-1_{}22
https://doi.org/10.1007/978-3-319-11382-1_{}22
https://doi.org/10.1007/978-3-319-11382-1_{}22
https://doi.org/10.1007/978-3-319-11382-1_{}22
https://doi.org/10.1007/978-3-319-11382-1_{}22
http://hdl.handle.net/11234/1-2184
http://hdl.handle.net/11234/1-2184
http://hdl.handle.net/11234/1-2184
http://hdl.handle.net/11234/1-2184
http://hdl.handle.net/11234/1-2184
http://hdl.handle.net/11234/1-2184
http://hdl.handle.net/11234/1-2184

